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The low-energy jeff ¼ 1=2 band of Sr2IrO4 bears stark resemblances with the x2 − y2 band of La2CuO4,
and yet no superconductivity has been found so far by doping Sr2IrO4. Behind such a behavior could be
inherent failures of the jeff ¼ 1=2 picture, in particular when electrons or holes are introduced in the IrO2

planes. In view of this, here we reanalyze the jeff ¼ 1=2 scenario. By using the local-density approximation
plus dynamical mean-field theory approach, we show that the form of the effective jeff ¼ 1=2 state is
surprisingly stable upon doping. This supports the jeff ¼ 1=2 picture. We show that, nevertheless, Sr2IrO4

remains in essence a multiorbital system: The hybridization with the jeff ¼ 3=2 orbitals sizably reduces the
Mott gap by enhancing orbital degeneracy, and part of the holes go into the jeff ¼ 3=2 channels. These
effects cannot be reproduced by a simple effective screened Coulomb repulsion. In the optical conductivity
spectra, multiorbital processes involving the jeff ¼ 3=2 states contribute both to the Drude peak and to
relatively low-energy features.
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In Sr2IrO4 low-energy electronic properties are believed
to be largely determined by the effective half-filled
jeff ¼ 1=2 band [1–4]. Support for this picture comes,
experimentally, from angle-resolved photoemission [1],
optical conductivity, x-ray absorption [1], and resonant
x-ray magnetic scattering [2] measurements and, theoreti-
cally, from local-density approximation plus Hubbard
U (LDAþ U) [1,3] and dynamical mean-field theory
(DMFT) calculations [5–7]. The jeff ¼ 1=2 picture brings
Sr2IrO4 close to La2CuO4 electronically. Added to the
structural similarity between the two materials, this analogy
fostered the search for superconductivity by introducing
carriers in the IrO2 planes [4,8–13], and yet no super-
conductivity has been found so far. The reason may lie in
the failures of the jeff ¼ 1=2 picture itself, and in fact
several works started to dispute its validity. Doubts have
arisen on both the form of the jeff ¼ 1=2 doublet [14–18]
and the role of jeff ¼ 3=2 bands [19]. Possible experimental
signatures of multiorbital effects were found under
pressure [15] and strain [19]. Recent angle-resolved photo-
emission measurements show that Sr2IrO4 just sits margin-
ally above the threshold for the spin-orbit coupling driven
Mott insulator [20], and emphasize the presence of
jeff ¼ 3=2 states close to the Fermi level [21]. The question
of the validity of the effective one-band picture remains to
date unsettled already at the theoretical level, however.
Even assuming that the jeff ¼ 1=2 picture is robust in the

undoped case, it has still to be proven that it is preserved by
doping and, if so, to what extent, a core question for

superconductivity. Theoretical studies of doping effects
provided explanations for the formation of Fermi arcs
and pseudogap [22], but have not clarified this point thus
far. Experimentally, electron doping in Sr2IrO4 has been
realized by partially replacing Sr with La [11,23,24],
hydrogen irradiation [25], or by deposition of alkali metals
on the surface [10,12]. Instead, hole doping has been
obtained by replacing, e.g., Ir with Rh or Ru [20,26–32].
Such chemical substitution leads to unintentional effects
besides the band filling, because of both the changes in the
rotation of IrO6 octahedra [27] and the differences in the
ions themselves. These effects might result in local non-
magnetic Rh3þ-Ir5þ pairs [28,31], effectively weak spin-
orbit coupling [20,26,27], and a Fermi surface that loses a
large amount of its Ir 5d character [32]. In order to prove
the robustness of the jeff ¼ 1=2 picture, it is of primary
importance to separate the intrinsical effects of doping from
all other factors, and show that, at least in principle, the
scenario holds.
In this Letter we use the power of theoretical tools to

clarify the two fundamental issues discussed above: (i) the
role played by multiorbital effects in the undoped and
doped cases and (ii) the intrinsical effects of doping. To this
end we perform local-density approximation plus dynami-
cal mean-field theory (LDAþ DMFT) calculations without
making any assumptions on the occupation and the form
of the jeff ¼ 3=2 quartet and jeff ¼ 1=2 doublet. Our first
conclusion is that the actual form of the jeff ¼ 1=2 states
changes surprisingly little with jxj, the number of holes
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(x > 0) or electrons (x < 0) in the IrO2 plane. It is also
weakly dependent on the exact value of the Coulomb
repulsion. At first glance, this confers robustness to the
jeff ¼ 1=2 picture. Further analysis of the data shows,
however, that the Mott gap (x ¼ 0) is strongly reduced by
the inter-jeff couplings. This is a signature of the intrinsic
three-band nature of the system and explains at the same
time why the gap is small even for a relatively large average
Coulomb repulsion—in relation to the jeff ¼ 1=2 band-
width. Upon hole doping, we find that the jeff ¼ 1=2
picture starts to break down already at x ¼ 0.05 holes, with
half of the holes going in the jeff ¼ 3=2 channels. The
breakdown is evidenced by comparing to results for the
ideal one-band model and looking at properties probing
the low-energy spectrum.
In order to obtain these results, we first calculate the

electronic structure of undoped Sr2IrO4 via the full-
potential linearized augmented plane-wave method imple-
mented in the WIEN2k code [33]. We adopt the local-density
approximation and include the spin-orbit interaction in the
calculation. Then we build the t2g Wannier orbitals based
Hubbard Hamiltonian,

Ĥ ¼ −
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where ĉimσ (ĉ†imσ) annihilates (creates) an electron at lattice
site iwith orbitalm ∈ fxy; yz; xzg and spin σ ∈ f↑;↓g. The
terms −ti;i

0
mσ;m0σ0 give the on-site crystal-field matrix (i ¼ i0)

and intersite hopping integrals (i ≠ i0).We define εxy, εyz, εxz
the on-site energies and εCF ¼ ðεyz þ εxzÞ=2 − εxy the crys-
tal-field splitting; λx and λy are the on-site spin-orbit couplings
between xy and xz=yz orbitals, λz between yz and xz orbitals,
and λ ¼ ðλx þ λy þ λzÞ=3 is the average spin-orbit coupling.
The parameters Umm0pp0 are elements of the screened
Coulomb interaction tensor. The essential terms
are [34] the direct Coulomb interaction,Umm0mm0 ¼ Um;m0 ¼
U − 2Jð1 − δm;m0 Þ, the exchange Coulomb interaction
Umm0m0m ¼ J, the pair-hopping term, Ummm0m0 ¼ J, and
the spin-flip term Umm0m0m ¼ J. We solve the model with
dynamical mean-field theory using the interaction-
expansion continuous time quantum Monte Carlo impurity
solver. More details on our implementation can be found
in Refs. [35–37]. For the experimental structure [38] we get
λx=y ∼ 346 meV, λz ∼ 354 meV, and εCF ∼ 213 meV from
LDAcalculations.TheCoulombparametersU ¼ 3.2 eV and
J ¼ 0.4 eV can well produce the small experimental insulat-
ing gap [1,39], estimated as 0.1–0.6 eV. The jeff ¼ 1=2
doublet is defined as

����
1

2
; σ

�

eff
¼ iα2jxy; σi −

α1ffiffiffi
2

p ðjxz;−σi − 2iσjyz;−σiÞ; ð2Þ

where α1 and α2 are positive numbers, with α21 þ α22 ¼ 1, and
where jm; σi is a state with one hole in the m orbital.
In the atomic limit with no crystal-field splitting,
α1 ¼

ffiffiffiffiffiffiffiffiffiffiffið2=3Þp
∼ 0.82. LDA yields a larger value,

α1 ∼ 0.90, which is also the value obtained by diagonalizing
the DMFT occupation matrix in the undoped case.
The jeff ¼ 1=2 doublet Eq. (2) yields the occupations
nxy ¼ 1þ α21, and nxz ¼ nyz ¼ 2 − 1

2
α21; thus, in the ideal

case, nxz ¼ nyz ¼ nxy ¼ 5=3.
The first remarkable result of our calculations is that the

coefficient α1 depends weakly on jxj, the number of holes
or (extra) electrons; more specifically, α1 slightly decreases
with increasing jxj, taking the value α1 ∼ 0.88 for x ¼ −0.1
and α1 ∼ 0.86 for x ¼ 0.4. The coefficient also depends
little on the Coulomb repulsion, as shown in the
Supplemental Material [40]. This result supports the
jeff ¼ 1=2 picture. In fact, a strong x and U dependence
of α1 would require a three-band model to determine the
proper jeff ¼ 1=2 doublet. This in turn would affect the
strength of the effective intra-jeff ¼ 1=2 bandwidth Weff
and the associated Coulomb repulsion Ueff [40,41]. For the
closest neighbors, in first approximation the hopping
integrals are teff ¼ tð1 − α21=2Þ, where t ¼ txy;xy, while
txz;xz ∼ thγ̂jx̂i and tyz;yz ∼ thγ̂jŷi for a bond along direction
γ̂ ¼ x̂; ŷ. Thus Weff decreases with increasing α1. Instead,
the effective Coulomb repulsion is Ueff ¼U−Jð4−3α21Þα21
and has the minimum value, Ueff ¼ U − 4J=3, for the ideal
j ¼ 1=2 state (α1 ¼

ffiffiffiffiffiffiffiffiffiffiffið2=3Þp
). The dependence on α1 does

not cancel out in the Weff=Ueff ratio, the indicator of the
strength of correlation effects. In fact, in the tight-binding
approximation, setting W ¼ 8t, the exact jeff ¼ 1=2
limit [40] yields

Reff ¼
Weff

Ueff
∼
W
U

1 − α21=2
1 − J

U ð4 − 3α21Þα21
; ð3Þ

which is about 0.72W=U for J=U ∼ 0.125 and α1 ∼ 0.9, the
values from DMFT calculations.
Building on this key conclusion, i.e., on the fact that α1

weakly depends on x and U, we will discuss the remaining
results in a rigid jeff -basis picture. Figures 1 and 2 illustrate
the principal outcomes. Figure 1 shows the distribution of
holes in the different channels. In the undoped case (x ¼ 0),
the two jeff ¼ 3=2 doublets are full and exhibit similar
spectral functions (Fig. 2). The bottom panel of Fig. 1
shows that, correspondingly, the Coulomb enhancement of
the spin-orbit coupling ΔλðωÞ is much larger than the
crystal-field splitting enhancement ΔεCFðωÞ. Introducing
carriers (or decreasing the value of U [40]) thus makes the
two jeff ¼ 3=2 channels slightly anisotropic in comparison;
this is more visible at low energy. Furthermore, since the
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form of the jeff doublet is almost x independent, upon
doping a strong electron-hole asymmetry arises. Extra
electrons go preferably into the jeff ¼ 1=2 channel; holes,
however, go as likely into the jeff ¼ 3=2 states. This may be
seen in the top panel of Fig. 1; the black line shows the
occupation expected in the ideal jeff ¼ 1=2 picture.
Figure 1 also shows that, within the jeff ¼ 3=2 quartet,
holes prefer the mj ¼ �3=2 states, those with no xy
components.
The fact that multiband effects immediately emerge upon

hole doping, as we have just established, appears at odds
with the conclusion that, instead, in the x ¼ 0 limit,
fluctuations from the jeff ¼ 3=2 quartet to the jeff ¼ 1=2
doublet are totally suppressed. Further analysis, however,
brings to light hidden multiband effects already present for
x ¼ 0. In Fig. 3 we compare, for different x values, the
jeff ¼ 1=2 spectral function obtained from the three-band
calculation with that obtained for an idealized model in
which the jeff ¼ 3=2 bands are frozen. In the latter case
the effective interaction strength is Ueff ∼U − 4J=3, as we
discussed above. When jxj is very large, Hubbard bands are
suppressed, similarly to the case of cuprates [42,43], and
the differences between the results from the two models
mostly amount to a shift in the chemical potential.
Decreasing jxj the spectral functions start to substantially
differ, as can be seen from the positions of the Hubbard
bands. Eventually, for x ¼ 0, the gap Eg is sizably larger in
the one-band calculation.

This can be understood as follows. By definition,
the gap is Eg ¼ EðN þ 1Þ þ EðN − 1Þ − 2EðNÞ.
In this expression, EðNÞ is the energy of the N-electron
ground state jΨN

Gi; in the jeff ¼ 1=2 picture, the main
contributions to such a state come from local multiplets
with n3=2 ∼ 4. Instead, EðN � 1Þ is the energy of
jΨN�1

jeff¼1=2i, the lowest energy N � 1-electrons eigenstates

for which jhΨN�1
jeff¼1=2jĉð†Þjeff¼1=2jΨN

Gij2 ≠ 0, where ĉð†Þjeff¼1=2

creates or destroys a jeff ¼ 1=2 electron. These states,
however, may carry holes in the jeff ¼ 3=2 quartet
(n3=2 < 4), in particular on the N − 1-electron side. This
has two reasons. First, the jeff states are linear combinations
of t2g orbitals, so that the inter-jeff hopping integrals are
large [40]. Second, the t42g multiplet with n3=2 ¼ 4 is not a
Coulomb-tensor eigenstate. Both effects make the gap
smaller. Inter-jeff hopping integrals reduce Eg by enhancing
the effective orbital degeneracy [44,45] within the N � 1-
electrons manifold. The intermultiplets Coulomb couplings
shift spectral weight to lower energy, an effect which
increases with J. In fact, we find that setting to zero both
non-density-density Coulomb jeff couplings and inter-jeff
hopping integrals increases the distance between Hubbard
bands and reduces their spread, in line with the one-band
model limit.
What is most surprising here is that these multiband

effects remain large even when spin-orbital fluctuations are
fully suppressed in the N-electron ground state. This is due

FIG. 1. Top: change in the occupations Δn ¼ nðxÞ − nð0Þ of
the components of the jeff Kramers states for N ¼ 5 − x
electrons, as a function of the number of extra carriers x. Black
line: ideal jeff ¼ 1=2 picture. Bottom: Coulomb enhancements
[36] of crystal-field splitting, εCF → εCF þ ΔεCFðωÞ, and spin-
orbit couplings, λγ → λγ þ ΔλγðωÞ, for ω ¼ 0 (full symbols) and
ω¼∞ (empty symbols). Parameters areU ¼ 3.2 eV, J¼ 0.4 eV,
T ¼ 290 K. The value x ¼ 0marks a discontinuity (vertical line),
since at this point the system is a Mott insulator; here some
enhancements become very large and out of scale.

FIG. 2. Top: LDA spectral functions, x ¼ 0. Remaining panels:
DMFT spectral functions in the jeff basis for different x.
Parameters are U ¼ 3.2 eV and J ¼ 0.4 eV, T ¼ 290 K.
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to the fact that many energy scales ðJ; εCF; λÞ are similar
and hopping integrals between different jeff states are large.
The same conclusion can be derived from a three-orbital
two-site toy model, as also shown in the Supplemental
Material [40]. In fact, for the toy model one can see that the
ideal jeff ¼ 1=2 picture is only recovered for unrealistically
large spin-orbit couplings, yielding the perfect jeff − jeff
coupling limit. In the Supplemental Material we show in
addition that these conclusions hold also when accounting
for possible changes in the octahedra rotation angle, e.g.,
induced by chemical doping.
The multiorbital effects just discussed can sizably

increase Uc, the critical U for the Mott transition in the
jeff ¼ 1=2 band. From the size of the gap for x ¼ 0, we find
that the enhancement factor is rc ∼ 1.3. This is further
confirmed by the behavior of 1=Z, the inverse quasiparticle
weight obtained by introducing jxj extra carriers, shown in
the right-hand panel of Fig. 3. The value of 1=Z decreases
approximately as 1=jxj, as expected for a one-band doped
Mott insulator. For x > 0, there are more jeff ¼ 1=2 holes
in the one-band than in the three-band case, however. Thus,
everything else staying the same, for a given x for the one-
band model the reduction should be larger than for the
three-band model, in the jeff ¼ 1=2 picture. Multiorbital
effects roughly compensate the excess of holes, making Z
rather similar for the two cases. Figure 3 shows that the
spectral functions from the one- and three-band models are
indeed similar at low energy, but not at high energy. In
order to move the Hubbard bands to the same position as in
the three-band model, Ueff has to be reduced to Ueff=rc;
doing so, however, correspondingly reduces 1=Z, e.g., for
x ¼ 0.1 approximately of the 23%. This shows that multi-
band effects cannot be reproduced by statically screening
Ueff only.

Finally, the positions of the Hubbard bands, the actual
effective masses, and the presence of low-energy jeff ¼ 3=2
states manifest themselves in low-energy probes as, e.g.,
the optical conductivity. The results for the latter are shown
in Fig. 4. In this figure, we decompose the total in-plane
optical conductivity into the contributions by intraorbital
jeff ¼ 1=2 (σ1=2) and jeff ¼ 3=2 (σ3=2) terms and all
multiorbital processes (σrest), σtot ¼ σ1=2 þ σ3=2 þ σrest,
following Ref. [41]. The figure shows that the peak at
ω ∼ 0.25Uav is directly controlled by multiorbital processes
involving jeff ¼ 3=2 states, and a sizable part of the Drude
peak comes from the same processes. Even neglecting
those, as we have seen, multiband effects affect the shape of
the jeff ¼ 1=2 spectral function, in particular, for small x,
and thus deform the optical response.
Summarizing, we have studied multiband effects

in doped Sr2IrO4. We find that the shape of the effective
jeff ¼ 1=2 state is remarkably stable with increasing the
number of extra carriers jxj and the Coulomb repulsion U.
This leads to electron-hole asymmetry: extra electrons go
into the jeff ¼ 1=2 channel, in line with experimental
observations [10], while holes distribute into both the
jeff ¼ 1=2 and jeff ¼ 3=2 channels, in contrast to expect-
ations from the jeff ¼ 1=2 picture. Most importantly, we
find that the inter-jeff coupling enhances Uc, the effective
single-band critical U for the Mott transition, keeping
the undoped system on the verge of the metal-insulator
transition for realistic Coulomb parameters. These results
demonstrate the intrinsic three-band nature of doped
iridates, putting into question one of the pillars on which
the analogy with the cuprates is based. Similar conclusions
are likely to apply to many other 4d and 5d spin-orbit
transition-metal oxides. As a final remark, our three-band
model calculations show in addition that the crystal-field
enhancement is relatively small and x independent. Instead,
the enhancement of the spin-orbit couplings is large and its

FIG. 3. Left: DMFT spectral function for the single- (yellow)
and three- (blue) band model, for different x values. Right:
change in inverse quasiparticle weight ZðxÞ with increasing x.

FIG. 4. The in-plane optical conductivity (in 103 Ω−1 cm−1

units) for different x values. The panels show total, jeff ¼ 1=2
intraorbital, and jeff ¼ 3=2 intraorbital contributions and the rest.
Uav ¼ U − 2J is the average Coulomb interaction.
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value at zero frequency substantially differs from the high-
energy Hartree-Fock limit. This could be important for
understanding and designing large gap correlated topo-
logical insulators [46].
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