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Cat qubits provide appealing building blocks for quantum computing. They exhibit a tunable noise bias
yielding an exponential suppression of bit flips with the average photon number and a protection against the
remaining phase errors can be ensured by a simple repetition code. We here quantify the cost of a repetition
code and provide valuable guidance for the choice of a large scale architecture using cat qubits by realizing
a performance analysis based on the computation of discrete logarithms on an elliptic curve with Shor’s
algorithm. By focusing on a 2D grid of cat qubits with neighboring connectivity, we propose to implement
2-qubit gates via lattice surgery and Toffoli gates with off-line fault-tolerant preparation of magic states
through projective measurements and subsequent gate teleportations. All-to-all connectivity between
logical qubits is ensured by routing qubits. Assuming a ratio between single- and two-photon losses of 10−5

and a cycle time of 500 ns, we show concretely that such an architecture can compute a 256-bit elliptic
curve logarithm in 9 h with 126 133 cat qubits and on average 19 photons by cat state. We give the details of
the realization of Shor’s algorithm so that the proposed performance analysis can be easily reused to guide
the choice of architecture for others platforms.
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Introduction.—While quantum computing can offer
substantial speedups for solving specific problems [1],
billions of operations are typically required for implement-
ing large scale algorithms [2–4]. This means that the
convergence of quantum algorithms cannot realistically
be ensured by requiring physical errors to occur with a
probability smaller than the inverse of the number of
required operations. Instead, the concept of fault-tolerant
quantum computation [5] is envisioned. It relies on the idea
that, if the rate of physical errors is below a certain
threshold, quantum error correction schemes suppress
the logical error rate to arbitrary low levels and make
possible—at least in principle—arbitrary long sequences of
operations [6–8].
With its relatively high thresholds, the surface code is

one of the most popular quantum error correction codes
[9,10]. As a 2D code, the number of physical qubits per
logical qubit increases quadratically with the code distance.
Their actual implementation hence comes at the price of a
significant overhead in physical resources, with typically
hundreds or even thousands of physical qubits per logical
qubits to achieve the level of protection required for
performing billions of noise-free operations [5].
Some physical platforms naturally exhibit a noise bias

[11] that can be exploited to increase code thresholds and
hence to reduce the overhead [12,13]. Bosonic systems
stabilized in a two-dimensional manifold spanned by cat

states—superpositions of coherent states with opposite
phases—with an engineered dissipation scheme combining
two-photon drive and two-photon dissipation stand out in
this framework. The noise bias is indeed tunable in this
case, with bit flips that are suppressed exponentially with
the mean photon number [14–16]. The remaining phase
errors can be corrected with a simple repetition code—a 1D
code with a number of physical qubits per logical qubit
increasing linearly with the code distance. Given that gate
sets at the physical level preserving the noise asymmetry
have been described and their use for the implementation of
various universal sets at the logical level has been identified
[17], cat qubits are becoming an option for realizing a large
scale quantum computer. The gain of having a 1D over a
2D code and the details of the implementation of a large
scale algorithm with cat qubits are, however, missing.
We here propose a generic tool for analyzing the

performance of quantum computing architectures using
Shor’s algorithm [18,19] for computing discrete logarithms
on elliptic curves over prime fields—a hard classical
problem at the core of cryptosystems widely used for
key exchange and digital signatures [20,21]. The security
level of these cryptosystems against classical attacks relies
on precise knowledge of the performance of classical
algorithms—knowledge that is useful to witness a quantum
advantage. The best currently known classical algorithms to
compute elliptic curve discrete logarithms are exponential
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in the size of the input parameters, whereas there exist
subexponential algorithms for factoring. This facilitates
the achievements of a quantum advantage with respect to
algorithms with subexponential speedups, including Shor’s
algorithm for the factorization.
We propose a concrete layout in which cat qubits are

placed at the nodes of a 2D grid with physical connections
to their neighboring qubits only. All-to-all connectivity
between logical qubits is ensured by means of routing
qubits. 2-qubit gates are implemented by means of lattice
surgery and Toffoli gates are obtained by gate teleportation
through an off-line fault-tolerant magic state preparation
based on projective measurements. From detailed models of
physical qubits and their manipulations, we estimate pre-
cisely the errors related to the implementation of logical
operations by considering a ratio between single- and
two-photon losses of 10−5. We show concretely that such
an architecture can compute a discrete logarithm on the
secp256k1 curve, which is used for securing signatures in
Bitcoin transactions [22] in 9 h with 126 133 cat qubits and
with 19 photons per cat state on average. Note that keeping
the exponential reduction of bit flip for cat sizes up to 19
photons on average might be experimentally challenging
[23,24], and our results suggest that either substantial
improvements in the design of cat qubits are required, or
a thin rectangular surface code [25] is more suitable for such
a large computation (see the Supplemental Material [26],
Secs. D1 and F for more details). Independent of the
feasibility question, the gain in using a 1D instead of a
2D code is quantified in detail.
Elliptic curve and discrete logarithm.—An elliptic curve

is defined as the set of points associated with the coor-
dinates ðx; yÞ satisfying the equation y2 ¼ x3 þ axþ b
with fixed values for a and b. We are interested in crypto-
graphic relevant elliptic curves for which x, y, a, and b
belong to the field of integers modulo p, with p a prime
number (n bits long). We define a binary operation on these
elliptic curves, called “addition” and denoted “þ”: for two
points P and Q, R ¼ PþQ have, in the generic case [85],
coordinates given by

xR ¼ λ2 − xP − xQ; ð1aÞ

yR ¼ −yP − λðxR − xPÞ; ð1bÞ

where λ ¼ ðyQ − yPÞ=ðxQ − xPÞ is the slope of the line
joining P and Q. A multiplication by an integer k naturally
arises as kP ¼ Pþ Pþ � � � þ P|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

k times

. A cyclic subgroup can be

formed from the multiples of a point G (the subgroup
generator) on the curve. The security of cryptographic
algorithms based on elliptic curves, such as the elliptic
curve digital signature algorithm [21], relies on the hard-
ness to find a number k (the logarithm) from the knowledge
of the generator G and the point P ¼ kG (see the

Supplemental Material [26], Sec. A for details on elliptic
curve cryptography).
Shor’s algorithm.—Shor introduced an algorithm [18,86]

to compute discrete logarithms on a quantum computer
with a number of gates cubic in n. It takes three steps and
three registers. In the first step, two registers encoding x1
and x2 are each prepared in a superposition of all possible
integers. In the second step, fðx1; x2Þ ¼ x1G − x2P is
computed and stored in the third register. In the last step,
a quantum Fourier transform of the two registers containing
x1 and x2 (which corresponds to a 2D quantum Fourier
transform) reveals the value of k (see the Supplemental
Material [26], Sec. B for more details and a discussion on
Ekerå’s version of Shor’s algorithm [27] ).
The preparation of registers in a superposition of all

integers has a linear cost. It is indeed obtained through the
preparation of qubits in state jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

, that is,
by applying a Hadamard transformation on each qubit.
Since the quantum Fourier transform precedes a measure-
ment of each qubit, it can be implemented in a semiclassical
way [87], with a linear cost as well. The cost of Shor’s
algorithm is largely dominated by the computation of f,
which we evaluate in detail below.
Arithmetic circuits.—f is the difference between the

results of two scalar multiplications. The elliptic curve
scalar multiplication is implemented with a windowed
approach, as in [28]. The principle is to decompose the
factor k into groups of bits and to rewrite the multiplication
as a sequence of elliptic curve point additions,

kG ¼
Xne
i¼0

i≡0 mod we

2iki∶iþwe
G; ð2Þ

with ne the number of bits in k, we the width of each
window, and ki∶iþwe

the number formed from we bits of k
starting at bit i. For each term, the point 2iki∶iþwe

G is
computed classically for all possible values of ki∶iþwe

and
loaded into a quantum register through a quantum table
lookup circuit [29,30], with the qubits encoding ki∶iþwe

as
controls.
Each point addition is realized from Eq. (1) using a

quantum implementation of each operation [88]. This takes
arithmetic additions, subtractions, multiplications, and divi-
sions, modulo the prime number p; see the Supplemental
Material [26], Secs. C7 and C8 for details.
A ripple-carry circuit from [31] is used to perform the

additions. The basic idea is to start with the low-order bits
of the inputs, compute the first carry with a Toffoli gate,
take the value of the carry and the next bits of the inputs to
compute the second carry, and so on up to the high-order
bits. We then work from the high-order bits back down to
the low-order bits by computing the result of the addition
bit by bit, store the value in the first input register, and
restore the value of the second input register to get a
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reversible computation. Note that the subtraction is
obtained by conjugation of the addition. To make an
addition modulo p, the standard addition is followed by
a comparison of the result with p, which is obtained
by subtracting p from the result of the addition and by
checking the most significant bit of the result of this
subtraction. A subtraction of p is then realized, conditioned
on the result of the comparison. In order to save resources,
the comparison and subtraction, which start identically, are
merged together to form a modular reduction; see the
Supplemental Material [26], Sec. C2 for the details on the
circuits. Note that the modular subtraction is obtained by
conjugation of the modular addition.
The multiplication can be implemented with a standard

double-and-add method, which can be illustrated by con-
sidering the product of two (n bits) numbers x1 and x2.
From the binary representation of x1 ¼

P
i 2

i½x1�i, we have
x1x2¼

P
i2

i½x1�ix2¼½x1�0x2þ2f½x1�1x2þ2ð½x1�2yþ���Þg;
i.e., the result of the product is obtained by first considering
the last term (x2 conditioned on the value of ½x1�n−1),
doubling the result, and adding x2 conditioned on ½x1�n−2,
and so on up to the first term. The multiplication modulo p
is then naturally obtained by performing additions and
doublings modulo p, which takes 2n modular reductions.
We used a representation (compatible with the addition),
the Montgomery representation, to reduce the number of
reductions [28,32]. It simply consists of representing a
number x1 by y1 ¼ x12n mod p. Considering the numbers
x1 and x2, and their respective Montgomery representation
y1, y2, the product x1x2 is represented by x1x22n mod p,
which is obtained by computing y1; y2 ↦ y1y22−n mod p
from a double-and-add multiplier in which the doubling
operation is replaced by halving. In this case, the sums need
a single modular reduction to realize a multiplication
modulo p, hence reducing the number of modular reduc-
tions to nþ 1 [89]. Note that the latter is further reduced by
using a windowed version of the multiplication in the
Montgomery representation; see the Supplemental Material
[26], Sec. C4 for the details of the multiplication circuit.
The modular division between two numbers x1 and x2 is

obtained by a modular multiplication of x1 and the modular
inverse of x2. The modular inversion is performed with
Kaliski’s algorithm [33]. This algorithm is essentially a
binary version of the extended Euclidean algorithm. To
make it compatible with the Montgomery representation,
the result is multiplied by 22n such that starting from the
representation y2 ¼ x22n mod p, Kaliski’s algorithm
returns x−12 2n mod p ¼ y−12 22n mod p. The circuit we
use is inspired by [28], with improvements, most notably
by using subcircuits crafted for use of Toffoli gates; see the
Supplemental Material [26], Sec. C5.
Given the number of point additions in the scalar

multiplication at the core of the discrete logarithm compu-
tation, the decomposition of a point addition in elementary
arithmetic operations and the number of gates that is

required for implementing each of these elementary oper-
ations, we deduce that the implementation of Shor’s
algorithm takes 448n3=we controlled NOT (CNOT) and
348n3=we Toffoli gates at the leading order, with we the
size of each window for the elliptic curve multiplication;
see the Supplemental Material [26], Sec. C10.
Cat qubits with repetition code.—We are interested in cat

qubits, in which information is encoded in two coherent
states of a harmonic oscillator with the same amplitude and
opposite phase jαi and j − αi [14,34]. Here α is assumed
real, without loss of generality. To avoid that the state of the
oscillator leaves the computation subspace ðjαi; j − αiÞ in
the presence of loss and noise, a stabilization mechanism is
needed. We consider a mechanism combining a two-photon
drive and an engineered two-photon dissipation, which can
be implemented appropriately in a physical realization
using cavity modes coupled nonlinearly by Josephson
junctions. When the corresponding stabilization rate is
higher than that of typical errors, the bit-flip error rate
induced by single-photon loss, thermal excitations or
dephasing are exponentially suppressed with the mean
number of photons in the cat size γX ∝ expð−2α2Þ, while
the phase-flip error rate typically scales linearly γZ ∝ α2

[23,24]. In this Letter, the amplitude α is a free parameter.
Its value is chosen such that bit flips happen with a low
probability during the run-time of Shor’s algorithm and a
repetition code corrects phase-flip errors only [17,25].
Details on cat qubits and their implementation are given
in the Supplemental Material [26], Sec. D.
As bit flips are not corrected, it is crucial not to intro-

duce such errors during the algorithm execution. At the
physical level, this is obtained by using bias-preserving
operations, including the preparations Pj0=1i and Pj�i
of the computational states j � αi and cat states jC�α i ¼h
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� e−2α

2Þ
q i

ðjαi � j − αiÞ, respectively, the mea-

surementsMZ andMX, the Z and X gates, and CNOTand
Toffoli gates; see the details in the Supplemental Material
[26], Sec. D.
The principle of a distance-d repetition code is to

introduce redundancy in the information encoding j�iL ≔
j�i⊗d and make use of d − 1 stabilizer measurements Si ¼
XiXiþ1 to identify and correct phase-flip errors after each
operation. In our case, j�i⊗d ¼ jC�α i⊗d and Si is measured
from the bias-preserving operations Pjþi, CNOT, MX.
We consider the logical operations in the set

SL¼fPjþiL ;Pj0iL ;MZL
;MXL

;ZL;XL;CXk
L;CCXLg, where

CXk
L designates the multi-target CNOT gate and CCXL the

Toffoli gate, which can all be implemented transversally on
the repetition code, except for the CCXL gate; see the
Supplemental Material [26], Sec. E. The transversal imple-
mentation of the CNOTL gate, however, requires all-to-all
couplings between the physical qubits of the processor,
which is not a realistic feature of a superconducting
quantum processor. Instead, we focus on a realization
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based on lattice surgery using nearest-neighbor interactions
only (with additional routing qubits included in the
resource evaluation), as detailed in the Supplemental
Material [26], Sec. E. The same idea can be extended to
the multiple target CXk

L gate, which applies an X gate on k
qubits if the control qubit is in state j1iL and the identity
otherwise; see also the Supplemental Material [26], Sec. E.
Finally, the logical Toffoli gate CCXL is implemented using
gate teleportation [90] from a “Toffoli magic state”
jCCXi ¼ 1

2
ðj000i þ j010i þ j100i þ j111iÞ, as detailed

in the Supplemental Material [26], Sec. E4 (with the circuit
depicted in Fig. 32). The fault-tolerant preparation of
the Toffoli magic state at the logical level, based on a
projective measurement, is discussed in the Supplemental
Material [26], Sec. E4.
Noise model.—We exclusively consider the single-

photon loss at rate κ1, as in the presence of two-photon
dissipation, the other error mechanisms have little impact
on the noise model [17]. Our resource estimates are based
on the assumptions that a two-photon dissipation rate of
κ2=2π ¼ 1.59 MHz and a resonator lifetime of T1 ¼ 10 ms
can be achieved, which corresponds to a ratio κ1=κ2 ¼ 10−5

and a repetition code cycle time of Tcycle ¼ 5=κ2 ¼ 500 ns.
For a fixed gate time of 1=κ2 (assumed to be identical for

state preparation, measurement, and CNOT gates), the
logical error rate per cycle of a distance-d repetition code
is given by [35] (see the Supplemental Material [26],
Sec. E2 for details),

ϵL¼5.6×10−2
�ðα2Þ0.86κ1=κ2

ðκ1=κ2Þth

�dþ1
2 þ2ðd−1Þ×0.50e−2α

2

;

ð3Þ

where the first term is the logical phase-flip error rate and
the second term is the logical bit-flip error rate, and
ðκ1=κ2Þth ¼ 1.3 × 10−2.
ϵL corresponds to the error rate of all gates (including the

identity gate), but the Toffoli gate. For the latter, we consider
two variations of the state preparations of Toffoli magic
states [25] using either error detection or error correction.
The resource evaluation uses the most suitable implemen-
tation, which depends on the size of the elliptic curve
logarithms to compute.
Methods and results.—As several parameters are invol-

ved, we run an exhaustive search to minimize the product of
the average photon number, expected time to solution, and
total number of physical qubits (the optimization code can
be found in [36] ). The required resources are shown in
Fig. 1 as a function of the number of bits of the prime p; see
the Supplemental Material [26], Sec. F for the details on the
optimal parameters. We see that 126 133 qubits are needed
to compute a 256-bit logarithm in 9 h, for example, with
on average 19 photons as the size of each cat qubit.
The required cat size suggests significant improvement

in the design of cat qubits or, alternatively, the use of
thin rectangular 2D codes [25] (see the Supplemental
Material [26], Sec. F).
Conclusion.—We reported on a performance analysis

and provided a valuable guidance for the choice of a large
scale architecture of a platform using cat qubits under the
assumption that the bit flips are negligible and the remain-
ing phase errors are corrected by a simple repetition code
using Shor’s algorithm. We gave the details of an improved
quantum computation of a discrete logarithm on elliptic
curves, taking as an example the one used for securing
signatures in Bitcoin transactions. Assuming a ratio
between single- and two-photon losses of 10−5 and a cycle
time of 500 ns, we have shown that 126 133 qubits are
needed to compute a 256-bit logarithm in 9 h and 19
photons on average by cat state. We also estimated that the
implementation of Shor’s algorithm for the factorization of
2048 Rivest-Shamir-Adleman (RSA) integers would take
349 133 cat qubits and 4 days under the same assumption.
This provides a comparative analysis of the security level of
two widely used cryptographic schemes. This also favors
comparisons with alternative platforms [91] and illustrates
the gain in using a 1D code by comparing this cost
estimation with the estimate reported in [3] showing that
20 × 106 qubits and 8 h would be needed for realizing the
same factorization with a 2D grid of superconducting
qubits and a standard surface code. Note that, in both
cases, the number of processing qubits can be substantially
reduced by adding a quantum memory to the processor
[37]. Further note that parallelization has not been exploited
in this Letter. This could dramatically reduce the run-time,
especially as the preparation of magic states is resource
efficient and increasing the number of their factories would
not significantly increase the total number of qubits, which
would allow adequate use of look-ahead adder [38] (see the
Supplemental Material [26], Sec. G for details).

We would like to thank Mazyar Mirrahimi for many
discussions about the Toffoli magic state preparation

FIG. 1. Number of physical cat qubits and run-time for
computing a discrete logarithm on an elliptic curve as a function
of the number of bits in p.
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