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The symbol bootstrap has proven to be a powerful tool for calculating polylogarithmic Feynman
integrals and scattering amplitudes. In this Letter, we initiate the symbol bootstrap for elliptic Feynman
integrals. Concretely, we bootstrap the symbol of the twelve-point two-loop double-box integral in four
dimensions, which depends on nine dual-conformal cross ratios. We obtain the symbol alphabet, which
contains 100 logarithms as well as nine simple elliptic integrals, via a Schubert-type analysis, which we
equally generalize to the elliptic case. In particular, we find a compact, one-line formula for the (2,2)
coproduct of the result.
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Introduction.—Within the framework of perturbative
quantum field theory (QFT), precision predictions are
expressed in terms of Feynman integrals, which evaluate
to complicated transcendental numbers and functions.
In the last decade, much progress has been made for

Feynman integrals, scattering amplitudes, as well as further
quantities that belong to the simplest such class of
functions, namely multiple polylogarithms (MPLs) [1–7].
This progress is to a large extent due to the excellent
understanding we have of these functions, in particular
through the so-called symbol [8–11]. The symbol allows
one to decompose MPLs in terms of much simpler symbol
letters logðϕiÞ, where ϕi is a rational or algebraic function
of the kinematics, and thus captures their singularity
structure. Moreover, via the larger coproduct structure it
is part of, the symbol can be used to reconstruct the
function.
Among the most powerful techniques we have for MPLs

is the so-called symbol bootstrap; see, e.g., Ref. [12] for a
review. Since the symbol manifests the identities between
MPLs via the known identities of the symbol letters
logðϕiÞ, it makes it possible to construct a basis for the
space of functions in which a quantity must live. One can
then make an ansatz and determine the corresponding
coefficients via physical constraints. This idea has been
successfully applied to scattering amplitudes [13–25], form
factors [26–30], soft anomalous dimensions [31,32], and
various individual Feynman integrals [33,34]. A crucial
ingredient for the symbol bootstrap, though, is a good guess

for the set of symbol letters, called the symbol alphabet. In
a growing number of cases, it can be obtained via cluster
algebras and tropical Graßmannians [23,35–58] as well as,
more recently, a Schubert analysis [59–61], i.e., by analyz-
ing the geometry of leading singularities in twistor space.
However, also more complicated classes of functions than

MPLs occur in QFT in general and Feynman integrals in
particular; seeRef. [62] for a review.The simplest of these are
elliptic generalizations of multiple polylogarithms (eMPLs),
for which there has been much recent progress [63–86].
Specifically, a symbol has been defined for eMPLs [78], the
identities between elliptic symbol letters ΩðjÞðϕ̃iÞ were
understood [87], and the symbol of the first elliptic
Feynman integralswas studied, revealing surprisingly simple
structures [87,88].
In this Letter, we initiate the symbol bootstrap for

elliptic Feynman integrals. Concretely, as a proof of
principle, we calculate the twelve-point two-loop dou-
ble-box integral with massless internal propagators in four
spacetime dimensions; see Fig. 1. This diagram is an
essential element in the basis for planar two-loop Feynman
integrals [89]; in particular, it contributes to scattering
amplitudes in the maximally supersymmetric Yang-Mills
(N ¼ 4 sYM) theory [90] and, through its dual graph, to
correlation functions in that theory as well as its conformal
fishnet limit [91–93]. Our bootstrap is based on the
structures that were observed in the ten-point elliptic
double-box integral [88]—in particular the symbol
prime [87]—as well as on generalizing the Schubert
analysis to the elliptic case.
Setup.—We consider the twelve-point double-box

integral

ð1Þ
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with the dual momentum xi defined in Fig. 1 and x2ij ≡
ðxi − xjÞ2 [94]. The double-box integral (1) depends on
nine independent dual-conformal cross ratios,

χab ¼ χba ¼ xba−1;ab−1 with xij;kl ¼
x2ijx

2
kl

x2ikx
2
jl

; ð2Þ

where a, b are nonadjacent in the cycle f1;…; 6g.
Moreover, it satisfies a first-order differential equation
relating it to the one-loop hexagon integral in six dimen-
sions [95,96]:

ð3Þ

where the normalized six-point Gram determinant Δ6 ¼
detðx2ijÞ=ðx214x225x236Þ2 is a cubic polynomial in χ14, showing
that the symbol of the double-box integral is elliptic [97].
We are interested in the singularity structure of the

integral in Eq. (1), i.e., its symbol [9,78,98], which can be
obtained by taking the total differential recursively,

dI ¼
X
i

IidAi ⇒ SðIÞ ¼
X
i

SðIiÞ ⊗ Ai; ð4Þ

where I, Ii, and the symbol letters Ai are n-, ðn − 1Þ-, and
onefold integrals, respectively. We refer to the number of
entries as length. It was computed in Ref. [88] and further
indicated in Ref. [87] that the symbol of the ten-point
double-box integral, given by the limit x216 → 0 and x234 →
0 of Eq. (1), respects the following simple structure:

ð5Þ

where ω1 and ω2 are the periods of the elliptic curve,
with modular parameter τ ¼ ω2=ω1, and Cijk ∈ Q. The
symbol letters in the last entry are elliptic integrals
wc ¼ ð1=ω1Þ

R
c
−∞ dx=y, with y2 ¼ −Δ6ðxÞ defining the

elliptic curve [99]. Using the symbol prime [87], the
remaining elliptic letters Ωi can be obtained from the
previous letters as

Ωi ¼
X
j

∂τ

Z
γ
ð2πiwcjÞd logðϕijÞ; ð6Þ

where the integration contour γ is independent of τ.
It is as yet unknown how to evaluate the twelve-point

double-box integral in terms of eMPLs and then compute
its symbol. The main obstacle in applying techniques such
as differential equations or direct integration is the occur-
rence of excessive square roots. This can be anticipated
from Eq. (3) as the symbol of the hexagon [100],

ð7Þ

contains square roots of 16 different Gram determinants!
Here Boxij refers to the symbol of the four-mass box
integral

Boxij¼ logvij⊗ log
zij
z̄ij

− loguij⊗ log
1−zij
1− z̄ij

; ð8Þ

with uij ¼ xkl;mn and vij ¼ xlm;nk for fk; l; m; ng ¼
f1;…; 6gnfi; jg, as well as zij and z̄ij being defined by
uij ¼ zijz̄ij and vij ¼ ð1 − zijÞð1 − z̄ijÞ. Moreover, we
introduced the following notation for Gram determinants:

GA
B ≔ ð−1Þ

P
c∈fA;Bg c det x2ab and GA ≔ GA

A; ð9Þ

with a ∈ f1;…; 6gnfAg and b ∈ f1;…; 6gnfBg where A,
B are indices of dual points as in Eq. (7); in particular, G is
the six-point Gram determinant.
Symbol letters via a Schubert problem.—We now predict

the symbol letters required for the bootstrap of integral (1)
by using Schubert analysis. These letters include the
logarithmic letters—in particular those indicated by the
symbol of the one-loop hexagon, Eq. (7) through Eq. (3)—
and the elliptic last entries, while the complicated letters Ωi
can be constructed from these via Eq. (6).
Schubert analysis works in twistor space P3 [101,102],

where to each dual point xα _αi ¼ xμi σ
α _α
μ is associated a line

ðiÞ ¼ ð1; t; x1_1i þ x1_2i t; x2_1i þ x2_2i tÞ, where the points are
parametrized by t.
MPL letters from boxes: Let us begin by discussing the

one-loop four-mass box integral, whose symbol is given in
Eq. (8). To solve for the one-loop leading singularity of this
integral, we send its four propagators to zero, i.e., x2i0 ¼ 0.
In momentum twistor space, this is equivalent to looking
for a line (L) intersecting all four kinematics lines (i)

FIG. 1. The twelve-point elliptic double box and the related
hexagon, as well as their dual graphs. The dual momenta are
defined via xiþ1 − xi ¼ p2i þ p2iþ1.
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simultaneously. There are exactly two solutions ðLjÞj¼1;2 to
this so-called Schubert problem. Each of these solutions
has four distinct intersections with the four external lines
[103,104], fαj; βj; γj; δjgj¼1;2; see Fig. 2. According to
Ref. [60], one can form four multiplicatively independent
cross ratios from these intersections,

z ¼ ðα1 − β1Þðγ1 − δ1Þ
ðα1 − γ1Þðβ1 − δ1Þ

; z̄ ¼ ð1 → 2Þ; ð10Þ

as well as (1 − z) and (1 − z̄). Taking their products
(quotients) we obtain the arguments of the letters for the
first (second) entries of the four-mass box symbol (8).
Since it contains only a single integration point correspond-
ing to one loop momentum, we refer to this case as a “one-
loop Schubert problem” in the following.
An interesting property of all known amplitudes and

Feynman integrals in planar N ¼ 4 sYM theory
[12,88,105–109], which arguably holds to all loop orders
[110,111], is that their first two entries form the symbols of
Li2ð1 − xab;cdÞ, logðxab;cdÞ logðxa0b0;c0d0 Þ or four-mass
boxes whose symbol letters are fz; z̄; 1 − z; 1 − z̄g or their
degenerations for corresponding one-loop-box subdia-
grams [112]. We assume that the twelve-point double-
box integral (1) also follows this pattern. Since there are
ð6
4
Þ ¼ 15 four-mass box subtopologies, this gives us 9

candidates for the first entry and 30þ 9 ¼ 39 candidates
for the second entry.
Now we move to the third entries. In Ref. [60] it was

realized that for certain two-loop planar Feynman integrals,
the space of possible symbol letters in the third slot is
generated by combining different one-loop Schubert prob-
lems and constructing cross ratios from the intersection
points on the external lines. Here we refine this procedure
as follows: in all known examples we observe that the
required combined one-loop boxes share three external
lines, and thus we assume this to also hold for the twelve-
point double box; see Fig. 2. This requirement in particular

guarantees that the cross ratios formed on each line are the
same. There are ð6

3
Þ ¼ 20 such configurations in the double-

box integral, each of them giving nine multiplicatively
independent cross ratios. Taking the union of all cross
ratios formed in this way, we find 104 multiplicatively
independent letters: 9 χab, G56=ðx213x224Þ2 and its 14 images
under the permutations S6 of the external points xi, the
15 last entries Rij of the hexagon (7), five ratios of
G6=ðx213x224x235x225x214Þ to its five images under S6, as well
as 60 algebraic letters ðGik

ij −
ffiffiffiffiffiffiffiffiffiffiffiffi
GijGik

p Þ=ðGik
ij þ

ffiffiffiffiffiffiffiffiffiffiffiffi
GijGik

p Þ.
Combining them with the 30 ratios fz=z̄; ð1 − zÞ=ð1 − z̄Þg
from the second entries, we obtain 134 candidate third
entries.
Elliptic Schubert analysis and last entries: So far, we

have only constructed the arguments of the symbol letters
logðϕiÞ through Schubert analysis, while, as indicated in
Refs. [87,88], the counterparts of elliptic letters in MPL
cases are logarithms rather than their arguments. However,
one can also naturally construct logarithms in the above
Schubert analysis; e.g., in the case in Eq. (10):

logðzÞ ¼ ðα1 − δ1Þ
Z

γ1

β1

dx
ðx − α1Þðx − δ1Þ

: ð11Þ

This is referred to as Aomoto polylogarithm [113–115]:
two points on the line define the differential form (inte-
grand), and the two other points define the integration
range, while the normalization factor α1 − δ1 arises from
the inverse of the contour integral

1

α1 − δ1
¼ 1

2πi

I
jx−α1j¼ϵ

dx
ðx − α1Þðx − δ1Þ

; ð12Þ

which can also be understood as one period of the
punctured sphere Cnfα1; δ1g.
The above construction can be easily generalized to

elliptic cases. Concretely, this amounts to considering the
leading singularity of the two-loop double-box integral: the
lines (0) and ð00Þ intersect each other as well as {(1),(2),(3)}
and {(4),(5),(6)}, respectively; see Fig. 3. Since this
involves two integration points corresponding to two loop
momenta at the same time, we refer to it as a “two-loop
Schubert problem.” It poses seven constraints on eight
parameters and thus defines a curve, to which a one form is
naturally associated. One can easily verify that this is an
elliptic curve [116], and the elliptic generalization of
Eq. (11) is

2πi
ω1

Z
β

α

dxffiffiffiffiffiffiffiffiffiffi
PðxÞp : ð13Þ

Here dx=
ffiffiffiffiffiffiffiffiffiffi
PðxÞp

is the differential form for the elliptic
curve, with x parametrizing the points on any external line
(i). Moreover, 2πi=ω1 is the counterpart of Eq. (12) [117],

FIG. 2. Schubert problem providing the logarithmic letters in
the symbol. The horizontal lines represent the external dual points
xi. The pair of vertical lines in each of the three boxes is uniquely
determined by the intersection with the four corresponding
external points. Logarithmic letters are obtained as cross ratios
of the intersection points on a line.
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and fα; βg are intersections on (i) that stem from a one-loop
Schubert problem including either fð1Þ; ð2Þ; ð3Þg or
fð4Þ; ð5Þ; ð6Þg. For instance, if we stick to the line (2)
and choose the upper and lower bounds from fα1; α2g in
Fig. 2 with fi; j; k; lg ¼ f1; 2; 3; 4g, the integral gives wχ14 ,
which will be one of our last entries. By going through all
external lines and possible upper and lower bounds [118],
we find 9 linear independent elliptic integrals which we
assume to be the last entries of the twelve-point double-box
integral.
Finally, let us remark that the eight letters besides wχ14

can also be generated from the differential equation (3) as
the values of χ14 for which the third letters Rij in the
hexagon become singular. In this way, we find an over-
complete set of last entries, from which we construct a basis
of nine last entries given by w0, wχ14 , and τ and the six torus
images wck , where

ck ¼ χ14
Gix4ik þ Gjx4jk þ 2ðGi

j þ Gijx2ijÞx2ikx2jk
2Gijx2ijx

2
jkx

2
ik

: ð14Þ

Here i and j are defined from the index k by identifying the
set fi; j; kg with (cyclic permutations of) f1; 2; 3g or
f4; 5; 6g. This basis spans the same space as the last entries
obtained by the Schubert analysis. Note that there is
an ambiguity in defining wck due to the choice of �yck .
The choice used in this Letter is explicitly given in the
Supplemental Material [118].
Bootstrap and results.—Let us now turn to the bootstrap

of the twelve-point double-box symbol assuming the
structure of Eq. (5); i.e., based on the alphabet generated
in the previous section, we make an ansatz for the terms in
the symbol whose last entry is not 2πiτ, while we assume
that the terms with last entry 2πiτ follow from those
via Eq. (6).
A generic symbol

P
i1;…;in C

i1;…;inAi1 ⊗ … ⊗ Ain does
not correspond to the symbol of a function unless it satisfies
the integrability condition [1]

0 ¼
X

i1;…;in

Ci1;…;inAi1 ⊗ … ⊗ Aip−1 ⊗ Aipþ2
⊗ … ⊗ Ain

×

�
∂Aip

∂Xk

∂Aipþ1

∂Xm
−
∂Aip

∂Xm

∂Aipþ1

∂Xk

�
ð15Þ

at all depths 1 ≤ p < n, where fXkg are a set of indepen-
dent kinematic parameters, e.g., fχabg or fw0; wχ14 ; wck ; τg
for the double-box integral. In particular, in order to exploit
the structure (5), we use the latter set of variables for
integrability in entries three and four; see the Supplemental
Material [118] for more details.
Amazingly, we find that imposing integrability uniquely

fixes the symbol up to an overall constant, cf. Table I! We
determine this constant via the differential equation (3),
which moreover provides a consistency check. In addition,
we checked that the symbol satisfies the conformal Ward
identity [119] and the second-order differential equation of
Refs. [120,121], and that it reduces to the known symbol of
the ten-point double box [88] in the limit x216 → 0, x234 → 0.
It also satisfies the (extended) Steinmann conditions [122–
124] in all logarithmic symbol entries, i.e., discontinuities
in overlapping channels vanish. Finally, the dual diagram of
the double box is invariant under the Z2 reflection xi →
x7−i and the permutations S3 of fx1; x2; x3g (cf. Fig. 1), and
this symmetry is manifest in our symbol result [125].
The full symbol of the twelve-point double-box integral

can be written in terms of 100 logarithmic symbol letters
and nine elliptic last letters, together with the structure
shown in Eq. (6). We give its explicit form, as obtained
from the bootstrap and organized by the last entries, in the
Supplemental Material [118].
Reorganizing this symbol allows one to write the (2,2)

coproduct of the double-box integral as a remarkably
compact formula:

ð16Þ

FIG. 3. Schubert problem providing the elliptic letters in the
symbol. The horizontal lines, which intersect vertical lines
corresponding to external points, intersect each other in an
elliptic curve (the dotted curve; see also Ref. [116]). If the black
point lies on an external line corresponding to the external point
xi, i.e., the elliptic curve intersects the external line in that black
point, either (0) or ð00Þ satisfy the defining property of one of the
vertical lines in Fig. 2 with external points xi; x1; x2; x3 or
xi; x4; x5; x6, respectively. The corresponding intersection points
yield the boundaries in the elliptic letters.

TABLE I. Number of remaining free parameters after imposing
each constraint.

Constraint Free parameters

Alphabet 9 × 39|fflfflffl{zfflfflffl} × 134 × 8

Integrability in slots 1 & 2 60 × 134 × 8|fflfflfflffl{zfflfflfflffl}
Integrability in slots 3 & 4 60 × 19|fflfflfflffl{zfflfflfflffl}
Integrability in slots 2 & 3 1
Differential equation (3) 0
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where the limit in the second term is taken with all other
eight χab’s fixed. The first term in Eq. (16) manifests the
differential equation (3) via Eq. (7), and the second
(subtracted) term ensures integrability and that van-
ishes as χ14 → ∞. The explicit form of the subtracted terms
as a tensor product of length-two functions can be under-
stood as follows. Its first (length-two) entries can be easily
obtained by taking the limit χ14 → ∞ in the four-mass box
terms (8), e.g., Box36 → Sðlog x15;24 log x14;25Þ. In order to
obtain the second (length-two) entries, we need to carefully
define the integration contour connecting the two endpoints
at infinity. This contour does not follow from the bootstrap,
but is connected to the one in Eq. (6); we leave its
investigation to future work.
The symbol of the second (length-two) entry in the (2,2)

coproduct (16) can be written as

Sij ¼ S
�
2πi
ω1

Z
dχ014 logRijðχ014Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Δ6ðχ014Þ
p

�
¼ Ŝij þΩij ⊗ 2πiτ;

ð17Þ

where Ωij can be obtained by taking the τ derivative of the
integral in Eq. (17), which is nothing but a realization of
Eq. (6). The Ŝij are given as follows: Taking i and j both from
either f1; 2; 3g or f4; 5; 6g, and k to be the respective third
index from this set (with fi; j; kg in cyclical ordering), then

Ŝij ¼ logRij ⊗ 2πiwχ14 þ
1

2
log

Gjx4jk
Gix4ik

⊗ 2πiwck

−
1

2

X
l∈fi;jg

sgnðk− lÞ log
Gij
ijknl −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GijGijknl

p
Gij
ijknl þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GijGijknl

p ⊗ 2πiwcl :

ð18Þ

Here, Gijknl ≡ Gik if l ¼ j and Gijknl ≡ Gjk if l ¼ i. If instead
i and j take one value from each set, e.g., i ∈ f1; 2; 3g and
j ∈ f4; 5; 6g, then

Ŝij ¼ logRij ⊗ 2πiwχ14

þ ð−1Þiþj

2
log

z2ijð1 − z̄ijÞ
z̄2ijð1 − zijÞ

⊗ 2πiw0

þ
X
l∉fi;jg

ð−1Þl
2

log
Gij
mn −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GijGmn

p
Gij
mn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GijGmn

p ⊗ 2πiwcl ; ð19Þ

where m and n are defined from l by identifying the set
fl; m; ngwith (cyclic permutations) of f1; 2; 3g or f4; 5; 6g.
When taking the limit χ14 → ∞ to determine the subtracted
term in Eq. (16), the six symbols (18) vanish while the nine
symbols (19) yield four linearly independent combinations,
resulting in the 19 integrable combinations found in Table I.

Conclusion and outlook.—In this Letter, we have ini-
tiated the symbol bootstrap for elliptic Feynman integrals.
Concretely, we have determined the symbol of the two-
loop twelve-point double-box integral. This calcula-
tion made use of two crucial ingredients: the simple
structure (5) of the symbol in terms of the symbol prime
and a Schubert analysis to predict the symbol letters. In
particular, we show for the first time how a Schubert
analysis can be used also to predict elliptic symbol letters.
Amazingly, our assumptions on the symbol alphabet in the
different entries combined with integrability were suffi-
cient to uniquely determine the result up to an overall
normalization, which we could fix via the differential
equation (3)! Moreover, we found a very compact expres-
sion for the (2,2) coproduct, which in particular suggests
that symbol-level integration [126] can be generalized to
the elliptic case. For MPLs, it is well understood how to
complete the symbol by boundary values at a base point to
a form that allows for numerical evaluation, using the full
coproduct [11]. In the present case, a similar form that
yields numerics can be trivially obtained via the differ-
ential equation (3) from Refs. [95,96], whose right-hand
side is known at full function level, and with boundary
value .
We expect that the techniques developed in this work can

be used to determine many further Feynman integrals and
scattering amplitudes. A particular target would be all
planar two-loop amplitudes in N ¼ 4 sYM theory, which
can be expressed in terms of a finite basis of elliptic
Feynman integrals using prescriptive unitarity [127].
Moreover, it would be interesting to make contact with
the diagrammatic coaction [128,129] and spherical con-
tours [115,130]. Many elliptic integrals that are relevant for
LHC phenomenology contain massive internal propaga-
tors. It would be desirable to generalize the bootstrap
approach and Schubert analysis also to this case. Finally, it
would be very interesting to generalize the techniques
developed here for elliptic integrals also to Feynman
integrals containing higher-dimensional Calabi-Yau mani-
folds [62,116,131–137].
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