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We model interactions following the Sachdev-Ye-Kitaev (SYK) framework in disordered graphene
flakes up to 300 000 atoms in size (∼100 nm in diameter) subjected to an out-of-plane magnetic field B of
5–20 Tesla within the tight-binding formalism. We investigate two sources of disorder: (i) irregularities at
the system boundaries, and (ii) bulk vacancies—for a combination of which we find conditions that could
be favorable for the formation of the phase with Sachdev-Ye-Kitaev features under realistic experimental
conditions above the liquid helium temperature.

DOI: 10.1103/PhysRevLett.131.036503

There has been significant recent interest in the con-
densed matter community of a holographic gravitational
description of correlated electron systems [1,2]. A model in
this direction is the Sachdev-Ye-Kitaev (SYK) model [3,4],
which describes from the condensed matter perspective a
set of N electrons in a dispersionless quantum state (a flat
band), interacting strongly yet randomly all to all,

HSYK ¼
XN

ijkl

Jijklc
†
i c

†
jckcl: ð1Þ

Here, c†i (ci) are fermionic creation (annihilation) operators,
and Jijkl are random couplings in all indices (the model
works beyond the Gaussian randomness [5]). Despite its
attractive mathematical properties such as exact solvability
in the large N limit with nearly conformal properties [6,7],
mapping on the Jackiw-Teitelboim gravity [8], and impor-
tance for condensed matter physics (including strange
metallicity [9–11] and superconductivity on the basis of
SYK model [12–14]), a direct experimental realization is
currently missing.
Various theoretical simulations for the physical realiza-

tion of the SYK model have been discussed [15–20].
Among them, a promising potential experimental platform
for the electronic SYK model, given in Ref. [20], is a
graphene dot with irregular boundaries placed in an
external magnetic field. Reference [20] studied ∼2000
atoms (5 nm in radius) in a field of ∼3200 T. However,
the magnetic fields employed in Ref. [20] exceed capabil-
ities within the laboratory realm. Modern condensed matter
facilities operate with quantum transport at magnetic fields
up to 16–20 T, and the highest accessible magnetic fields in
dc operation are of 45 T [21]. At the same time, graphene
preparation and chemical etching procedures pose limits on

the controllable size and shape of a flake, allowing flexible
operational capabilities with flake sizes of 100 nm and
above, but not for a size of a few nanometers. In this regard,
a great challenge is to overcome these obstacles to engineer
a realistic graphene flake that could host relevant inter-
actions in the experimentally accessible magnetic fields of
5–20 T.
In this Letter we report large-scale calculations on large

graphene flakes involving up to 300 000 carbon atoms
(corresponding to flake size ≈100 nm) placed under
realistic experimental conditions. We find that upon choos-
ing a well-disordered flake, we can reach favorable
experimental conditions with SYK strength J ∼ 45 meV
(we use standard normalization J2 ¼ 2N3hjJijklj2i), and a
mesoscopic number of SYK fermions N, typically around
40 in our calculations in the magnetic fields of 10–20 T.
We further model (i) the role of chemical etching [22], or
local anodic oxidation with an atomic force microscopy
tip [23–25], by varying the shape of the flake and the size
of edge disorder and (ii) the role of bulk vacancies created,
for example, by focused ion beam (FIB) patterning [26] or
hydrogen plasma treatment [27]. Our results speak in favor
of formation of SYK-like interactions in the realistic range
of parameters. In particular, we point out how the relative
effect of melonic diagrams can be enforced by controlling
the atomic vacancies concentration in the bulk. By com-
paring the relevant energy scales [28], namely t2=J and
J=N, we come to the conclusion that the engineered
system has a set of parameters where it could realize
the SYK phase in the vicinity of the liquid helium
operational temperatures, accessible magnetic fields, and
suitable graphene flake scales.
Setup.—To construct the SYK model, one needs to

employ the dispersionless quantum states (flat bands).
The electronic states with nontrivial Bloch topology are
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preferred for our purpose as they are spread over multiple
atomic sites and are immune to Anderson localization [29].
Such flat band states have been classified in Ref. [30]. The
simplest of this construction are the Landau levels, which are
characterized by Chern number jCj ¼ 1. In principle, one
can use numerous 2D materials for this purpose. However
we here limit ourself to the case of graphene [20] for two
reasons: (i) graphene monolayer is an intuitively understood
system from both analytical and numerical viewpoints, and
(ii) there are existing experimental platforms satisfying
criteria for this direction [31,32].
Before proceeding to disordered graphene flakes, let us

recall the physics of pristine (homogeneous and boundless)
graphene in low-energy approximation. Upon application
of out-of-plane magnetic field B, the electronic spectrum of
pristine graphene is given by [33]

En ¼ �vF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏeBjnj

p
; ð2Þ

where e is electronic charge and vF ≈ 106 m=s is the Fermi
velocity. The lowest Landau level (LLL) is characterized by
zero modes in the bulk (n ¼ 0). In the presence of chiral
symmetry, the Aharonov-Casher argument [34] sets the
number of electronic states in LLL as

N0 ¼
BA
Φ0

; ð3Þ

where A is the flake area, and Φ0 ¼ h=e ¼ 4.136 × 10−15

Wb is the magnetic flux quantum. N0 in Eq. (3) sets the
order of magnitude for the number N of SYK states in the
Hamiltonian in Eq. (1). However, we see that N within
bandwidth t ¼ 2 meV around the Fermi level N is

fluctuating around N0 due to strong disorder effects in
considered graphene flakes (see Fig. 2). Still there is a
certain qualitative similarity with the ideal LLL case, even
that the flake is strongly disordered.
The typical electronic spectrum of a strongly disordered

graphene flake is illustrated in Fig. 1. The flake has a
disorder-free inner region of radius R1, followed by dis-
ordered edge up to radius R2 (46 nm and 50 nm in Figs. 1
and 2). Tight-binding calculations are performed with the
conventional graphene model in magnetic fields [35],
taking into account nearest-neighbor hoppings with
Peierls substitution. Disorder is modeled by the random
on-site term

P
i Vic

†
i ci with Vi → ∞, where the Vi is either

applied to the ith site in the bulk region (defined by the radius
R1) or at the edge (within R2 − R1) [36]. Figure 1 shows the
results obtained from diagonalization of the tight-binding
model describing the 100 nm flake consisting of around
270 000 atoms. The first observation is that the electronic
spectrumof a realistic disordered flake in the relevant energy
range deviates significantly from its pristine counterpart,
given by Eq. (2): in all the realistic magnetic fields
0–20 T, we no longer observe the square-root behavior of
eigenenergies as expected for pristine graphene; instead, the
spectrum acquires a quantum-dot-like distribution [39].
We distinguish the bulk states from the edge states

through the analysis of their localization properties. For
this, we integrate jΨj2 within radius R1 þ δ (δ → 0) [49].
Because of the presence of irregularities on the boundaries,
all the states are showing certain localization at the edge.
However, bulk states have significant weight in bulk. If at
least 50% of weight is localized in bulk, we label this state
as a bulk state. While, as expected, the edge states are
strongly localized at the irregular boundaries, the bulk

FIG. 1. Bulk and edge states in disordered graphene flake of 100 nm in strong magnetic fields. (a) Energy spectrum as a function of
magnetic field, expected in pristine graphene; inset shows the same spectrum in energy range −50 to þ50 meV to compare with panel
(b). (b) De facto energy spectrum, observed in a strongly disordered graphene flake of size 100 nm; higher Landau levels (jnj > 0) are
not recognized in the energy range −50 to þ50 meV. (c) Probability densities jψ j2 of exemplary bulk and edge states. Randomly
localized bulk states shown in bottom of (c) are the building blocks for constructing the SYK-like interactions (Fig. 2).
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states sway over all the flake diameter, being spread on the
length scale of ∼100 nm. With such large length scale over
which the bulk states are spread, the notion of distance is
lost, and these states are interacting randomly all to all in
the SYK spirit.
Calculation of the SYK terms.—With the bulk states

randomly localized, and the kinetic energy quenched to
t < 2 meV, we construct the SYK-like states by introduc-
ing the Coulomb interaction in the basis of randomized
bulk states [20,50]. We compute Sachdev-Ye-Kitaev inter-
action terms through [40]

Jijkl¼
1

2

X

r1

X

r2

Ψ�
i ðr1ÞΨ�

jðr2ÞUðr1− r2ÞΨkðr1ÞΨlðr2Þ; ð4Þ

where UðrÞ is the screened Coulomb potential. Our results
stand for different forms of the screened Coulomb poten-
tials. To be specific, we adopt the values of renormalized
interaction potentials for graphene as it was reported in

Ref. [51]. In particular, we adopt UNN ¼ 5.5 eV, UNNN ¼
4.1 eV, and UNNNN ¼ 3.6 eV, where NN, NNN, and
NNNN stand for nearest-neighbor, next-to-nearest neigh-
bor, and next-to-next-to-nearest-neighbor interactions,
respectively. In calculation of Jijkl terms [Eq. (4)], we
take only bulk states within the energy range −1 to
þ1 meV around the neutrality. This qualitatively corre-
sponds to focusing on the states associated with what used
to be LLL [see dashed line in Fig. 2(e)], similar to Ref. [20].
For medium size flakes, we check that changing the bulk
states range from between −1 and þ1 meV to between −5
and þ5 meV does not change significantly the results for
Jijkl calculations, since most of the bulk states are situated
near the zero energy, and higher excited bulk states
contribute marginally to SYK interactions Jijkl. Hence,
in what follows we proceed with bulk states within the −1
to þ1 meV range.
The key results for the large flake are summarized in

Fig. 2. The statistical distribution of the complex-valued
Jijkl terms is illustrated in Figs. 2(b) and 2(c). The mean is
zero, (Re hJijkli ≈ 0, Im hJijkli ≈ 0), which indicates that
real and imaginary parts of Jijkl are independent. The
overall distribution of the absolute values of Jijkl is
quasirandom but non-Gaussian as in conventional SYK
models [6,7]. However, this is not the problem for con-
structing SYK-like models [5]. We introduce the real-valued
strength of SYK interactions J as with normalization from
counting melonic diagrams [7]:

J ¼
ffiffiffi
2

p
N3=2hJijklJ�ijkli1=2: ð5Þ

We operate this quantity in meV and Kelvin for practical
convenience. The results for the large flake are encouraging,
with extracted J of around 35 meV at 15 T [see
Fig. 2(d)]. The number of SYK fermions peaks to between
50 and 60 and we typically take around 40 of them for our
calculations.
Dependence on edge disorder scale.—We next address

the question of how the edge disorder χ ¼ ðR2 − R1Þ=R2

influences the SYK interaction strength J. This question is
vital for the experiments, where only a limited number of
methods is available for shaping the flake of the size of
100–200 nm (chemical etching, FIB, hydrogen plasma
treatment). To optimize the numerical costs, we now turn to
the medium size flakes of diameter 80 nm (∼150 000
atoms); these results are rescalable towards large graphene
flake of size 300 000 atoms and more as in prototypes [31].
We observe that the strength of the SYK interaction J
can be tuned by increasing the edge disorder χ (see Fig. 3).
To quantify this effect we perform disorder averaging
over dozens of flakes (Fig. 3 uses up to 30-40 flake
realizations) [52]. Typically J scatters from 20 meV to
nearly 60 meV upon increasing χ from 0 to 20%, but some
samples may exhibit even larger values of J above a
hundred meV (outside of plot range in Fig. 3) at moderate

FIG. 2. SYK-like interactions in the graphene flake of size
100 nm (268 510 carbon atoms) under realistic magnetic fields
5–20 T. (a) The geometry of the flake used for numerical
modeling, together with the visualization of a typical bulk state
near the Fermi level. (b),(c) Distribution of real and imaginary
parts Jijkl terms computed from Eq. (4) with RehJijkli ≈ 0 and
ImhJijkli ≈ 0. (d) The value of SYK interaction J, determined by
the second moments in Eq. (5). For calculation, we take bulk
states distributed between −1 and þ1 meV around the Fermi
level. Panel (e) shows number of bulk states in the range −1 to
þ1 meV involved into Jijkl calculation; gray dashed line depicts
ideal LLL case [Eq. (3)].
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edge disorders. For 40 nm flakes presented in Fig. 3, we
cannot access data for R1 ≈ 39 nm, as it is hard to separate
contributions from the edge states and the bulk states; the
edge states have finite penetration depth into the bulk of the
flake, see Fig. 1. Physically, the value of J should drop to
zero for a pristine flake (R1 ¼ R2), this is depicted with a
dashed line which serves as a guide for eyes. Comparing
Figs. 3 with 2, we come to the conclusion that the energy
scale J ∼ 20–40 meV is themost robust for the experiments,
as it persists in the broad range of edge disorder (the value
and uncertainties of which is hard to control experimen-
tally). Moreover, the ratio of J=jhJijklij in Fig. 3(b), which
qualitatively points to the dominance of the melonic dia-
grams in the large-N limit, increases under edge disorder.
Enhancing the role of melonic diagrams.—Implanting

bulk vacancies in the flake offers a powerful means to

control the strength of effective SYK interactions (4). In
practice, this technique could be implemented using the
FIB tool. In this case, the sample patterning can provide
additional tuning knob to improve the properties toward
SYK-like behavior. We here perform the calculations for
the medium size flakes of 80 nm in B ¼ 20 T. The results
are shown in Fig. 4. We start with the flake that has only
moderate (nonoptimized) edge disorder, reflected in
J ≈ 20 meV, and gradually increase the number of atomic
vacancies (indicated in percent). Figure 4(b) gives the
dependence of the SYK interaction J versus vacancy
concentration in the bulk. The SYK coupling strength J
is around 20 meV throughout the disorder range. The
number of bulk states slowly grows with a vacancy con-
centration; we check that the bulk states are not exponen-
tially localized on the atomic vacancies. Figure 4(c) presents
the ratio of couplings J=jJijklj.While the coupling strength J
fluctuates moderately around its original value, the ratio
J=jhJijklij is significantly improved by adding a moderate
amount of vacancies (at 0% this ratio is J=jhJijklij ≈ 50, at
5% it is J=jhJijklij ≈ 200), hence promoting the role of
melonic diagrams [7]. Therefore, we come to the conclusion
that even a modest vacancy concentration of 5% can improve
the properties of the SYK flake. For the flakes of size 100 nm
(∼300 000 atoms), we recommend removing ∼15 000 to
∼30 000 carbon atoms.
Discussion of the temperature scales.—Finally, we

perform the analysis of the relevant energy scales. The
key energy scale is J ≈ 35 meV (taken at experimentally
relevant B ¼ 16 T from Fig. 2). The SYK model is well-
defined in the region T ≪ J. Furthermore, there are lower
bounds on the temperature coming from (i) finite band-
width of the flat band, and (ii) mesoscopic effects in the
SYK Hamiltonians. Both these temperature scales appear
in quantum transport treatment of the SYK island [28]. The
first temperature bound is set by the bandwidth t. However,

FIG. 3. Enhancing SYK interactions through edge disorder χ.
(a) SYK coupling strength J; (b) dimensionless ratio J=jhJijklij as
a function of edge disorder scale χ for the medium size flake at
B ¼ 20 T (approximately 150 000 atoms, 80 nm in diameter).
Solid lines correspond to the average over up to 20 disorder
realizations (marked with gray points, some outside of plot
range). In this figure, the flake has dimensions R2 ¼ 40 nm
(outer radius), and R1 changes from 33 to 38.5 nm (inner radius).
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FIG. 4. Tuning SYK strength J with vacancy patterning. (a) Illustration of the graphene flake with 10% bulk atomic vacancies
(diameter 80 nm, approximately 156 000 atoms), (b) SYK strength J, and (c) J=jhJijklij ratio as a function of the vacancies concentration
in the range from 0% to 15% of vacancies. Solid blue lines correspond to arithmetic average over 20 disorder realizations in the medium
size flake with R1 ¼ 37 nm and R2 ¼ 40 nm at B ¼ 20 T [some sample points (gray) are outside of the plot range]. Above 15%, the
long-range order is destroyed for some disorder realizations and around 30%. All the systems are close to the percolation threshold for
hexagonal lattice p ≈ 0.7 [53,54].
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the question of the bandwidth for strongly disordered flakes
is not well-defined. From Fig. 1(b) we estimate the upper
bound as �15 meV, from which we estimate t ≈ 7.5 meV;
similar upper bounds are imposed by experiment [55]. This
gives T1 ¼ t2=J ≈ 19 K. Around this value, the SYK
dynamics cross over to conventional Fermi liquid behavior
in a universal manner. The second temperature scale is
set by the mesoscopic number of SYK states. In our case of
a large flake (N ≈ 35), T2 ¼ J=N ≈ 10 K. Below T2,
mesoscopic fluctuations are described by the universal
Schwarzian theory of the SYK model (with possible per-
turbations from t) [28]. Therefore, we come to the con-
clusion that in the magnetic fields of 16 T, flake sizes of
order 100 nm, the SYK dynamics is most favorable in the
regime 20 K≲ TSYK ≪ 300 K. We hence expect the sig-
natures of SYK model [7] in this temperature range, and
probe the relevant quantum transport, namely anomalies in
thermopower, in this setup [28]; see [56–60] for a similar
setup. This allows one to operate the 100 nm graphene
flakes of Figs. 1 and 2 above the point of the liquid
helium temperature (THe ¼ 4.2 K), a relevant experimental
benchmark.
Conclusions.—In conclusion, by performing large-scale

calculations on up to 300 000 atomic sites, we have
demonstrated that the SYK interactions can be controllably
engineered and enhanced in the disordered graphene flake
in realistic magnetic fields 5–20 Twhen the flake enters the
quantum dot regime. The obtained results speak in favor of
underlying SYK dynamics in the disordered graphene
flakes, establishing realistic experimental conditions in
terms of length scales, temperatures, and magnetic fields.
Further theoretical modeling of transport across such
disordered graphene flakes is required to interpret the
graphene prototype behavior in experiments [31].
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