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We construct families of exotic spin-1=2 chains using a procedure called “hard rod deformation.”
We treat both integrable and nonintegrable examples. The models possess a large noncommutative
symmetry algebra, which is generated by matrix product operators with a fixed small bond dimension. The
symmetries lead to Hilbert space fragmentation and to the breakdown of thermalization. As an effect, the
models support persistent oscillations in nonequilibrium situations. Similar symmetries have been reported
earlier in integrable models, but here we show that they also occur in nonintegrable cases.
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Introduction.—Ergodicity is a central concept in math-
ematics and physics, and it underlies statistical physics and
thermodynamics. Today it is understood that in isolated
quantum many body systems thermalization is guaranteed
by the eigenstate thermalization hypothesis [1], which in
principle states that in generic systems most pure states are
indistinguishable from thermal ensembles.
In the last two decades, considerable interest has been

devoted to the following questions: What types of ergo-
dicity breaking can exist in quantum many body systems?
and what are the underlying physical mechanisms? A
common property appears to be the presence of exotic
symmetries, which lead to unconventional conservation
laws, thus preventing thermalization.
Famous examples are the integrable models, which

possess an infinite set of conservation laws [2,3]. Such
models equilibrate to states described by the generalized
Gibbs ensemble [4,5] and they support ballistic transport
[6,7]. Many body localization provides another mecha-
nism, where strong disorder leads to the emergence of an
extensive set of local integrals of motion [8].
Unconventional symmetries are seen also in models with

Hilbert space fragmentation [9–14]. In these models there is
an exponentially growing number of kinetically discon-
nected sectors in the Hilbert space. Families of such models
have a symmetry algebra whose dimension also grows
exponentially with the volume [15]. These extra sym-
metries lead to the breakdown of ergodicity and to the
slowdown of transport (for classical counterparts of this
phenomenon see Refs. [16,17]). Fragmented models are
typically nonintegrable, but integrable examples are also
known [15,18,19].
In this Letter, we uncover a new mechanism for Hilbert

space fragmentation. Using a procedure called “hard rod
deformation” we construct strongly interacting spin-1=2

chains with hidden exotic symmetries, given by matrix
product operators (MPOs) with small bond dimension.
Our models are generally nonintegrable, and the algebra
of the MPO symmetries is not commutative. The MPO
symmetries ensure exact degeneracies among states in
different fragmented sectors. This leads to exotic dynamical
effects, such as nondecaying oscillations in nonequilibrium
situations.
Previously such phenomena were observed only for

integrable models [15,18,20,21], where the extra sym-
metries are given typically by MPOs [3]. Our work is
unique: it shows that (noncommutative) MPO symmetries
can be found even in nonintegrable spin chains. This
provides a new way of ergodicity breaking, and it also
enriches our understanding of symmetries and their impli-
cations in quantum spin chains.
Models.—Our main models are spin-1=2 chains. The

local basis states are denoted as j↑i, j↓i, and we use the
short notations Xj, Yj, Zj for the Pauli matrices acting on
site j. We use the local projectors Pj ¼ ð1þ ZjÞ=2 and
Nj ¼ ð1 − ZjÞ=2, and also the two-site projectors
Π�

j;k ¼ ð1� ZjZkÞ=2. In all cases we treat extensive and
translationally invariant Hamiltonians defined as H ¼P

L
j¼1 hðjÞ, with an operator density hðjÞ which is a short

range operator. We work with periodic boundary
conditions.
We treat a family of models defined by

hðjÞ ¼ hfðjÞ þ ΔhZZðjÞ þ κhniðjÞ: ð1Þ

The first term is the kinetic part of the Hamiltonian,
describing controlled hopping:

hfðjÞ ¼ ðXjþ1Xjþ2 þ Yjþ1Yjþ2ÞΠþ
j;jþ3: ð2Þ
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The other two terms describe interactions, they are diagonal
in the given basis, and they span four and six sites,
respectively:

hZZðjÞ ¼ Πþ
j;jþ3Π−

jþ1;jþ2;

hniðjÞ ¼ Πþ
j;jþ5Π

−
jþ1;jþ2Π−

jþ2;jþ3Π−
jþ3;jþ4: ð3Þ

Without interactions (Δ ¼ κ ¼ 0) we have the folded
XXZ model, which describes the high temperature dynam-
ics of the XXZ Heisenberg spin chain in the large
anisotropy limit [18,20,22–24]. The folded XXZ model
also appeared in [25], and it is closely related to stochastic
models treated in [26]. It is an integrable model, which can
be solved exactly by the Bethe ansatz [18,20].
Switching on Δ ≠ 0 but keeping κ ¼ 0 we obtain the

so-called hard rod deformed XXZ model introduced in
[19]. It is also an integrable model, which is closely related
to the actual XXZmodel and also to the constrained models
of [27–29]. Switching on κ ≠ 0 breaks integrability [30].
Dynamics.—The kinetic term in (2) generates the tran-

sitions j↑↑↓↑i ↔ j↑↓↑↑i and j↓↑↓↓i ↔ j↓↓↑↓i on four
sites. As an effect, single down and up spins can propagate
freely in a background of up and down spins, respectively.
On the other hand, states with isolated domain walls are
frozen. For example, the kinetic term acts as zero on the
local configuration j↑↑↓↓i. It follows, that any state which
consists only of domains (sequences of spins with the same
orientation, being longer than two) are frozen. However,
nontrivial dynamics arises when a single particle scatters on
an isolated domain wall. In such a case, we observe
particle-hole transmutation: when an incoming particle
(for example a down spin in a background of up spins)
meets a domain wall, it continues its path as a hole (in this
case, as an up spin in a background of down spins). As a by-
product, the domain wall gets displaced by two sites. This
dynamical phenomenon was treated in detail in [18,36,37].
It follows from the structure of the kinetic term and the

interaction terms, that the following two Uð1Þ charges are
conserved for arbitrary Δ and κ:

Q1 ¼
X
j

Zj; Q2 ¼
X
j

ZjZjþ1: ð4Þ

Here Q1 is the global magnetization, while Q2 is (up to
normalization) the “domain wall number.”
Matrix product symmetries.—Below we show that our

model possesses exotic symmetries for generic values of
the coupling constants, also in the nonintegrable case.
These symmetries are represented by MPOs, which com-
mute with the Hamiltonian. An MPO is a one-dimensional
tensor network where each tensor has two external indices
(corresponding to the physical spaces) and two internal
indices (corresponding to an auxiliary space Va ¼ CD with
an appropriate constant D ≥ 2).

We introduce the elementary tensor as a linear operator
La;j which acts on the tensor product space Va ⊗ Vj,
where Vj ¼ C2 is the physical space at site j. The MPO
with periodic boundary conditions is then defined as

T ¼ Tra½La;L…La;2La;1�: ð5Þ

We say that T is an MPO symmetry if it commutes with the
Hamiltonian in every volume L.
A distinguishing property of an MPO is that its operator

space entanglement entropy [38,39] is bounded from above
by 2 logðDÞ. Therefore it satisfies the “area law” of
entanglement [40]. In the special case of Lj;a ¼ oj with
o being a one-site operator the MPO becomes proportional
to a product operator. Therefore, an MPO symmetry can
be seen as a generalization of strictly local internal
symmetries.
MPO symmetries are known to exist in integrable spin

chains with local interactions [3,41]. In those models the
tensor L is called the Lax operator, and it depends on a
complex variable (spectral parameter) and possibly some
discrete variables too. The resulting MPOs are called
transfer matrices, and they form a commuting family.
Extensive conserved charges with short range operator
densities are derived from such families of MPOs.
In our family of models commuting transfer matrices

have been found in the integrable cases in [18,19]. They fit
into the canonical framework of Yang-Baxter integrable
spin chains [41], generalized to spin chains with medium
range interaction [42]. However, those symmetries get
broken after switching on κ ≠ 0.
In contrast, we derive new MPO symmetries that hold in

both the integrable and nonintegrable cases. In order to
derive these symmetries first we perform a sequence of
transformations on our models.
Bond model.—Following [18,20] we perform a so-called

bond-site transformation, which we define on the level of
the basis states in the computational basis. The idea is to put
variables on the bonds between the sites, such that the
values �1 on the bond represent whether the two neigh-
boring spins have the same or different values. The original
Hamiltonian is invariant with respect to global spin
reflection, therefore it will generate local dynamics for
the bond variables. Basis states in the bond model will be
denoted as j∘i (empty site or spin up) and j•i (occupied site
or spin down), which correspond to identical and opposite
spins on neighboring sites of the original model, respec-
tively. For more details about the transformation
see Ref. [30].
In the bond model the nonzero kinetic transitions are

j∘ • •i ↔ j • •∘i. These are interpreted as a one site trans-
lation of dimers or “hard rods,” which are particles
spanning two sites. They are the mobile particles in these
models, and they motivated the use of the expression “hard
rod deformation” [19]. In contrast, single j•i states
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embedded in a vacuum of empty sites are immobile on their
own. They are displaced when a mobile particle scatters
on them.
The XXC models.—The bond models can be mapped

further to spin chains with three-dimensional local spaces.
This mapping is nonlocal and volume changing, and it
appeared among others in [18] but also much earlier in [26]
(see also [43]). The mapping is defined as follows.
In the computational basis the states can be seen as a

sequence of ∘ and • “characters,” and these sequences are
translated into sequences consisting of the numbers 0, 1,
and 2. The original sequence is “read” from the left to the
right. If a ∘ is encountered then one writes down a 1. If a • is
encountered, then one also reads the next character. In case
of a • or ∘ one writes down a 0 or a 2, respectively. This
gives the local transformation rules

j∘i → j1i; j • •i → j0i; j • ∘i → j2i: ð6Þ

This mapping is volume changing: the length of the new
sequence depends on the content of the original sequence.
This implies that different sectors of the Hilbert space of the
original model will be mapped to Hilbert spaces of the new
spin chain with varying lengths.
The transformation induces a mapping for the

Hamiltonians. The transformation of the basis states is
strongly nonlocal, therefore locality is typically lost on the
level of the Hamiltonians. Nevertheless it is possible to
select certain local Hamiltonians which remain local after
the mapping [18,19,26,43], and our family of models also
has this property.
We introduce notations for operators acting on the three-

dimensional local spaces. We have s−α ¼ jαih0j with α ¼ 1,
2 and they can be arranged into a two-dimensional vector
s− ¼ ðs−1 ; s−2 Þ. Furthermore sþ ¼ ðs−Þ†, and we also intro-
duce the projectors n ¼ j0ih0j, p ¼ j1ih1j þ j2ih2j. Direct
computation shows [30] that our model Hamiltonians are
eventually mapped to short range Hamiltonians with
density

hCðjÞ ¼ hCf ðjÞ þ ΔhCZZðjÞ þ κhCniðjÞ; ð7Þ

with

hCf ðjÞ ¼ s−j · sþjþ1 þ sþj · s−jþ1;

hCZZðjÞ ¼ njpjþ1 þ pjnjþ1;

hCniðjÞ ¼ njnjþ1pjþ2 þ pjnjþ1njþ2: ð8Þ
The model with Δ ¼ κ ¼ 0 appeared in [44] and it is
closely related to the strong coupling limit of the Hubbard
model (also known as the t − 0 model). The model with
Δ ≠ 0 but κ ¼ 0 appeared in [45] (and in a special case in
[26]) and it was called the XXC model. The nonintegrable
perturbation appears to be new; we call it the deformed
XXC model.

Spin-charge separation.—The kinetic terms in (7) gen-
erate the transitions j01i ↔ j10i; j02i ↔ j20i. The tran-
sition j12i ↔ j21i is forbidden, thus the relative ordering
of the basis states j1i is j2i cannot be changed during time
evolution.
We can regard the local state j0i as the vacuum, and the

states j1i and j2i as a particle (charge) with an internal
degree of freedom (spin). Then we can perform a spin-
charge separation: we specify each basis state by giving the
positions and the spins of the particles. The Hamiltonians
are such that the spin-charge separation leads to exactly
decoupled dynamics, the spin part of the wave function is a
constant of motion, and it does not influence the motion of
the particles. This is a nontrivial property, which we prove
in detail in [30].
This phenomenon was already observed in a number of

works dealing with similar models [18,26,43,46,47]. It
induces Hilbert space fragmentation: different values of the
spin pattern all correspond to different irreducible sectors in
the Hilbert space. This phenomenon underlies the existence
of the exotic symmetries of all our models. Furthermore, it
allows for exact solutions of real time dynamics in similar
models [46–50].
Symmetries for XXC.—We construct MPO symmetries

for the deformed XXC models, and afterwards we general-
ize the construction for our original family (1).
In the deformed XXC models we construct MPOs with

fixed bond dimension two. The key idea is that the MPOs
should act only on the spin degrees of freedom, while
leaving the particle positions intact [26]. This will guar-
antee that the MPOs commute with the Hamiltonian.
Generally such operators are very nonlocal, but there exist
representatives with the desired MPO structure. The
majority of our results for the MPOs are new.
In the XXC case we expand L ¼ I ⊗ j0ih0jþP
α;β¼1;2 F

ðα;βÞ ⊗ jαihβj. Here I and Fðα;βÞ are five matrices
of size 2 × 2 which act on the auxiliary space, and
specifically I is the identity matrix. Such an MPO acts
as the identity on every local vacuum state j0i, but typically
it has a nontrivial action on the spin degrees of freedom.
The resulting MPOs do not change the position of the
particles, but they can modify the spin pattern.
We consider two subclasses of such MPOs. In one class

the resulting MPOs are diagonal, which can be achieved by
setting F12 ¼ F21 ¼ 0. Such MPOs do not change the spin
pattern, but their eigenvalues (diagonal matrix elements) do
depend on it. These MPOs all commute with each other and
also the Hamiltonian.
The number of independent parameters of these MPOs

can be reduced to five, and representatives can be chosen
for example as

Fð1;1Þ ¼
�
x y

y z

�
; Fð2;2Þ ¼

�
u 0

0 v

�
: ð9Þ

The second class of MPO symmetries changes the spin
pattern. We concentrate on those MPOs which conserve the
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number of j1i and j2i states. This can be achieved by the
following matrices with five independent parameters:

Fð1;2Þ ¼ ðFð2;1ÞÞ† ¼ γσ−;

Fð1;1Þ ¼
�
α

δ

�
; Fð2;2Þ ¼

�
β

ε

�
: ð10Þ

Our diagonal MPOs are included in the results of [15], but
the off-diagonal ones appear to be new.
Main results.—Now we pull back these MPO sym-

metries to the original family of models given by (1).
This is a nontrivial task, because the transformation rule (6)
causes strong nonlocality. However, the action of the two
classes of MPOs that we introduced can be emulated by an
MPO with fixed bond dimension even in the original
model. The auxiliary dimension needs to be enlarged in
order to deal with the nonlocal effects, but afterwards it will
not depend on the volume. It is important that the trans-
formation between the models cannot be described by an
MPOwith fixed bond dimension: This happens only for the
selected symmetry operators that we construct.
In order to find the actual MPOs, we use the techniques

discussed in [51]. We view the MPO as an “automaton”
with a finite number of internal states, which are changed as
the MPO acts on the physical spin chain. These internal
states and their transitions will encode the rules (6) and also
the bond-site transformation.
We construct two families of MPO symmetries which we

denote as T d and T o, corresponding to the diagonal and
off-diagonal classes above. In both cases we expand L¼
A⊗ j↑ih↑jþB⊗ j↑ih↓jþC⊗ j↓ih↑jþD⊗ j↓ih↓j, where
A, B, C, D are sparse matrices of size D ×D acting on the
auxiliary space.
For the family T d the auxiliary space has dimension

D ¼ 8 and we view it as the tensor product C2 ⊗ C2 ⊗ C2.
The MPOs depend on five independent parameters, and
they are diagonal, which is ensured by B ¼ C ¼ 0. They
commute with each other and also with the local chargesQ1

and Q2. The concrete matrices are

A ¼ N ⊗ Fð1;1Þ ⊗ Pþ σþ ⊗ Fð2;2Þ ⊗ σ−

þ N ⊗ I ⊗ σ− þ P ⊗ I ⊗ σþ;

D ¼ P ⊗ Fð1;1Þ ⊗ Pþ σ− ⊗ Fð2;2Þ ⊗ σ−

þ P ⊗ I ⊗ σ− þ N ⊗ I ⊗ σþ; ð11Þ

where N and P are projectors introduced above, and Fð1;1Þ

and Fð2;2Þ are given in (9).
In the case of the family T o the auxiliary space has

dimension D ¼ 10, and L depends on five independent
parameters. These MPOs are generally not diagonal, and
they do not commute with each other. Concrete matrix
elements are [30]

A1;2 ¼ A3;4 ¼ A5;4 ¼ A7;6 ¼ A9;10 ¼ 1;

D2;1 ¼ D4;5 ¼ D6;7 ¼ D8;9 ¼ D10;9 ¼ 1;

A6;6 ¼ D1;1 ¼ α; A2;6 ¼ D7;1 ¼ β;

A4;6 ¼ B1;3 ¼ C6;8 ¼ D9;1 ¼ γ;

B3;3 ¼ B5;3 ¼ C8;8 ¼ C10;8 ¼ δ;

B9;3 ¼ C4;8 ¼ ε: ð12Þ

These MPOs commute with Q2, because they originate
from the MPOs given by (10), which conserve the “spin” in
the XXC models, eventually leading to conservation of the
number of domain walls in the original models. However,
they break the global magnetization Q1, because they
generate a displacement of the domain walls.
The MPOs do not depend on the parameters Δ, κ: they

are symmetries for the full family of models. The diagonal
MPOs commute with the Hamiltonian densities hðjÞ
separately: they belong to the commutant algebra [15].
The off-diagonal ones commute only with the full
Hamiltonian.
Persistent oscillations.—We explore the dynamical con-

sequences of the MPO symmetries. We consider real time
evolution started from a selected initial state jΨ0i ¼
⊗L

j¼1 ðj↑i þ j↓iÞ= ffiffiffi
2

p
, which is a state completely polar-

ized in the x direction. This state breaks theUð1Þ invariance
associated with the global magnetization. We consider time
evolution generated by H þ hQ1, where H is given by (1)
with generic values of the coupling constants and h is a
magnetic field. We focus on the time evolution of the local
observable Xj; for simplicity we will drop the site index j in
the notation.
We performed the numerical computation of the real

time evolution using the iTEBD method [52,53]. Our data
are presented in Fig. 1, for details see Ref. [30].
The local operator X breaks the Uð1Þ symmetry gen-

erated by Q1. In the absence of extra symmetries it is
expected that the mean value hΨ0jXðtÞjΨ0i drops to zero in
the long time limit, for both integrable and nonintegrable
cases. However, in our case we observe that XðtÞ has a
nonzero stationary value for h ¼ 0, and for h ≠ 0 it shows

FIG. 1. Real time dynamics from a selected initial state, with a
nonintegrable Hamiltonian with Δ ¼ 0.2 and κ ¼ 0.5. The
second curve is obtained after adding a magnetic field h. The
third curve is obtained after adding a perturbing term H0 which
breaks the MPO symmetries.
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nondecaying oscillations with frequency 2h [54]. The
reason for this phenomenon is that the off-diagonal
MPO symmetries also break the given Uð1Þ charge.
Adding one more perturbation H0 ¼ μ

P
j ZjZjþ1Zjþ2

breaks all MPO symmetries, and in this case we observe
relaxation to zero, as expected.
Persistent oscillations were reported earlier in relation

with integrability [18,21] and also in models with quantum
scars [11,12,55]. The novelty of the present results is that
we find the same effects in nonintegrable models, explained
by the MPO symmetries. In our models ergodicity breaking
extends over essentially the full Hilbert space, therefore the
phenomenon is not related to quantum scars. In fact, the
same effects would be observed for almost all product
states of the form jΨ0i ¼⊗n

j¼1 jψ li, where jψ li is an l-site
state breaking Uð1Þ invariance, and L ¼ nl. The reason is
that almost all such states overlap with exponentially many
fragmented sectors from the Hilbert space.
Discussion.—Our mechanism for Hilbert space fragmen-

tation allows for unusual MPO symmetries, which hold in
the integrable and nonintegrable cases too. The MPO
symmetries generate a noncommutative algebra, therefore
the models should be seen as having quantum fragmenta-
tion. In the literature there have been few examples for
quantum fragmentation [14,15,56], and our models provide
a new mechanism for this. Also, they appear to be the first
examples of nonintegrable models with off-diagonal MPO
symmetries.
Our models have strong fragmentation [9], because the

symmetries affect the whole spectrum in a nontrivial
manner. This leads to exponentially large degeneracies
for almost all states, but the concrete degeneracies depend
on the state [18,19]. Our symmetry operators are similar in
essence to the “statistically localized integrals of motion”
found in [57], but it is a novel result that we construct them
in the form of MPOs with low bond dimension.
The XXC models that appeared in our study have the

special property that spin-charge separation is exact, the
spin pattern is always conserved, and it does not influence
the charge degrees of motion. It was argued in [47] that in
such models the spin transport has anomalous fluctuations.
This is believed to be true also for the folded XXZ model
[37,47], although the rigorous proofs of [47] do not apply
in that case. We conjecture that our family of models also
displays anomalous fluctuations, in both the integrable and
nonintegrable cases.

We are thankful to Frank Göhmann, Enej Ilievski, Sanjay
Moudgalya, Tibor Rakovszky, and Lenart Zadnik for useful
discussions.
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