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In this Letter, we introduce the concept of dynamical degeneracy splitting to describe the anisotropic
decay behaviors in non-Hermitian systems. We demonstrate that systems with dynamical degeneracy
splitting exhibit two distinctive features: (i) the system shows frequency-resolved non-Hermitian skin
effect; (ii) Green’s function exhibits anomalous behavior at given frequency, leading to uneven broadening
in spectral function and anomalous scattering. As an application, we propose directional invisibility based
on wave packet dynamics to investigate the geometry-dependent skin effect in higher dimensions. Our
work elucidates a faithful correspondence between non-Hermitian skin effect and Green’s function,
offering a guiding principle for exploration of novel physical phenomena emerging from this effect.
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Introduction.—Non-Hermitian Hamiltonians [1–6],
which can effectively capture the dynamics of the system
that is coupled to external environments, have been imple-
mented in a wide variety of systems [7–19]. Without the
constraint ofHermiticity, the eigenvalues of theHamiltonian
can be complex, leading to many intriguing phenomena in
non-Hermitian systems. One such phenomenon is the non-
Hermitian skin effect (NHSE) [20–64], which refers to that
extensive eigenstates of system-size order are concentrated
on the open boundaries; and that the energy spectrum is
highly sensitive to the change of boundary conditions. In one
dimension, the NHSE can be well understood within the
framework of the non-Bloch band theory [20,21,24,36].
Extending to higher dimensions, several new appearances
in NHSE have been discovered [28,40,57,58] and the
generalization of the non-Bloch theory has also been
attempted [22,65–67]. However, to date, many questions
still need to be solved. One representative is the recently
discovered geometry-dependent skin effect [58], where the
appearance of NHSE clearly depends on the geometric
shapes of the open boundary. How dowe interpret and find a
guiding principle to detect such kinds of phenomena in
higher dimensions? This is one motivation for this work.
Another motivation comes from the following consid-

erations. Previous studies have suggested that the spectral
area of the Bloch spectrum can faithfully predict the
presence of higher-dimensional NHSE [58]; however, this
criterion loses the information of band structures around a
given frequency ω ∈ R [68], which is primarily concerned
in spectroscopic measurements [69]. Moreover, the cri-
terion fails to relate NHSE to realistic physical observa-
tions. For example, in condensed matter physics, the

transport and response properties of the system are mainly
determined by the excitations near the Fermi energy; thus,
only NHSE appearing near the Fermi energy does matter,
which cannot be inferred from the spectral-area criterion.
These considerations inspire us to find a frequency criterion
for the manifestation of NHSE, thereby delivering NHSE to
broader physical scenarios.
In this Letter, we demonstrate that the dynamical

degeneracy splitting plays the role of frequency criterion
for the appearance of NHSE. From the perspective of bulk-
boundary correspondence, the dynamical degeneracy
splitting reflects the bulk characteristic of the NHSE
and is independent of boundary conditions, which implies
that the dynamical degeneracy splitting may be more
intrinsic than the NHSE itself. As illustrated in Fig. 1(a),
the dynamical degeneracy splitting not only helps us to
understand the physical origin of NHSE, but also reveal a
deep relation to the Green’s function. Given this con-
nection, we establish the scattering theory in non-
Hermitian systems, and reveal that when the dynamical
degeneracy splitting occurs, the scattered waves will be
damped away from impurities. Applying the scattering
theory to geometry-dependent skin effect, we propose a
new phenomenon unique to non-Hermitian systems called
directional invisibility, which refers to the fact that the
reflected components of the incident wave packet are
visible when the impurity line is in several spatial
directions but invisible in the remaining directions. As
an application, directional invisibility can serve as an
experimentally feasible method to directly detect the
existence of geometry-dependent skin effect without the
need for open boundary conditions.
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Dynamical degeneracy splitting and frequency-resolved
NHSE.—Now we start with the non-Hermitian Bloch band
EμðkÞ to explain what dynamical degeneracy splitting is.
For a given excitation frequency ω ∈ R (the real frequency
is assumed throughout this Letter), the equal-frequency
contour KðωÞ can be defined as

Kðω ∈ RÞ ¼ K1ðω ∈ RÞ ∪ � � � ∪ Kmðω ∈ RÞ; ð1Þ

where Kμðω ∈ RÞ ¼ fk ∈ BZjReEμðkÞ ¼ ωg and BZ is
short for Brillouin zone.Whenω is chosen to be the chemical
potential in electronic systems, KðωÞ is nothing but the
renormalized Fermi surface. An example is illustrated in
Figs. 1(b)–1(d). When ω ¼ ω1 or ω2, the corresponding
equal-frequency contour is plotted in Figs. 1(c) or 1(d) by the
yellow dashed lines. Physically, each point on the equal-
frequency contour in Fig. 1(c) corresponds to an excited
mode at frequencyω1, and the corresponding group velocity
of this mode in real space is along the normal direction at that
point on the equal-frequency contour [70].
In theHermitian case, all excitedmodes at frequencyω are

degenerate since ImEμðkÞ ¼ 0 for all k. Under a generic open
boundary geometry, the corresponding eigenstate with
energy ω is constructed by the linear superposition of these
k ∈ KðωÞ. However, once the non-Hermitian term is intro-
duced, the imaginary part ImEμðkÞ will broaden the equal-
frequency contour in complex ways, which in general will
split this degeneracy as shown in Fig. 1(d). As a result, even
under the same open boundary geometry, the original linear
superposition of Bloch waves is no longer to be the
eigenstate, which implies the emergence of NHSE at
frequency ω [70]. We refer to the above type of degeneracy
splitting as dynamic degeneracy splitting. This phenomenon

results from differences in the lifetimes of equal-frequency
excitation modes, has a dynamical consequence, and corre-
sponds to the frequency-resolved NHSE.
We use the example HNHðkÞ ¼ cos kx þ cos ky þ

i½ð1=2 − cos kx − cos kyÞ cos kx� − i9=16 to demonstrate
this point. As shown in Fig. 1(b), the dynamical degeneracy
splitting occurs at ω2 ¼ −1=2 but not ω1 ¼ 1=2. It
implies that these eigenstates ψ i∈ω2ðω1ÞðrÞ with eigenvalues
satisfying Re Ei;OBC ¼ ω2ðω1Þwill show (not show) NHSE
at this frequency. In Figs. 1(e) and 1(f), we plot PωðrÞ ¼P

i∈ω jψ iðrÞj2 on the diamond geometry with lattice size
Lx ¼ Ly ¼ 80. It is shown that Pω1

ðrÞ is extensive on the
entire lattice in (e), but Pω2

ðrÞ shows localization behavior
in (f), which demonstrates the correspondence between
the dynamical degeneracy splitting and frequency-resolved
NHSE.
Dynamical degeneracy splitting in Green’s function.—

Apart from the relation to NHSE, dynamical degeneracy
splitting is also associated with Green’s function as
illustrated in Fig. 1(a). One consequence from dynamical
degeneracy splitting is the uneven broadening in the
spectral function at the excitation frequency ω. For a given
non-Hermitian Hamiltonian HNHðkÞ, one can calculate the
spectral function Aðω; kÞ ¼ −ImTrf1=½ωþ iη −HNHðkÞ�g
to characterize the dynamical degeneracy splitting, which
can be measured directly, for example, by the angle-
resolved photoemission spectroscopy. Therefore, one can
identify the dynamical degeneracy splitting from the
experimental side by observing the nonuniform broadening
of equal-frequency contour under a given excitation fre-
quency. Applying this result to condensed matter physics,
we further propose that quasiparticle interference become
anomalous as discussed in [70]. This will be another

FIG. 1. (a) Schematic of the relation between dynamical degeneracy splitting (DDS), frequency-resolved NHSE, and the physical
consequences via Green’s function. (b)–(f) show the bulk-boundary correspondence between dynamical degeneracy splitting and
frequency-resolved NHSE. For the Bloch spectrum in (b), there is no dynamical degeneracy splitting at excitation frequency ω1 in (c),
where the color bar corresponds to imaginary energy ImEðkÞ on the equal-frequency contour (the dashed yellow lines).
Correspondingly, NHSE is absent at this frequency in (e). Dynamical degeneracy splitting occurs at ω2 as shown in (d), and
consequently, NHSE appears at frequency ω2 in (f).
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experimental signature for the existence of dynamical
degeneracy splitting.
Next, we will demonstrate that anomalous scattering

behavior is another consequence of dynamical degeneracy
splitting via Green’s function. The anomalous scattering
here refers to the phenomenon that a defect can scatter the
propagating plane waves to exponentially damped waves
away from the scatterer.
Anomalous scattering theory.—We first establish a gen-

eral scattering theory in a two-dimensional non-Hermitian
system with single band. It is straightforward to extend our
discussion to general situations [70]. The full Hamiltonian
can be expressed as H ¼ HNHðkÞ þ V, where V is the
scattering potential. Now, consider an incident wave ϕiðrÞ
(or an excitation) with momentum ki propagating
on the lattice and hitting the scatterer. Then, the scattered
waves ϕsðrÞ can be captured by the following integral
equation [70]:

ψðrÞ ¼ ϕiðrÞ þ ϕsðrÞ

¼ ϕkiðrÞ þ
Z

dr0Gþ
0 ½EðkiÞ; r; r0�Vðr0Þψðr0Þ; ð2Þ

where ϕkiðrÞ ¼ hrjϕkii ¼ eikir represents the incident
wave, and ϕsðrÞ comprises reflected and transmitted waves.
Here, VðrÞ ¼ hrjVjri is the scattering potential function,
and Gþ

0 ½EðkiÞ; r; r0� ¼ hrj½EðkiÞ þ iη −HNHðkÞ�−1jr0i with
η → 0þ is the retarded Green’s function. The integral
equation Eq. (2) tells us that (i) after introducing
the scattering potential V, the eigenstate of the full
Hamiltonian H, i.e., ψðrÞ, can be decomposed into
the incident and scattered waves with the same energy
EðkiÞ [70]; (ii) the anomalous behavior of the scattering
process comes from the anomalous property of the retarded
Green’s function in non-Hermitian systems.
Now we use an impurity line, labeled by Lθ, as an

example to demonstrate the anomalous scattering. As
shown in Figs. 2(a) and 2(b), we specify the impurity line
lying on the position r⊥ ¼ 0 and along the θ direction.
For the left (right) side of the impurity line Lθ, the
corresponding region is denoted by r⊥ < 0 (r⊥ > 0).
Therefore, the impurity-line scattering potential function
reads

VðrÞ ¼ λδðr⊥ ¼ 0Þ: ð3Þ

Note that the translation symmetry along the rθ direction
is preserved in the scattering process. Therefore, we
substitute Eq. (3) into Eq. (2) and take the Fourier
transform from rθ to kθ, and finally obtain the solution
of scattering wave [70] as

ϕsðkθi ;r⊥Þ¼ λψðkθi ;0Þ

8>><
>>:

P
jzinj<1

CðzinÞzr⊥in ; r⊥>0;

P
jzoutj>1

−CðzoutÞzr⊥out; r⊥<0;
ð4Þ

where kθi ¼ ki · eθ is the θ component of the incident
momentum; the coefficient ψðkθi ; 0Þ is a constant for a
given kθi ; Cðzin−outÞ equals 2πi times the residue of the
function ½z½EðkiÞ þ iη −HNHðkθi ; zÞ��−1 at the poles zin and
zout inside and outside the jzj ¼ 1 curve, respectively, as
shown in Figs. 2(a) and 2(b).
Now we show that when the dynamical degeneracy

splitting occurs, the reflected wave will become localized.
Without loss of generality, we assume the incident
plane wave ki ¼ ðkθi ; k⊥i Þ with energy EðkiÞ comes from
the r⊥ < 0 region. There are two cases of scattered waves.
In case (i), there are at least two poles that touch the jzj ¼ 1
simultaneously from the inner and outer sides, respectively,
when η → 0þ, and one example is illustrated in Fig. 2(a). In
case (ii), there is only one pole that touches the jzj ¼ 1
curve from the inside as η → 0þ, as shown in Fig. 2(b).
More details are present in [70]. It can be seen from Eq. (4)
that there will be two dominant propagating modes that
survive at infinity for case (i), namely the transmitted wave
in the region r⊥ > 0 and the reflected wave in the region
r⊥ < 0, as illustrated in Fig. 2(a). In case (ii), we have one
dominant transmitted wave in the r⊥ > 0 region, while in

FIG. 2. The illustrations of conventional scattering in (a) and
anomalous scattering in (b). Here, the model Hamiltonian
reads HNHðkÞ ¼ 2 sin kx cos ky − 2 cos kx þ iðcos kx − 1Þ, and
the impurity line Lθ is along the θ ¼ 3π=4 direction. The dark
and light blue dots represents parts of poles calculated in Eq. (4).
As η → 0, the corresponding poles evolve from dark to light blue
dots, as indicated by arrows.
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the r⊥ < 0 region the dominant reflected wave is a spatially
localized wave as η → 0þ. Therefore, the scattering process
is anomalous, as illustrated in Fig. 2(b).
Directional invisibility.—Now we show that for the

geometry-dependent skin effect (GDSE), the correspond-
ing scattering process exhibits directional invisibility. The
Bloch Hamiltonian of the GDSE model [58] reads

HðkÞ ¼
X

i¼0;x;y;z

diðkÞσi −
iγ
2
ðσ0 − σzÞ; ð5Þ

where diðkÞ is a real function of k and σi represents
the Pauli matrix. The only non-Hermitian parameter γ > 0
is used to describe the dissipative system. Specifically,
fd0; dx; dy; dzg ¼ fμ0 þ t0ðcoskx þ coskyÞ; t½1− cos kx −
cosky þ cosðkx − kyÞ�; t½sin kx − sin ky − sinðkx − kyÞ�;μzþ
tzðcoskx − coskyÞg. We plot the spectral function Aðω0; kÞ
in Figs. 3(a) and 3(b). It shows the uneven broadening on
the equal-frequency contour (the gray curve representing
equal-frequency contour), which is a definite signature
of the occurrence of dynamical degeneracy splitting.
According to the established scattering theory, the anoma-
lous scattering will occur.
We assume an incident plane wave has ki ¼ ðkxi ; kyi Þ ¼

ðπ=2; 0Þ and hits the impurity line Lθ with a rightward
velocity in real space. Note that ki lies on the equal-
frequency contour, i.e., KðωÞ with ω ¼ 3=2, as shown in
Figs. 3(a) and 3(b). The impurity line Lθ preserves the
momentum along this direction, which means that the
scattererLθ relates ki with ks and k0s in the way illustrated in
Figs. 3(a) and 3(b), respectively. In Fig. 3(a), due to the
larger broadening at ks than that at ki, the reflected wave is
damped exponentially away from the impurity line, which

means that anomalous scattering occurs as discussed in
case (ii). The band dispersion of the Hamiltonian in Eq. (5)
is mirror symmetric under Mx: ðkx; kyÞ → ð−kx; kyÞ and
My: ðkx; kyÞ → ðkx;−kyÞ. This means k0s ¼ Mxki has the
equal broadening with ki, as shown in Fig. 3(b). Therefore,
the conventional scattering discussed in case (i) occurs for
the vertical impurity line that scatters the incident plane
wave to another propagating plane wave k0s. This phe-
nomenon that the visibility of reflected waves depends on
the direction of impurity line is dubbed directional invis-
ibility and unique to higher-dimensional non-Hermitian
systems.
To probe the directional invisibility in this example, the

incident wave is chosen as a Gaussian wave packet with
momentum center at ki for the scattering simulation, as
shown in Figs. 3(c) and 3(d). The time evolution of
wave packet follows jψðtÞi ¼ N ðtÞe−iHtjϕ0i, where H is
the full Hamiltonian consisting of the free Hamiltonian in
Eq. (5) and impurity-line scattering potential VðrÞ ¼
λσ0δðr⊥ ¼ 0Þ, andN ðtÞ is the normalization factor at every
time. The incident Gaussian wave packet has the form
ϕ0ðrÞ ¼ exp½−ðr − r0Þ2=σ2 þ ik0i r�ð1; 1ÞT . In Figs. 3(c)
and 3(d), the parameters are set as ðx0; y0; σÞ ¼
ð14; 20; 4Þ, and the lattice size is Lx ¼ Ly ¼ 40. It can be
observed that the Gaussian wave packet is almost
completely transmitted through the oblique impurity line
Lθ without evident reflectedwaves, as shown in Figs. 3(c1)–
3(c5). However, parts of thewave packet are reflected by the
vertical impurity line Lθ as a propagating wave, shown in
Figs. 3(d1)–3(d5). Therefore, the wave-packet scattering
simulation in Figs. 3(c) and 3(d) verifies the directional
invisibility.

FIG. 3. Directional invisibility in Hamiltonian Eq. (5) with the parameters ðμ0; μz; t0; t; tz; γÞ ¼ ð1.35;−0.05;−0.4; 0.4;−0.6; 1Þ.
(a),(b) show the spectral function Aðω; kÞ with ω ¼ 3=2, of which the intensity corresponds to the opacity as shown in the color bar.
Here, Lθ represents the impurity line, and ki denotes the incident wave and ks (k0s) indicates the scattered wave. The incident wave packet
with the momentum center at ki hits the oblique impurity line in (c1)–(c5) and vertical impurity line in (d1)–(d5), where the impurity
strength λ ¼ 1.
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The role of symmetry.—Now we discuss the role of
symmetry, which reveals the correspondence between
directional invisibility and GDSE. For HNHðkÞ, all sym-
metries preserving the complex energy form the scattering
group of HNHðkÞ, labeled by Gs, which includes, for
example, the reciprocity T̄ [26] and point-group sym-
metries, such as rotation, inversion, and mirror symmetry
M. Now suppose that there is an incident wave with
momentum ki. Under the action ofGs, ki will be mapped to
a set of other points on the BZ with the same energy, that is,
EμðkiÞ ¼ EμðgskiÞ with gs ∈ Gs. Note that ki and gski
determines a direction crossing them, and we label the
impurity line perpendicular to this direction by Lgski. Now
we state the conclusion: for the incident wave ki, the
scattering process for the impurity line Lgski is conven-
tional; while for all other directions, the scattering process
is not protected by symmetry gs and is generally anoma-
lous. It should be noted that if gs ¼ M or T̄ M, Lgski is
exactly parallel or perpendicular to the mirror line, respec-
tively, and is independent of ki. We label such an impurity
line as Lgs . It means that for the impurity line Lgs , the
scattering process for all possible incident states is conven-
tional. For example, if HNHðkÞ preserves Mx symmetry,
then LMx

is along the y direction, and the conventional
scattering occurs on the impurity line LMx

for all possible
incident waves.
Now we relate it to the GDSE. For GDSE, if there is an

edge parallel to the impurity line Lgs , then the edge shows
conventional scattering for all ki ∈ BZ, correspondingly,
the open boundary eigenstates cannot be localized at that
edge. Based on this principle, one can find that if the
Hamiltonian has M and/or T̄ M symmetry, then open
boundary eigenstates can no longer be localized at the
edges parallel to LM and/or LT̄ M under any shape of open
boundary geometry.
Conclusions and discussions.—In summary, we intro-

duce the concept of dynamical degeneracy splitting to
characterize the nonuniform decay behavior of excited
modes at a given frequency. On the one hand, the
dynamical degeneracy splitting predicts the frequency-
resolved NHSE; on the other hand, it associates with the
anomaly in Green’s function at a specified frequency,
leading to uneven broadening in spectral function and
anomalous scattering. As an application, we propose a type
of anomalous scattering, directional invisibility, as an
experimental indicator of the existence of GDSE.
This work essentially provides a frequency criterion

that can further help us understand and define NHSE in
the system beyond conventional band theory. For example,
in the electronic system with self-energy corrections,
the retarded Green function has the form Gðω; kÞ ¼
½ω −Heffðω; kÞ�−1, where the effective Hamiltonian
depends on the frequency ω. The dynamical degeneracy
splitting can still be well defined, correspondingly, the

concept of NHSE can be extended in such systems, which
laid the foundation for further studies.
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