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We consider the dynamics of a quantum system immersed in a dilute gas at thermodynamic equilibrium
using a quantum Markovian master equation derived by applying the low-density limit technique. It is
shown that the Gibbs state at the bath temperature is always stationary while the detailed balance condition
at this state can be violated beyond the Born approximation. This violation is generically related to the
absence of time-reversal symmetry for the scattering T matrix, which produces a thermalization mechanism
that allows the presence of persistent probability and heat currents at thermal equilibrium. This
phenomenon is illustrated by a model of an electron hopping between three quantum dots in an external
magnetic field.
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Introduction.—Detailed balance at equilibrium (DBE)
[1–3] is a core principle of today’s thermodynamics. It
ensures the lack of persistent currents at equilibrium [4] and
plays a key role in a wide range of fields, including the
Onsager relations [5,6] and reaction kinetics [7] in chem-
istry, fluctuation theorems [8–12] in statistical mechanics,
open quantum systems [13,14] in quantum mechanics, and
Kirchhoff’s law [15] in electromagnetism. Detailed balance
has been so closely identified with thermal equilibrium [16]
that its violation has been used as an indicator of lack of
equilibrium [17,18] and has also been suggested as a
measure of distance from equilibrium [19].
The assumption of DBE is prevalent across several

fields. But interestingly, it is not actually required by
any fundamental law [20]. This was long ago recognized
by Onsager [5] himself who brought up the Hall effect as an
example where this principle does not hold. Other examples
of systems that violate detailed balance include the
Michaelis-Menten kinetics for enzyme kinetics [21,22],
totally asymmetric simple exclusion process for one-
dimensional transport [23,24], directed percolation for fluid
dynamics [25], and nonreciprocal systems [26–28]. Many
unexpected effects in nonreciprocal materials have been
theoretically predicted in the last years: persistent heat
currents in thermal equilibrium [29], violations of the
Kirchhoff law [28], potential violations of Earnshaw’s
theorem [30], deviations from the Green-Kubo relations
[31], photon thermal Hall effect [32], giant magnetoresist-
ance for the heat flux [33], and the creation of a Casimir
heat engine [34].
Unfortunately, currently used tools are insufficient for

developing the microscopic models needed to study the

dynamics and thermodynamics of systems that violate
DBE. Here, we use the following definition of DBE:

akle−βEl ¼ alke−βEk ; ð1Þ

where akl are transition rates between microstates of the
system with energies Ek, El and β is the inverse temperature
of the bath. The Gorini, Kossakowski, Lindblad, and
Sudarshan (GKLS) [35,36] equation derived at the weak
coupling limit [37] cannot be used because it automatically
complies with DBE (see Ref. [38] and Sec. III). The lack of
microscopic models has resulted in contradicting state-
ments in the literature regarding basic thermodynamic
properties, such as the possibility of reaching thermal
equilibrium [27,39–42] and the divergence of entropy
production [43–47].
To clarify the thermodynamic properties of systems that

violate DBE, we use a GKLS master equation in the low
density limit (LDL) [48] which can lead into the violation
of DBE. We note that the notion of DBE is not restricted to
this limit, and it will be interesting to study its violation
beyond this regime. We prove that despite the violation of
DBE, fundamental thermodynamic behavior still holds: the
reduced system reaches thermal equilibrium, at which the
entropy production is zero. Nevertheless, DBE violation
produces a different thermalization mechanism that allows
persistent probability and heat currents at thermal equilib-
rium. To exemplify these effects we study a toy model for a
single electron tunneling between three quantum dots in the
presence of a magnetic field.
Quantum master equations at low density limit.—We

consider a quantum system S with a discrete spectrum
physical Hamiltonian, HS ¼

P
k Ekjkihkj; immersed in an
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ideal bosonic or fermionic gas of free (quasi-) particles at a
thermal equilibrium state given by the inverse temperature
β and particle density ν. The derivation of the dynamics for
the reduced density matrix is performed under the
assumption that the density of gas particles is low. As
shown in Ref. [48] this assumption implies that the form of
the master equation does not depend on particle statistics
and is fully determined by the scattering of a single particle
by the system S. Therefore, it is sufficient to determine the
Hamiltonian Htot of the system composed of S and a single
particle,Htot ¼ HS þHP þHint. We assume for simplicity
that the gas particle is spinless and is described by its
Hamiltonian HP in momentum representation,

HP ¼
Z

dpEpjpihpj; hpjp0i ¼ δðp − p0Þ: ð2Þ

The state of the gas is described by the single-particle
probability distribution in momentum space GðpÞ.
The single-particle scattering Møller wave operator is

defined as [49]

Ωþ ¼ lim
t→∞

e−iHtotteiðHSþHPÞt; ð3Þ

and its superoperator version is Γþ ¼ Ωþ · Ω†
þ. The T

operator is the main mathematical object describing the
scattering process and is defined as

T ¼ HintΩþ: ð4Þ

It produces a family of transition operators acting
on the Hilbert space of S and labeled by the Bohr
frequencies of HS denoted by fωg and pairs of the
particle’s momenta,

Tωðp0;pÞ ¼
X

Ek−El¼ω

hk;p0jTjp;lijkihlj: ð5Þ

We further assume that the dilute ideal gas is at a stationary
state fully characterized by the probability distribution in
momentum space GðpÞ and the particle density ν. As
proven in Ref. [48] the reduced dynamics of S is governed
by the following quantum master equation (QME)

d
dt

ρS ¼ −i½HS; ρS� þ LρS; ð6Þ

where the dissipative generator is

LρS ¼ νπ
X
ω

Z
dp

Z
dp0 GðpÞδðEp0 − Ep þ ωÞ

× f½Tωðp0;pÞρS; T†
ωðp0;pÞ�

þ ½Tωðp0;pÞ; ρST†
ωðp0;pÞ�g: ð7Þ

L can be expressed in the form of an ergodic average

L ¼ lim
a→∞

1

a

Z
a

0

dteit½HS;·�L0e−it½HS;·�; ð8Þ

where L0 is given by

L0ρS ¼ −i
Z

dphpj½Hint;ΓþðρS ⊗ ρPÞ�jpi: ð9Þ

ρP is the formal density matrix for the gas particle. This
averaging [Eq. (8)] is usually associated with the secular
approximationwhich is a necessary step to assure positivity
preserving of the derived QME.
The basic properties of the QME given by Eqs. (6) and

(7) are the following. (1) The dissipative generator L
commutes with the Hamiltonian part −i½HS; ·�,

L½HS; ·� ¼ ½HS; ·�L: ð10Þ

This implies that populations of HS eigenstates evolve
independently of their coherences. (2) If the gas is at
thermal equilibrium at the inverse temperature β the
probability distribution of the particle’s momenta is
given by

GðpÞ ¼ Z−1e−βEp ; ð11Þ

and the stationary state of the system is the Gibbs state,

ρβS ¼ Z−1
S e−βHS: ð12Þ

(3) Under the additional ergodicity condition, any initial
state of the system relaxes to the Gibbs state ρβS.
Proofs.—Property (1) is a direct consequence of the

averaging procedure [Eq. (8)]. Namely, using the following
identity, valid for any fixed τ,

L ¼ lim
a→∞

1

a

Z
a

0

dteiðtþτÞ½HS;·�L0e−iðtþτÞ½HS;·�

¼ eiτ½HS;·�Le−iτ½HS;·�; ð13Þ

and differentiating both sides of Eq. (13) at τ ¼ 0 one
obtains Eq. (10).
Property (2) is a new result, as in Ref. [48] it is assumed

that the system complies with microreversibility. This
implies DBE. Here, we use only the intertwining property
of the wave operator Ωþ,

ΩþðHS þHPÞΩ†
þ ¼ HS þHP þHint ¼ Htot; ð14Þ

or equivalently,

Ωþe−βðHSþHPÞΩ†
þ ¼ e−βHtot : ð15Þ
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LρβS ¼ 0 is obtained by assuming the gas particle is in a
thermal state, ρP ¼ Z−1e−βHP and using Eqs. (8), (15), and
(9) (below C is an irrelevant constant). LρβS is equal to

C lim
a→∞

1

a

Z
a

0

dt eiHStTrP½Hint;Ωþe−βðHSþHPÞΩ†
þ�e−iHSt:

ð16Þ
Using Eq. (15), Hint ¼ Htot −HS −HP, and the fact that
½Htot; e−βHtot � ¼ 0 we get

C lim
a→∞

−1
a

Z
a

0

dt eiHStTrP½HS þHP; e−βHtot �e−iHSt

¼ C lim
a→∞

−1
a

Z
a

0

dt½HS; eiHStTrPðe−βHtotÞe−iHSt�: ð17Þ

In the last equality we have used that the trace of a
commutator is zero. Equation (17) can be rewritten as

C lim
a→∞

−1
a

Z
a

0

dt
d
dt
ðeiHStTrPðe−βHtotÞe−iHStÞ

¼ C lim
a→∞

−1
a
feiHSaTrPðe−βHtotÞe−iHSa −TrPe−βHtotg ¼ 0;

ð18Þ
where we use the fact that the numerator has finite norm.
Property (3) is a consequence of the results obtained

in Ref. [50].
Properties (1)–(3) show that the Gibbs state is the steady

state of the QME obtained in LDL for thermal equilibrium
environments (ideal gas) without any additional assump-
tions such as DBE or microreversibility.
Detailed balance condition for LDL dynamics.—In this

section we discuss the sufficient generic conditions leading
to the detailed balance condition [Eq. (1)] for QME of the
LDL type [Eqs. (6) and (7)]. The analysis is much simpler
for the case of an HS with nondegenerated spectrum.
For an HS with a nondegenerated spectrum the diagonal

elements of the density matrix, pk ≡ hkjρSjki, evolve
independently from the off diagonal ones and satisfy the
Pauli master equation of the form

d
dt

pk ¼
X
l

ðaklpl − alkpkÞ ð19Þ

with

akl ¼ νπ

Z
dp

Z
dp0GðpÞδfðEp0 þ EkÞ − ðEp þ ElÞg

× jhk;p0jTjp;lij2: ð20Þ

Using Eq. (20) with GðpÞ ¼ Z−1e−βEp one derives the
following identity:

akle−βEl ¼ alke−βEkIðk;lÞ; ð21Þ

where

Iðk;lÞ¼
R
dp

R
dp0e−βEpδfEp0 þωkl−Epgjhk;p0jTjp;lij2R

dp
R
dp0e−βEpδfEp0 þωkl−Epgjhl;pjTjp0;kij2 :

ð22Þ

Here ωkl ¼ Ek − El. The DBE condition is satisfied if and
only if Iðk;lÞ ¼ 1 for those pairs ðk;lÞ for which
transition probabilities are nonzero. It may happen inci-
dentally for a particular choice of the parameters, but we
discuss only the generic situations which are related to
symmetries of the system.
The first sufficient symmetry condition isHermicity of the

T matrix (T ¼ T†), that is hk;p0jTjp;li ¼ hl;pjTjp0; ki.
This is always satisfied for the Born approximation where
T ≃Hint. This approximation is valid at the weak coupling
limitwhereDBEalways holds. Physically, at the dilute limit,
a Hermitian T matrix represents a lossless system [26].
The second sufficient condition is assuming that the T

matrix is a symmetricmatrix, hk;p0jTjp;li ¼ hl;pjTjp0; ki,
which implies that the system is reciprocal [26,27].
The third case corresponds to time-reversal symmetry or

microreversibility. It means that the states jki are invariant
with respect to time reversal, Ep ¼ E−p, and the probability
of the scattering event jl;pi ↦ jk;p0i is equal to the
probability of a time-reversed event jk;−p0i ↦ jl;−pi.
This condition means

jhk;p0jTjp;lij2 ¼ jhl;−pjTj − p0; kij2; ð23Þ

which leads to Iðk;lÞ ¼ 1.
The fourth condition combines time reversal with parity

transformation (space inversion) which leads to the con-
dition

jhk;p0jTjp;lij2 ¼ jhl;pjTjp0; kij2: ð24Þ

We note here that only on shell processes have to be
considered. This is a consequence of the delta function in
Eq. (20), which ensures energy conservation. For particular
systems it may happen that certain geometric symmetry can
restore detailed balance (see a toy model in Sec. V and the
Supplemental Material [51]).
The above conditions were derived for the T matrix.

Some of them can also be obtained for Green’s operator
[see discussion below Eq (S9) in the Supplemental
Material [51] ].
Fulfilling at least one of the mentioned conditions will be

enough to ensure DBE. In Sec. V we show a toy model that
does not comply with any of the above conditions, resulting
in DBE violation (see Sec. S.2.a in the Supplemental
Material [51]).
Thermodynamic laws and entropy production.—DBE

violation provides additional freedom to the reduced
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dynamics. Nevertheless, the time invariance of the Gibbs
state still allows for preserving the fundamental principles
of thermodynamics: the impossibility of steady work
extraction from a single thermal bath or cooling of a cold
bath without an external driving. Mathematically, the
LDL master equation [Eq. (6)] satisfies (i) the zeroth
law of thermodynamics [see Eq. (11)], (ii) the first law
of thermodynamics (implied by the Hamiltonian model of
open system), and (iii) the second law of thermodynamics
(implied by the Spohn inequality [3]).
For diagonal density matrices the entropy production

defined as

σ ¼
X
k

dpk

dt
½lnpeq

k − lnpk�; peq
k ≡ Z−1e−βEk ð25Þ

can be written in terms of the DBE violation as

σ ¼
X
k>j

�
Kjk ln

�
pk

pj

ajk
akj

�
þ Kjk ln Iðk; jÞ

�
ð26Þ

where Kjk ¼ ajkpk − akjpj is the probability current from
the microstate fkg to the microstate fjg. The first term in
Eq. (26) corresponds to the Schnakenberg formulation of
entropy production [52] and the second to deviations due to
the lack of DBE. Equation (26) is valid for any temporal
state as long as the steady state of the dynamics is a Gibbs
state [see Eq. (12)] as is the case for Eq. (6).
Furthermore, at thermal equilibrium the second term can

be rewritten as

X
k>j

ajkp
eq
k ½1 − Iðk; jÞ� ln Iðk; jÞ; ð27Þ

which is always negative. At thermal equilibrium the first
and second laws force the entropy production to be zero.
Therefore, to compensate for the negativity of Eq. (27), the
Schnakenberg entropy production should be positive and
increases with the DBE violation: jð1 − Iðk; jÞj.
Three-level open system without time-reversal sym-

metry.—As a toy model we consider a single (spinless)
electron that can occupy three dots (1,2,3) in an equilateral
triangle arrangement in the presence of a magnetic field.
The positions of the quantum dots (QD) are given by
fqj; ι ¼ 1; 2; 3g. This system (3QD) is governed by the
single particle Hubbard Hamiltonian. This Hamiltonian
type has been used to study more complex systems, such as
Benzene molecules [53] and could be used to extend our
results to more realistic scenarios. In the single electron
localized basis (j1i; j2i; j3i), the Hamiltonian is given by

Hel ¼ τ

0
B@

0 e−i2πϕ=3 ei2πϕ=3

ei2πϕ=3 0 e−i2πϕ=3

e−i2πϕ=3 ei2πϕ=3 0

1
CA; ð28Þ

where τ is the tunneling parameter and ϕ is the magnetic
flux [54]. The diagonal form of this Hamiltonian is Hel¼P

j∈f�;0g¼Ejjjihjj where Ej¼−2jτjcos½2πðϕþj�1Þ=3�.
For most values of the magnetic flux the Hamiltonian is
nondegenerated.
The 3QD interacts with a low-density gas of free

particles of mass m that is at a thermal state with inverse
temperature β. We assume a simple form of the interaction
potential given by

HintðqÞ ¼
X

ι∈f1;2;3g
V ιðq − qιÞjιihιj; ð29Þ

where V ιðq − qιÞ is a short range repulsive potential
between the electron and the particle. In order to simplify
numerical calculations we assume that the distance between
dots is small in comparison with the typical wavelength of a
quantum scatterer. This allows one to treat all dots as sitting
at the same point, while keeping the structure of the internal
electron Hamiltonian [Eq. (28)]. Then we can replace
smooth potentials in Eq. (29) by 1D Dirac deltas V ιδðqÞ
and at the same time use as a heat bath a one-dimensional
particle gas. Figure 1 shows the results of numerical
calculations for this simplified model showing a substantial
violation of DBE while the stationary state remains a Gibbs
one. Notice that in the presented example all coupling
constants V ι are different. It is shown in the Supplemental
Material [51] that if at least two constants are equal DBE
is preserved. This is an example of a system-specific
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FIG. 1. Iðk; lÞ as function of the normalized inverse temper-
ature βΔE. DBE only holds if all the Iðk; lÞ ¼ 1. For large βΔE,
Ið0;−Þ tends to 1. Nevertheless, Iðþ;−Þ and Ið0;þÞ are still
different from 1 indicating the lack of DBE. Inset: lhs (continuous
line) and rhs (dotted line) of the thermalization conditions,
Eqs. (30a) and (30b). The compliance with these conditions
(lhs ¼ rhs) verifies our numeric calculation. The y axis of the
inset has been multiplied by a factor of 104. Parameters:
V1 ¼ 1,V2 ¼ 0.7, V3 ¼ 1.5, Eþ ¼ 0.5, E0 ¼ 0.0, E− ¼ −0.5,
and ΔE ¼ E0 − E−. For more details see the Supplemental
Material [51].
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symmetry that restores DBE. Namely, here time reversal
exchanges the eigenstates j�i that can be undone by the
permutation of two states from the set fjιig with equal
couplings to the bath.
DBE establishes a relation between transition rates

involving the same Bohr frequencies (i.e., akl and alk)
allowing independent transition rates among different Bohr
frequencies [16]. This relation, together with the Kubo-
Martin-Schwinger condition (KMS), forces the reduced
system to thermalize. In contrast, systems violating DBE
use a different thermalization mechanism. While they have
some extra degree of freedom due to the DBE violation,
thermalization imposes a complex dependence among rates
for different Bohr frequencies that we term thermalization
conditions. For example, in the case of the 3QD model they
read as

aþ0½1 − Ið0;þÞ� ¼ a−0½Ið0;−Þ − 1�; ð30aÞ

a0þ½1 − 1=Ið0;þÞ� ¼ a−þ½Iðþ;−Þ − 1�: ð30bÞ

Probability and heat currents: The different thermal-
ization mechanisms could be better understood by analyz-
ing the probability currents, Kjk [see discussion below
Eq. (26) and Ref. [4] ]. Systems complying with DBE
thermalize by reducing each individual probability’s cur-
rents, until all of them become zero at thermal equilibrium.
In contrast, systems violating DBE thermalize by reducingP

j Kjk which becomes zero at thermal equilibrium, while
at least some of the individual currents,

Kjk ¼ akjp
eq
k ½Iðj; kÞ − 1�; ð31Þ

remain nonzero even at equilibrium forming closed loops.
These persistent currents are different from those found on
aromatic [55–57] or mesoscopic rings [58,59]. The currents
found in these works are also present in isolated systems.
They are produced by breaking the time-reversal symmetry
of the system eigenfunctions [60]. In contrast, the current
described by Eq. (31) requires a nonisolated system and the
breakdown of other symmetries (see Sec. III).
It has been claimed that violation of DBE produces

persistent heat currents in nonreciprocal systems [29]. The
existence of these currents does not violate any fundamental
thermodynamic law. Using the Spohn inequality it is
possible to define thermodynamically consistent heat cur-
rents [61] between individual pairs of the system energy
levels and the thermal bath. At the equilibrium state they are
defined as Jml ¼ −β−1almp

eq
m ½Iðm; lÞ − 1� ln ðpeq

m =peq
l Þ. In

particular for the toy model we get (i; j ¼ 0;þ;−)

Jij ¼ N½Iðþ;−Þ − 1�ðEi − EjÞ; ð32Þ

where N ¼ a−þe−βðE−−E0Þ½1þ e−βðE−−E0Þ þ e−βðEþ−E0Þ�−1.
Even though there are heat currents to and from individual

pairs of the system energy levels, the total heat exchange
between the bath and the system is zero, as expected from
the first law of thermodynamics. It is important to notice that
both probabilities and heat currents are related to transitions
between delocalized energy levels and do not necessarily
imply the existence of heat currents in space. In particular,
for our 3QD model all energy eigenstates yield equal
occupation probabilities for all dots.
In summary, here we develop an open quantum system

framework to study systems that violate DBE. This extra
degree of freedom changes the system dynamics and could
be beneficial for many applications, such as speeding up
thermalization, increasing the sensitivity of measuring
devices, and improving the operation of heat machines.
One should stress that DBE is not easy to break. The effect
appears in the higher-order expansion with respect to
the system-bath coupling constant and could vanish in
the presence of certain spatial symmetries (see the
Supplemental Material [51]).

We thank Natan Granit, Thales Pinto Silva, U. Peskin,
and N. Moiseyev for useful discussions. R. A. is supported
by the Foundation for Polish Science’s International
Research Agendas, with structural funds from the
European Union (EU) for the ICTQT and at the
Technion by a fellowship from the Lady Davis
Foundation. M. Š. gratefully acknowledges financial sup-
port of the Helen Diller Quantum Center of the Technion
(March 1–May 31, 2023). D. G. K. is supported by the
ISRAEL SCIENCE FOUNDATION (Grant No. 2247/22)
and by the Council for Higher Education Support Program
for Hiring Outstanding Faculty Members in Quantum
Science and Technology in Research Universities.

*robert.alicki@ug.edu.pl
†sindelka@ipp.cas.cz
‡dgelbi@technion.ac.il

[1] G. N. Lewis, A new principle of equilibrium, Proc. Natl.
Acad. Sci. U.S.A. 11, 179 (1925).

[2] R. H. Fowler and E. A. Milne, A note on the principle of de-
tailed balancing, Proc. Natl. Acad. Sci. U.S.A. 11, 400 (1925).

[3] H. Spohn, Entropy production for quantum dynamical
semigroups, J. Math. Phys. (N.Y.) 19, 1227 (1978).

[4] R. K. P. Zia and B. Schmittmann, Probability currents as
principal characteristics in the statistical mechanics of non-
equilibrium steady states, J. Stat. Mech. (2007) P07012.

[5] L. Onsager, Reciprocal relations in irreversible processes. I,
Phys. Rev. 37, 405 (1931).

[6] L. Onsager, Reciprocal relations in irreversible processes. II,
Phys. Rev. 38, 2265 (1931).

[7] R. K. Boyd, Macroscopic and microscopic restrictions on
chemical kinetics, Chem. Rev. 77, 93 (1977).

[8] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog.
Phys. 29, 255 (1966).

[9] S. D. Cengio, D. Levis, and I. Pagonabarraga, Fluctuation-
dissipation relations in the absence of detailed balance:

PHYSICAL REVIEW LETTERS 131, 040401 (2023)

040401-5

https://doi.org/10.1073/pnas.11.3.179
https://doi.org/10.1073/pnas.11.3.179
https://doi.org/10.1073/pnas.11.7.400
https://doi.org/10.1063/1.523789
https://doi.org/10.1088/1742-5468/2007/07/P07012
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRev.38.2265
https://doi.org/10.1021/cr60305a006
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1088/0034-4885/29/1/306


Formalism and applications to active matter, J. Stat. Mech.
(2021) 043201.

[10] G. E. Crooks, Entropy production fluctuation theorem and
the nonequilibrium work relation for free energy
differences, Phys. Rev. E 60, 2721 (1999).

[11] G. E. Crooks, Nonequilibrium measurements of free energy
differences for microscopically reversible Markovian sys-
tems, J. Stat. Phys. 90, 1481 (1998).

[12] J. Kurchan, Fluctuation theorem for stochastic dynamics,
J. Phys. A 31, 3719 (1998).

[13] A. Kossakowski, A. Frigerio, V. Gorini, and M. Verri,
Quantum detailed balance and KMS condition, Commun.
Math. Phys. 57, 97 (1977).

[14] R. Alicki, On the detailed balance condition for non-
Hamiltonian systems, Rep. Math. Phys. 10, 249 (1976).

[15] W. C. Snyder, Z. Wan, and X. Li, Thermodynamic con-
straints on reflectance reciprocity and Kirchhoff’s law,
Appl. Opt. 37, 3464 (1998).

[16] R. Dann and R. Kosloff, Open system dynamics from
thermodynamic compatibility, Phys. Rev. Res. 3, 023006
(2021).

[17] C. Battle, C. P. Broedersz, N. Fakhri, V. F. Geyer, J. Howard,
C. F. Schmidt, and F. C. MacKintosh, Broken detailed
balance at mesoscopic scales in active biological systems,
Science 352, 604 (2016).

[18] F. S. Gnesotto, F. Mura, J. Gladrow, and C. P. Broedersz,
Broken detailed balance and non-equilibrium dynamics in
living systems: A review, Rep. Prog. Phys. 81, 066601
(2018).

[19] T. Platini, Measure of the violation of the detailed balance
criterion: A possible definition of a “distance” from equi-
librium, Phys. Rev. E 83, 011119 (2011).

[20] J. S. Thomsen, Logical relations among the principles of
statistical mechanics and thermodynamics, Phys. Rev. 91,
1263 (1953).

[21] K. A. Johnson and R. S. Goody, The original Michaelis
constant: Translation of the 1913 Michaelis–Menten paper,
Biochemistry 50, 8264 (2011).

[22] V. Voorsluijs, F. Avanzini, and M. Esposito, Thermody-
namic validity criterion for the irreversible Michaelis-
Menten equation, arXiv:2006.06476.

[23] C. T. MacDonald, J. H. Gibbs, and A. C. Pipkin, Kinetics of
biopolymerization on nucleic acid templates, Biopolymers
6, 1 (1968).

[24] B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer,
Exact solution of the totally asymmetric simple exclusion
process: Shock profiles, J. Stat. Phys. 73, 813 (1993).

[25] H. Hinrichsen, Non-equilibrium critical phenomena and
phase transitions into absorbing states, Adv. Phys. 49, 815
(2000).

[26] C. Caloz, A. Alù, S. Tretyakov, D. Sounas, K. Achouri, and
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