
Detecting Emergent Continuous Symmetries at Quantum Criticality

Mingru Yang ,1 Bram Vanhecke ,1 and Norbert Schuch 1,2

1University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Wien, Austria
2University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

(Received 3 January 2023; accepted 23 June 2023; published 21 July 2023)

New or enlarged symmetries can emerge at the low-energy spectrum of a Hamiltonian that does not
possess the symmetries, if the symmetry breaking terms in the Hamiltonian are irrelevant under the
renormalization group flow. We propose a tensor network based algorithm to numerically extract lattice
operator approximation of the emergent conserved currents from the ground state of any quantum spin
chains, without the necessity to have prior knowledge about its low-energy effective field theory. Our
results for the spin-1=2 J-Q Heisenberg chain and a one-dimensional version of the deconfined quantum
critical points demonstrate the power of our method to obtain the emergent lattice Kac-Moody generators.
It can also be viewed as a way to find the local integrals of motion of an integrable model and the local
parent Hamiltonian of a critical gapless ground state.
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Introduction.—Low-energy physics can show different
symmetries from the Hamiltonian. In the thermodynamic
limit, the continuous symmetry of a Hamiltonian can be
spontaneously broken in its ground state, or new symmetries
that the Hamiltonian does not possess can emerge in its
low-energy spectrum. The latter phenomenon of emergent
symmetries is prevalent at the critical point of many quantum
and classical phase transitions, provided the symmetry
breaking terms in the Hamiltonian are irrelevant under the
renormalization group (RG) flow. The most prominent
example might be the deconfined quantum critical point
(DQCP) [1,2], a direct continuous phase transition between
two distinct spontaneous symmetry broken phases without
fine-tuning, beyond the Landau-Ginzburg-Wilson paradigm.
The emergent symmetry which reconciles the incompatible
order parameters thus becomes the smoking gun to deter-
mine whether such a phase transition is really a DQCP.
Another example is the extended symmetry in the low-
energy eigenstates of a one-dimensional (1D) critical
Hamiltonian with an internal semisimple Lie group sym-
metry, when its low-energy physics is described by a
conformal field theory (CFT) [3,4]. In this case, the micro-
scopic symmetry and the emergent symmetries can be
recombined to form two independent symmetries acting,
respectively, on the left- and right-moving fields, with the
corresponding conserved charges being the zero modes of
the Kac-Moody algebra [5,6].
Plenty of numerical efforts [7–10] have been devoted to

confirming the existence of emergent symmetries. In the
case of DQCP, the identity between the scaling dimensions
of the critical fluctuations related by emergent symmetries
would be an indication [8,11]. Other approaches include
order parameter histograms [11,12] and level-crossing
analysis [13]. A more direct probe of emergent symmetries

is to check if the scaling dimensions of the effective lattice
operators for the conserved currents in the field theory
are equal to the space dimension [8,9]. However, identi-
fication of lattice operators to the currents in the continuum
limit requires involved field theory and symmetry analysis
[8,14]. Moreover, the identification is usually only approxi-
mate and also not unique.
Instead, tensor networks [15–18] provide us with much

more information than simply a measurement outcome of the
correlation function for given operators. In fact, rather than
derive from field theory analysis, we are able to read out the
lattice operator for the emergent conserved currents from a
tensor network state in a straightforward way. Upon feeding
a variationally optimized tensor network ground state
[19,20], our algorithm returns the optimal lattice approxi-
mation of the conserved current operators truncated to a
given interaction range N, which systematically approxi-
mates the exact symmetry generators as N increases.
Algorithm.—If a state jψi is symmetric under a global

continuous symmetry transformation U ¼ eiϵO, then
Ujψi ¼ eiϵϕjψi. After absorbing the phase factor into
the definition of O, i.e., O → O − ϕI, we have
eiϵOjψi ¼ jψi, and its linearization gives

Ojψi ¼ 0; ð1Þ

or hψ jO†Ojψi ¼ 0. For an internal symmetry with local
generators, O ¼ P

n e
ipnGn;…;nþN−1, where p is the

momentum and Gn;…;nþN−1 is an N-site operator starting
at the nth site. Given a state jψi and a momentum p, if we
aim to obtain an exact or approximate conserved quantity
of this form which the state has, we can consider the
optimization problem,

PHYSICAL REVIEW LETTERS 131, 036505 (2023)

0031-9007=23=131(3)=036505(7) 036505-1 © 2023 American Physical Society

https://orcid.org/0000-0003-4022-698X
https://orcid.org/0000-0001-9557-1591
https://orcid.org/0000-0001-6494-8616
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.131.036505&domain=pdf&date_stamp=2023-07-21
https://doi.org/10.1103/PhysRevLett.131.036505
https://doi.org/10.1103/PhysRevLett.131.036505
https://doi.org/10.1103/PhysRevLett.131.036505
https://doi.org/10.1103/PhysRevLett.131.036505


min
G

fðG;G†Þ ¼ min
G

hψ jO†Ojψi
VTr½G†G� ; ð2Þ

with the normalization constraint kGk2 ¼ Tr½G†G� ¼ 1,
where V is the system size. Note that this cost function has
a physical interpretation of the static structure factor ofG at
momentum p. The unitarity of U requires O, and thus G,
to be Hermitian. In that case, the optimum of f is reached
when ∂f=∂G ¼ 0, i.e.,

hψ j ∂O
†

∂G
Ojψi þ hψ jO† ∂O

∂G
jψi ¼ 2

hψ jO†Ojψi
Tr½G2� G; ð3Þ

which, after vectorizing G ↦ g, becomes an eigenvalue
problem,

ðF þ F TÞ · g ¼ 2λming; ð4Þ

where the eigenvalues are guaranteed to be non-negative
real numbers due to the positive semidefinite quadratic
form of the cost function f, and it can be proved [21] that
the eigenvectors G are guaranteed to be Hermitian up to an
arbitrary overall phase. For an eigenvectorG, the associated
eigenvalue λ naturally measures how accurate the corre-
sponding symmetry is.
For an infinite matrix product state (MPS) jψi, this

eigenvalue problem can be solved by adapting MPS
techniques used in other contexts; readers not interested
in these details can skip this paragraph. Take jψi as an
infinite uniform MPS with one-site unit cell parametrized
by tensors AL, AR, and AC in the mixed gauge. The
application of F to g, and similarly F T · g, can be
implemented by observing that [22] it is the same as
calculating the static structure factor of G except that a hole
is dug in all the terms, i.e.,

ð5Þ

where the last “� � �” means sum over all diagrams with
1 ≤ jn −mj ≤ N − 2, EL

L and ER
R are the left- and right-

gauge MPS transfer matrices, and ð·ÞP denotes the pseudo-
inverse resulting from the infinite geometric series [20] of
all relative positions between G and the hole without
overlap, which includes a regularization procedure effec-
tively removing the disconnected part of the correlation
functions and thus is automatically consistent with the
phase factor absorption mentioned previously. We can then
use an iterative eigensolver [23] to obtain the lowest several
solutions [24].
In principle, the algorithm works for any MPS [25].

Particularly, we are interested in applying it to the varia-
tional uniform MPS [19] approximation of the gapless
ground state of 1D critical Hamiltonians. Since a MPS with

finite bond dimension is always gapped [20], it can never
exactly represent a critical ground state of infinite corre-
lation length and thus can never exactly capture the
symmetry of a critical lattice Hamiltonian or of its low-
energy effective field theory in the infrared limit. However,
we may use the principle of entanglement scaling [26–28]
and treat the finite bond dimension χ as a relevant
perturbation, which enables us to identify the exact or
emergent symmetries exclusively from the MPS through an
extrapolation in the correlation length ξ, as shown by the
benchmark results below.
Benchmarks for exact symmetries.—As a warming up,

we first consider a critical model whose ground state has an
exact U(1) symmetry [29]—the spin-1=2 isotropic quantum
XY chain,
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H ¼ −
X

n

ðXnXnþ1 þ YnYnþ1Þ; ð6Þ

where Xn, Yn, and Zn are the Pauli matrices at site n. The
U(1) symmetry is generated by O ¼ P

n Zn that satisfies
½H;

P
n Zn� ¼ 0. The model is integrable and thus has

infinitely many local conserved quantities in the thermo-
dynamic limit [30–33]. The critical low-energy physics is
described [34] by the Uð1Þ4 CFTof free bosons with central
charge c ¼ 1.
Applying our algorithm to MPS of various bond dimen-

sions yields the local conserved quantities up to N ¼ 3.
The full spectrum (after removing the trivial solutions) of
the eigenvalue problem in Eq. (4) is shown in Fig. 1 and the
eigenvectors G associated with the decaying eigenvalues
are shown in Table I. For p ¼ 0, there are 1, 3, 5
eigenvalues decaying with the correlation length for
N ¼ 1, 2, 3, respectively; for p ¼ π, there are 0, 2, 4
eigenvalues decaying with the correlation length for N ¼ 1,
2, 3, respectively. The eigenvector G ¼ XX þ YY corre-
sponds to the Hamiltonian in Eq. (6), so as a by-product
our method is also able to determine the local parent
Hamiltonian [35–37] solely from its ground state. We
notice that the decay has a power-law scaling λ ∼ ξ−η

0
[38];

the exponents are listed in Table I. All other eigenvalues
increase or stay constant with the increasing correlation

length. The G’s associated with the decaying λ’s are local
integrals of motion since λ is extrapolated to 0 at infinite
correlation length. While the conserved quantities in Table I
and more conserved quantities for largerN in the XY model
can be constructed recursively [21] through the master
symmetry approach [6,30–32,39], our method provides an
alternative way to obtain them generally.
Extended symmetries by emergent symmetries.—The

ground state of the spin-1=2 antiferromagnetic Heisenberg
chain is expected to have an emergent symmetry in
addition to the microscopic SU(2) symmetry of the lattice
Hamiltonian, and thus the symmetry is extended to SOð4Þ ¼
½SUð2ÞL × SUð2ÞR�=Z2 [5,40]. Here, we consider the J-Q
model [7]—a modified Heisenberg chain at whose transition
point still exists the extended symmetry:

H ¼ −J
X

n

Pn;nþ1 −Q
X

n

Pn;nþ1Pnþ2;nþ3; ð7Þ

where Pn;nþ1 ¼ 1=4 − Sn · Snþ1, with Sn ¼ ðSxn; Syn; SznÞ ¼
1
2
ðXn; Yn; ZnÞ. The dimer order enforced by strong four-site

interaction transits to a critical phase when Q=J ≲ 0.848 31
[41,42], at which [43] the effective description is the c ¼ 1
SUð2Þ1 Wess-Zumino-Witten CFT [5,40].
Figure 2 shows the eigenvalues of our optimization

problem after imposing the time reversal, parity, and spin-
flip symmetries [21] of the microscopic Hamiltonian at the
transition point. The eigenvectors associated with all the
eigenvalues shown in Fig. 2 except the faded ones are
lattice operator approximation for the conserved currents of
the extended symmetry to different precision, which could
be confirmed by checking [21] that their scaling dimension
is one [5]. To identify the eigenvalues that associate with
the same G’s at different ξ, we search for the eigenvectors
at smaller ξ’s which have the largest overlap with each of

FIG. 1. Log-log plot of the eigenvalue spectrum of 1
2
ðF þ F TÞ

versus the correlation length ξ for the spin-1=2 isotropic quantum
XY chain. The correlation length of a MPS with a certain bond
dimension is calculated by Eq. (40) in Ref. [20]. Note that in
(e) there is one decaying λ hidden in the bulk of larger
eigenvalues, but it becomes visible at larger correlation lengths.

TABLE I. Local conserved quantities in the spin-1=2 isotropic
quantum XY chain up to N ¼ 3. Smaller-N solutions reappear at
larger N, and we only show the new solutions at each N. The η0 is
obtained from the scaling of hψ jO†Ojψi with ξ, which is slightly
different from the slope of the decaying eigenvalues in Fig. 1,
since different solutions can mix with each other and their form
also become more accurate as ξ increases.

p N G η0

0

1 Z 1.009

2
XX þ YY 1.985
XY − YX 1.933

3
XZX þ YZY 1.008
XZY − YZX 1.939

π

1 � � � � � �

2
XX − YY 2.005
XY þ YX 2.008

3
XZX − YZY 2.046
XZY þ YZX 2.063
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the lowest several eigenvectors at the largest ξ reached,
as tracked by the colored lines in Fig. 2. The dots connected
by blue and red lines at the bottom of the spectrum are the
best approximation among all of the solutions. Different
from the exact symmetries, eigenvalues corresponding to
the emergent symmetries will finally saturate at some
correlation length, because it is only an N-site truncated
approximation of the exact emergent lattice generator.
We observe that three approximately conserved charges

(red curves in Fig. 2), Mα ¼ P
n m

α
n (α ∈ fx; y; zg), com-

ing from the emergent symmetries, begin to appear at
N ¼ 2 in addition to the three exact microscopic SU(2)
symmetry generators (blue curves in Fig. 2) Qα ¼ P

n S
α
n,

and they become more conserved as N increases, which is
obvious from the drop of the corresponding eigenvalues. At
N ¼ 2, mn;α ¼ ϵαβγS

β
nS

γ
nþ1, with ϵαβγ the Levi-Civita sym-

bol; at N ¼ 3, the next-nearest neighbor term shows up
and we have mn;α ¼ ϵαβγðw1S

β
nS

γ
nþ1 þ w2S

β
nS

γ
nþ2Þ, with

w2=w1 ≈ 0.2253 [45]. The form of the three-site mn;α looks
very similar to the level-1 Yangian [46–48]—which are
exact conserved quantities of the RG fixed point, the

Haldane-Shastry model [44,49]—truncated to the next-
nearest neighbor coupling, though with different coupling
coefficients [21]. When going to N ¼ 4, the contribution
from longer-range coupling in the level-1 Yangian appears
with all coupling coefficients modified. Moreover, terms
from the level-3 Yangian begin to be involved. We
get mn;α ¼ m1

n;α þm3
n;α, where m1

n;α ¼ ϵαβγðw1S
β
nS

γ
nþ1 þ

w2S
β
nS

γ
nþ2 þ w3S

β
nS

γ
nþ3Þ and m3

n;α ¼ ϵαβγ½u1SβnSγnþ3Snþ1·

Snþ2 þ u2Sn · Snþ3S
β
nþ1S

γ
nþ2 þ u3ðSβnSγnþ1Snþ2 · Snþ3 þ Sn·

Snþ1S
β
nþ2S

γ
nþ3Þ þ u4ðSβnSγnþ2Snþ1 · Snþ3 þ Sn · Snþ2S

β
nþ1

Sγnþ3Þ�, with w2=w1 ≈ 0.3557, w3=w1 ≈ 0.1467, u1=w1 ≈
0.1577, u2=w1 ≈ −0.096 90, u3=w1 ≈ −0.091 41, and
u4=w1 ≈ 0.081 69. Considering that it is even under time
reversal and odd under parity,Mα ∼ Jα0 − J̄α0 , where J

α
0 (J̄

α
0)

is the zero mode of the Kac-Moody generators, which
form the ordinary Lie algebra suð2ÞL [suð2ÞR] [50]. Since
Qα ∼ Jα0 þ J̄α0 [51], Mα and Qα can then be linearly
combined to construct Jα0 and J̄α0, and other modes of
the Kac-Moody generators can be constructed by the
Fourier transform of the currents [6].
Emergent symmetries at a DQCP.—The following

spin-1=2 chain, studied by Jiang and Motrunich [52],

H ¼
X

n

ð−JxXnXnþ1 − JzZnZnþ1Þ

þ
X

n

ðK2xXnXnþ2 þ K2zZnZnþ2Þ; ð8Þ

has an on-site Z2 × Z2 spin flip. It undergoes a direct
continuous transition from a valence bond solid to ferro-
magnetic order at K2x¼K2z¼1=2, Jx¼1, Jz ≈ 1.4645 [8],
which has been proposed to be a DQCP with an emergent
Uð1Þ × Uð1Þ symmetry [8,53] that is also generated by the
zero modes of the Kac-Moody algebra.
Applying our algorithm to the critical point, we find a

single solution G ¼ Z for N ¼ 1. From N ¼ 2, we require
the eigenvectors to transform the same as Z under the spin-
flip symmetry when solving the eigenvalue problem, and
find two solutions at p ¼ π as shown in Figs. 3(a)–3(c).
For N ¼ 2, the lowest solution (blue) is G1 ¼ ZI − IZ
(i.e., a staggered Z), and the second solution (red) is
G2 ¼ XY þ YX, which satisfies ½G1; G2� ¼ 0; these are
indeed precisely the same effective lattice operators iden-
tified as conserved currents for the emergent Uð1Þ × Uð1Þ
through bosonization [8]. At N ¼ 3, the corresponding
eigenvalues for G1 and G2 improve by almost 1 and 2
orders of magnitude, respectively. The form of both
solutions modifies significantly by three-site terms as
compared to N ¼ 2—and thus compared to the field theory
prediction—G1 becomes ðv1=3Þð−ZIIþ IZI − IIZÞþ
v2ZZZþ v3ðYYZþZYYÞ þ v4ðXXZþZXXÞ þ v5XZXþ
v6YZY, with v2=v1 ≈ 0.1615, v3=v1 ≈ 0.0988, v4=v1≈
0.0882, v5=v1≈0.0410, and v6=v1≈−0.1399; G2 becomes
w1½ðXY þ YXÞI − IðXY þ YXÞ� þ 2w2ðXIY − YIXÞ, with

FIG. 2. Eigenvalue spectrum for the spin-1=2 J-Q Heisenberg
model after imposing microscopic symmetries. The G’s associated
with the blue (red) dots are parity even (odd) and time reversal odd
(even). The scaling dimension of the G associated with the faded
dots is not one, and thus they are not emergent continuous internal
symmetries. The green curve in (e) corresponds to the Hamil-
tonian. Note that in (d) and (f) one solution corresponding to one of
the three generators for the exact SU(2) symmetry of the micro-
scopic Hamiltonian is not shown since it is well below 10−6. We
use a sublattice rotation about the z axis by angle π when using
variational uniform MPS to optimize the ground state, so the x and
y components of the generators move to p ¼ π.
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w2=w1 ≈ 0.3908 [Fig. 3(d)]. When pushing to N ¼ 4,
longer-ranged terms further dress G1 and G2 [21]. Our
algorithm hence allows us to decorate the bare form
of the lattice operators for emergent symmetry generators
found through field theory analysis, and therefore to obtain
a more precise picture of the microscopic nature of the
emergent symmetries.
Conclusions.—We have presented a novel general

method to numerically detect emergent continuous internal
symmetries in critical systems. The bottom line is that
emergent symmetries do not just reveal themselves
indirectly in the long-distance behavior of correlation
functions—which has been the sole detection mechanism
before our work—but are actually realized surprisingly
accurately on the lattice, albeit with spatially extended
generators. We have illustrated this by rediscovering the
theory-predicted lattice operators for the emergent con-
served currents at a 1D DQCP and sharply improving them
with newly discovered correction terms. We have also
identified the effective lattice operators of the conserved
charges for the extended SO(4) symmetry in the J-Q chain
with Yangian generators truncated to local terms, which
were unknown before. The ability of our method to crack
the explicit form of these lattice generators allows us to
construct the emergent lattice Kac-Moody generators to
unprecedented accuracy for both Abelian and non-Abelian
symmetries [54] in generic settings.
Outlook.—This method could in principle be generalized

to 2D, to extract emergent lattice conserved currents in the
projected entangled pair states [55–57], which would be of
particular use for the study of higher-dimensional DQCP. A
variant version with a larger unit cell can be easily derived.

It is also worth exploring if a similar algorithm works for
finite systems with periodic or other boundary conditions,
for the low-energy excited states [58], or for classical
systems. Adjusting this method to find unconventional
symmetries of the weakly entangled higher excited states
[59,60] or the emergent space-time symmetry [61] would
also be interesting directions.
The complexity of the eigenvalue problem scales expo-

nentially with N. To reduce the complexity of solving
for G of larger size, we could resort to the density matrix
renormalization group [15,16] by treating G as an N-site
finite matrix product operator (MPO) [62,63], and the tricky
part will be removing the trivial solutions efficiently [21,24].
It would also be desirable to include terms with long-range
tails by representing O as an infinite MPO [64], though its
implementation encounters some technical difficulties [21].
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