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We perform high resolution kinetic simulations of interpenetrating plasma beams. This configuration is
unstable to both Weibel-type and two-stream instabilities, which are known to linearly induce a growth of
the magnetic and electrostatic energy, respectively, at the expenses of the kinetic energy. “Oblique modes”
are further beam-plasma instabilities, which linearly combine the features of the former two. Here we show
the possibility of a reversal of the energy flow associated to these beam-plasma instabilities, when
secondary propagating oblique modes are excited. This rapid conversion from magnetic to kinetic energy
(i.e., kinetic heating), differs from the standard magnetic reconnection scenario and is induced by the
reinforcement of the filamentation process of the distribution function in the phase space. This
phenomenon—likely of general interest to collisionless dissipation processes in plasmas—can be
understood in terms of mode synchronization: the coupling of oblique modes at disparate spatial scales
leads to the appearance of synchronized “filamented” modes, which act on the global dynamics of the
plasma via kinetic heating, collisionless dissipation, and turbulence.
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In a configuration characterized by two counterpropa-
gating electron beams, which can be met in astrophysics
[1], in laboratory astrophysics [2,3], and in laser-plasma
accelerators [4], Weibel-type instabilities can couple with
electrostatic unstable modes by generating the so-called
oblique instabilities (OIs). In Ref. [5] a propagative branch
of OI modes has been identified. Here we discuss and
show via kinetic simulations—performed with both semi-
Lagrangian [6] and particle-in-cell (PIC) Vlasov-Maxwell
[7] codes—how the spatial filamentation induced by these
modes is capable of affecting, both linearly and nonlinearly,
the phase-space filamentation of the distribution function
by synchronizing the phases of the Van Kampen modes [8].
This leads to large amplitude fluctuations of the distribution
function in the phase space, to which hereafter we refer to
as to an “enhanced filamentation.” This process occurs in
combination with large amplitude, essentially reversible
fluctuations of the entropy of the plasma (already shown in
Ref. [9] to correspond to the violation of Casimir’s
conservation in the Vlasov system) and is characterized
by a change in the saturation regime of the OIs, where the
energy stored in the magnetic field can be transferred back
to plasma particles via a kinetic heating mechanism. Note
that phase-space filamentation is an intrinsic property of the
Vlasov equation and does not refer, here, to the spatial
filamentation of the “current filamentation instability”
(CFI) [10]—although, after integration over the velocity

coordinate, phase-space filamentation becomes generally
manifest at a macroscopic, fluid-scale description, as a
filamentation in the coordinate space. Demonstrating this
enhanced filamentation process is difficult, especially in the
developed turbulence regime, due to its possible coupling
with magnetic reconnection (MR). However, the counter-
propagating beam configuration we start from provides an
ideal framework for this analysis: in the 2D-2V geometry
we consider here (which does imply appreciable results
from the 2D-3V case [9]), it excludes the possibility of MR
to occur, even as a secondary processes to the beam-plasma
instabilities, which we will show instead to allow the
amplification of the phase-space filamentation of f to a
sufficiently high level to permit a reversal of the energy
transfer.
Introduction.—The well-known filamentation phenome-

non of f in the velocity space reflects an intrinsic property
of the Vlasov equation. It is induced by the advection term
(free streaming term) in the configuration space (see, e.g.,
[11], Sec. 5.4), and its “reversible” nature becomes mani-
fest through the phenomenon of plasma echoes (see, e.g.,
[12], Sec. 4.2). Phase space synchronization of oscillators
[13] is a key ingredient of phase mixing, which is at the
basis of the collisionless Landau damping. This concept
was used to study wave-particle interactions in the Vlasov-
Poisson system [14,15] and in the gyrokinetic formalism
[16,17]. Filamentation combined with synchronization can
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violate another feature of the reversible, conservative VM
system: the conservation of Casimir invariants. This can be
indeed shown to follow from Liouville’s theorem and
Vlasov transport equation, only provided the distribution
function f be sufficiently “smooth” at any time. In that
case, the phase-space fluctuations of f, induced by fila-
mentation, are not too large [18–20] and the solution of
Vlasov equation is then weakly convergent in the sense of
distributions.
The initial counterstreaming electron beam configuration

is unstable to a number of modes: the transverse Weibel-
type modes, either driven by pressure anisotropy of each
beam (pure Weibel mode) [21] or, when the wave vector k
is perpendicular to the beams direction, by momentum
anisotropy (transverse CFI) [22]; the longitudinal, electro-
static, two-stream instability, when k is parallel to the
beams; the oblique instabilities (OIs) when k forms an
angle different from π=2 with the beams [23–25]. Two
branches of OIs, have been identified for propagation
angles comparable to �π=4 with respect to the beams
[5] (cf. Appendix A): a weakly propagative (dominant)
branch with ReðωÞ ≲ 0.1ωpe, to which from now on we
will refer to as “nonpropagative” or as branch “A,” and a
higher frequency branch with ReðωÞ≳ 0.5ωpe, which from
now on we will refer to as “propagative” or to as branch
“B,” but which typically displays smaller growth rates than
the nonpropagative modes. In Ref. [9] it was shown that the
simultaneous excitation of several OI-B modes nonlinearly
induces an excitation of high-frequency number OIs: this
occurs as a direct turbulent-like cascade associated to a
filamentation process of the distribution function in the
coordinate space, and then in the phase space. Below we
discuss how this process is related to a reversal of the
transfer from the magnetic to the kinetic energy component
associated to the growth of the initial OI: the corresponding
kinetic heating is made possible by a synchronization
process occurring during the linear stage of the secondary
OI-B.
Physical model.—We consider a collisionless VM

plasma, in the limit in which ions constitute a fixed uniform
neutralizing background of density n0. Two counterpropa-
gating electron beams (label α ¼ 1, 2) move along y with
uniform initial velocities normalized to the light velocity
βα ¼ u0;α=c, in a two-dimensional geometry: x ¼ ðx; y; 0Þ,
p ¼ ðpx; py; 0Þ are the relativistic particle position and

momenta, so that γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=m2c2

p
is the Lorentz factor,

m and −e being the electron rest mass and charge. The
electromagnetic (e.m.) fields read E ¼ ðEx; Ey; 0Þ and
B ¼ ð0; 0; BzÞ. Current neutralization

P
α nαβα ¼ 0 is ini-

tially assumed. For the sake of simplicity we restrict
our analysis to symmetric counterpropagating beams
(β1 ¼ −β2) having the same normalized thermal velocitiesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mc2

p
both along x and y: at perpendicular propa-

gation this rules out the coupling between electrostatic and

e.m. modes [26]. The Vlasov equation is invariant under
time reversal and inherits the conservation laws of
Hamiltonian dynamics, e.g., that of the energy [i.e., the
kinetic energy of particles, ϵK ¼ ð1=VÞ R d3x

R
d3pmc2γf

plus that of fields, ϵm ¼ ð1=2VÞε0
R
d3xðE2 þ c2B2Þ],

which we write as ϵ ¼ ϵK þ ϵm, and the conservation
of any “Casimir’s invariant,” i.e., of functionalsR
d3xd3pF ½fðx; p; tÞ� defined for arbitrary (yet sufficiently

regular [18–20]) functions F of f (see Ref. [27] for
complements). Notice that the restriction to a 2D-2V
geometry with ∂=∂z ¼ 0, combined with the initial con-
figuration, at most compatible with a magnetic field
Bzðx; y; tÞ, excludes the occurrence of MR.
Phase synchronization.—By writing the Vlasov equation

in Fourier space as

∂tfkðp; tÞ ¼ −ik · pfk=ðmγÞ þ Rkðp; tÞ; ð1Þ

where Rkðp; tÞ ¼ jRkjeiΘkðp;tÞ is the Fourier transform of the
quantity Rðx; p; tÞ ¼ −e½Eþ p × B=ðmγÞ� · ∇pf, we rec-
ognize in the ∼k · pfk=ðmγÞ convection term the source of
filamentation: strong spatial gradients (i.e., large values of
jkj) lead to stress forces related to the fluid strain, which
cause a local enhancement of the collisionless “dissipation”
via phase mixing. The coupling of filamentation with forces
can indeed lead to collisionless heating [43–45] or to an
irreversible dissipation via coarse graining. We recall that
the latter consists in the sampling of a formally continuum
domain with “unit cells,” in which fine details are smoothed
out according to some criterion. However, the fact that
filamentation, by itself, is a “kinematic” process driven by
the convection term in transport equation under the validity
of Liouville’s thoerem is evident if one looks at the free
streaming motion of a distribution of particles in absence of
forces and of dissipation, namely, ∂f=∂tþ v∂f=∂x ¼ 0
(cf. Fig. 3 later and Appendix B; see also Sec. 5.4 of
Ref. [11]).
The phase φkðp; tÞ and amplitude jfkj of the distribution

function fkðp; tÞ ¼ jfkjeiφk in Fourier space evolve accord-
ing to

∂tjfkj ¼ jRkj cos ðΘk − φkÞ; ð2Þ

∂tφk ¼ −k · p=ðmγÞ þ ðjRkj=jfkjÞ sin ðΘk − φkÞ: ð3Þ

Equations (2)–(3) can be read as an extension of Kuramoto’s
model [46,47] to aHamiltonian system. FollowingRef. [48],
the Kuramoto model can be derived from the Hamiltonian
H ¼ P

i Jiωi þ Kr
P

i Ji sin ðφ̄ − φiÞ, in the action-angle
variables Ji, φi. Thus, Eq. (3) is similar to _φi ¼ ∂H=∂Ji ¼
ωi þ Kr sin ðφ − φiÞ of Kuramoto’s model, describing the
weak interaction of i ¼ 1;…; N oscillators of natural
frequency ωi and phase φi, φ̄ being the average phase of
the ensemble. K is the coupling parameter and r a real
quantity (0 ≤ r ≤ 1), which measures the coherence of the
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system. Equation (2) takes the form of _Ji ¼ −∂H=∂φi ¼
KrJi cos ðφ − φiÞ, which indicates that jfkj plays the
equivalent role of an action Ji. In the microcanonical
description, it is possible to define, for each oscillator i, a
“metric entropy” Si ¼ kBlnJi; the metric entropy relies on a
scheme for partitioning the phase space into elementary
cells. For the Vlasov model, the entropy density is
Sk ¼ −kB ln jfkj. This leads to the insight that the evolution
towards phase synchronization is equivalent to the evolution
towards a state of decreasing entropy, e.g., from a chaotic
state to a synchronized state (seeRefs. [48–50]). Conversely,
the combination of filamentation and of coarse graining of f
leads to an increase of the metric entropy. Thus, synchro-
nization and filamentation are two antagonistic processes
globally leading to the conservation of entropy if the level of
fluctuations remains low.
Enhanced filamentation.—The phenomenon we are

going to highlight via numerical simulations is related to
the linear onset of OIs, so it is informative to study the
behavior of f not far from the equilibrium configuration
fðx; p; 0Þ ¼ P

j
1
2
F0jðpx; py þ CjÞ ¼ F0, where F0j is the

Maxwellian distribution of the jth beam of canonical
momentum Cj. Writing fðx;p;tÞ¼F0ðpÞþδfkðp;tÞeik·xþ
c:c:, (where c.c. denotes the complex conjugate), express-
ing the e.m. fields as Exk ¼ jExkjeiθx , Eyk ¼ jEykjeiθy and
Bzk ¼ jBzkjeiθz , and separating the real and imaginary
parts, the linearized Vlasov equation reads

∂tjδfkj ¼ −eF0ðpÞ
X
j¼x;y

pjjEjkj cos ðθj − φkÞ: ð4Þ

The evolution of the second order variation of
the e.m. spectral energy density [apex “(2)”] ϵm;k ≡
1
2
ε0ðjExkj2 þ jEykj2 þ c2jBzkj2Þ reads

∂tϵ
ð2Þ
m;k ¼ e

Z
d2pjδfkj

X
j¼x;y

�
pj

mγ
jEkjj cos ðφk − θjÞ

�
ð5Þ

or, equivalently, ∂tϵ
ð2Þ
m;k ¼ −δE · δJ. Using Vlasov equation

this can be also expressed as

∂tðϵð2Þm;k þ ϵφ;kÞ ¼ 0; ϵφ;k ≡ −
Z

d2p
jδfkj2
2 ∂F0

∂px

px

mγ
; ð6Þ

which generalizes the “energy” relation obtained by
Kruskal and Oberman [51,52] to the e.m. case, via the
introduction of the “phasestrophy” flux density ϵφ;k. The
phasestrophy Sφ ¼ R ðd3x=VÞ R d3pδf2=½2∂F0=∂px� intro-
duced in Ref. [53] in the context of gyrokinetic tokamak
turbulence is not a formal Casimir but it is a sort of an L2

norm representing the phase space density auto-correlation
function linked to the growth of filaments. Equation (6),
obtained using the real part of the Fourier decomposition

related to Eqs. (2)–(3), highlights an energy transfer,
occurring during the linear stage of an instability, which
takes place in combination with the conservation (non-
linearly valid) of the total energy ϵ. The variation of ϵφ;k
during an OI can be interpreted (similarly to what was
earlier shown in tokamak turbulence [53]) in terms of a
momentum transfer [54], of which we take here ϵφ;k as a
proxy in numerical simulations (cf. also Appendix B). The
physical mechanism behind (6) can be understood in terms
of phase synchronization, by considering the imaginary
part of the Fourier representation associated with the
Kuramoto-type model, and by introducing the quantity

ϵð2Þm;k ≡ 1
2
ðjExkj2 þ jEykj2 − c2jBzkj2Þ:

ϵð2Þm;k
∂Θk

∂t
¼ −

Z
d2p

px

2mγ

jδfkj2
∂F0

∂px

�
∂φk

∂t
þ k · p

mγ

�
: ð7Þ

For OIs, ∂Θk=∂t is close to the mode frequency. For OI-A
modes ∂Θk=∂t ≃ ωA ≃ 0, but for OI-B modes ∂Θk=∂t≃
ωB ≠ 0. One can also expect that nonlinearly ∂φk=∂tþ k ·
p=ðmγÞ ≃ 0 because of small-scale filamentation. As we are
going to show via numerical results, this also happens in the
linear and early nonlinear stage of secondary OI-B modes
because of a synchronization process induced by the OI-B-
driven spatial filamentation. This phase locking, together
with the divergence of the phasestrophy density, makes the
left-hand side term of (7) finite for OI-B modes. In the
linear stage of OI-B modes, the increase of ϵφ;k, related to
the acceleration of particles corresponding to the dynamical
enhancement of a phase-space filament, induces a decrease
of the e.m. energy density because of the constraint

ϵð2Þm;k þ ϵφ;k ¼ cste.
Numerical experiments.—The process described in pre-

vious section has been identified via simulations performed
with equivalent parameters with two different numerical
schemes, used because of their complementarity in dea-
ling both with filamentation and synchronization (see
Ref. [27]): the semi-Lagrangian code VLEM [6] and the
PIC code SMILEI [7]. The “numerical experiments”
discussed below differ because of the size Lx × Ly of
the coordinate domain (be V ≡ LxLy its volume), which
allowed us to excite a different set of initial modes. The
maximum growth rates found using the procedure
described in [5] are for ðkxc=ωpe; kyc=ωpeÞ ¼ ð3.0; 5.0Þ
for the OI-A mode and for (5.0,2.0) for the OI-B mode.
Simulations have been initialized with an initial
Maxwellian equilibrium, for a beam configuration with
jβ1;2j ≃ 0.514 and T1 ¼ T2 ¼ 6 keV. In all runs, the total
energy is well preserved and displays a variation of ∼0.1%
during the whole simulation. In the Supplemental Material
[27] the numerical parameters are summarized and VLEM
and SMILEI simulation results are compared. Figure 1
shows the results of two simulations performed with the
VLEM code, noted A and B, initialized so to excite the
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OI-A mode only (left frames, case A) and to allow for a
transition from the low-frequency OI-B to the high-
frequency OI-B mode (right frames, case B), respectively.
The excitation and linear growth of the OI-A mode takes
place in the first stage followed by the expected nonlinear
saturation: in the top left panel is shown the kinetic energy
variation; the corresponding evolution of the magnetic
energy ϵm ≃ ð1=2ε0Þ

R ðd2x=VÞB2
z is shown in the bottom

left panel. In the right column, in Fig. 1, the same
diagnostics are shown for the propagative mode OI-B of
the simulation case B. In the latter, the initial perturbation
has been chosen so to excite small-frequency OI-B modes
[5] in a region of the parameter space where nonlinear
coupling can spontaneously lead to the excitation of the
high-frequency OI-B [9]. Up to the time tωp ≤ 150, the
dynamics of the OI instability is very similar to the previous
case, except that the magnetic energy reaches a saturation
level with twice the amplitude of case A. However, a
secondary instability appears in the second phase of the
evolution, when the energy transfer is reversed: the mag-
netic energy decreases and is converted into kinetic energy.
In both simulations the electric energy remains negligible.
To analyze in detail the underlying physical mechanism

we show in Fig. 2 the time evolution of the global
phasestrophy flux ϵφ ¼ −

R ðd2k=VÞϵφ;k [cf. Eq. (6)].
Thanks to the absence of noise associated with the semi-
Lagrangian scheme of the VLEM solver, ϵφ allows us to
measure the rate of enhanced filamentation of f induced by
the synchronization mechanism which appears in a dom-
inant way in the saturation phase of the OI instability. An
amplification of the total phasestrophy flux in the saturation

phase of the primary instability is observed in both
simulation cases A and B; however, in the case B, the
second peak of ϵφ at 150 ≤ tωp ≤ 200 is a signature of
the momentum transfer associated to a resurgence of the
filamentation process during the conversion of the mag-
netic energy into kinetic energy (cf. Fig. 1, right frames).
The enhanced filamentation appears in the phase-space as
the generation of thin filaments at the center of a vortex
structure. These are shown in the left frame of Fig. 3, for the
nonlinear stage of a simulation case-B, this time performed
with SMILEI (see also the corresponding animation in
Ref. [27]). For comparison, the left frame of Fig. 3 shows
“standard” kinematic phase-space filaments, generated by
convection in an example of a free streaming distribution
function, as discussed in Sec. 5.4 of Ref. [11].
A third simulation (case C—see Ref. [27]) highlights the

connection between the enhanced filamentation and the
violation of Casimir’s conservation, namely, the entropy
S ¼ −kB

R ðd2x=VÞ R d2pf ln f ¼ V
R
d2k

R
d2pSkjfkj. To

this purpose, a large spectrum ð0 ≤ kx; ky ≤ 20Þ of both
OI-A and OI-B modes has been linearly excited so as to
induce a stronger heating mechanism. The evolution of this

FIG. 1. On the left frames, on top, the kinetic energy ϵK versus
time, on bottom, the magnetic energy ϵm versus time, for the
nonpropagative OI-A mode (VLEM, case A). On the right
frames, the corresponding ϵK (on top) and ϵm (on bottom) for
the propagative OI-B mode (VLEM, case B). The contributions
of the electric energy component ϵe are negligible.

FIG. 2. Time history of the total phasestrophy flux of the OI-A
mode (top frame, VLEM case A) and of the propagative OI-B
mode (bottom frame, VLEM case B). The occurrence of a second
peak in the bottom frame is associated with the energy conversion
reversal.
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system displays a sort of (almost) “closed cycle” in the
ðS; ϵKÞ diagram, shown in the top frame of Fig. 4: the final
and initial configuration states (respectively, shown in the
ðpx; pyÞ plane in the bottom frames of Fig. 4) differ but, as

the kinetic energy ϵK evolves, S undergoes an almost
globally reversible, macroscopic variation. This is allowed
by the violation of the Casimir conservation induced by the
enhanced filamentation process, and is composed of
three thermodynamic transformations T 1-T 3 (see also
Appendix B). Although the detailed features of this “cycle”
will be discussed elsewhere, its general features can be
understood in terms of the enhanced filamentation scenario:
T 1 is quasiadiabatic, coherently with the Hamiltonian
character of the Vlasov-Maxwell system; it corresponds
to the linear growth of OIs, where the kinetic energy is
converted into magnetic energy. T 2 is related to the
enhanced filamentation process and is characterized by
the increase of both kinetic energy and entropy. T 3,
“isothermal,” with ϵK ≃ const, takes place in the strongly
coupled Kuramoto system, which evolves from a high to a
low entropy state because of the global synchronization.
Conclusions.—We have shown how an enhanced

(phase-space) filamentation, here interpreted as due to a
Kuramoto-type synchronization of undamped harmonic
plasma oscillations (Van-Kampen modes [8]), can be
identified by quantifying the “phasestrophy” of the system
(cf. Refs. [53,54]). It leads to a kinetic heating occurring
at the expenses of the magnetic energy. A reversal
of the energy transfer from “kinetic → magnetic” to
“magnetic → kinetic” had been already observed, when
MR develops after an initial process of magnetic field
amplification, although a different geometry than the one
we considered is required to account for MR in the
Weibel-unstable configuration we started from [55–59].
The “magnetic → kinetic” energy conversion mecha4nism
discussed here and related to the “enhanced” amplification
of the kinematic filamentation process intrinsic to the
Vlasov equation, appears therefore to be more general than
MR itself. On the other hand, collisionless MR can
originate from filamentation because of phase mixing
(see, e.g., Refs. [60–65]) or of other “coarse-graining”
mechanisms [66,67], which can be also modeled in terms
of an anomalous resistivity due to the stochasticity of the
turbulent magnetic fluctuations (see, e.g., Refs. [68–70]).
This suggests the possible fundamental character of the
kinetic heating process we have identified and calls for
future dedicated investigations, aimed at shedding light
into its role in both MR and in the turbulent energy
cascade. Also the characterization, in terms of information
theory (see, e.g., Refs. [54,65]), of the reversible or
irreversible character of the entropy evolution in the
transformations of simulation case C merits further studies
(cf. Appendix B).
The results we have discussed here can be relevant to

laser-plasma experiments (see Refs. [1,2,4]), to the electron
heating mechanisms in relativistic shock waves (see
Refs. [71,72]), as well as to in situ spacecraft measures
of the solar-wind and magnetosphere turbulent interaction
(see Refs. [73,74]).

FIG. 3. Left: formation of phase-space filaments as an initial
Gaussian distribution evolves according to ∂tf þ v∂f=∂x ¼ 0 in
the normalized phase-space ðx=λd; v=vthÞ, where λD et vth are the
electron Debye length and thermal velocity, respectively (exam-
ple and figure taken from §5.4 of Ref. [11]). Right: formation of
filaments in the enhanced filamentation process, in the simulation
case B performed with the SMILEI code. The time tωp ≃ 178,
corresponds to the second peak observed in the time evolution of
the phasestrophy (cf. Fig. 2).

FIG. 4. Top frame: Almost reversible (cyclic) entropy variation
in the entropy-kinetic energy plane ðS; ϵKÞ in the simulation case
C performed with VLEM: an adiabatic transformation (T 1), a
transformation due to the enhanced filamentation (T 2) and a
transformation with ϵK ≃ const (T 3) can be recognized. Bottom
frame: Phase-space patterns of the initial (left) and final state
(right) in the ðpx; pyÞ plane.
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Appendix A: Oblique modes in the counter-streaming
beam configuration.—We recall here some key features
of the OI-A and OI-B modes identified in Refs. [5,9]
and which are referenced in the main text. Linearization
of the Vlasov-Maxwell system for an initial symmetric
beam configuration and for a perturbation with k ¼
ðkx; ky; 0Þ (cf. physical model section) yields the dis-
persion relation

ðω2εxx − k2yÞðω2εyy − k2Þ − ðω2εxy þ kxkyÞ ¼ 0; ðA1Þ

written in terms of the dielectric tensor elements

εαβ ¼ δαβ þ
ε0ω

2
p

ω2

Z
pα

γ

∂f0
∂pβ

d3pþ ε0ω
2
p

ω2
I; ðA2Þ

where ω2
p ¼ n0e2=mε0 is the squared plasma frequency

and I¼R ðpαpβ=γÞf½k ·ð∂f0=∂pÞ�=ðmγω−k ·pÞgd3p. The
initial counterstreaming electron beam distribution f0 is
chosen to be a double-Maxwellian, which describes two
symmetric beams of equal, isotropic temperatures. The
isotropic temperature condition rules out the coupling
with pure Weibel modes, whereas the condition of sym-
metry of the beams, up to their second order fluid mo-
ments (i.e., density, velocity, and pressure) rules out the
linear coupling with electrostatic modes [26]. As an ex-
ample, Fig. 5 shows the normalized value Γðkx; kyÞ=ωpe

of the imaginary part of some of the roots of Eq. (A1),
evaluated for p2 ≃ 0.90mc ¼ −p1 and T1 ¼ T2 ¼ 6 keV:
the growth rates of the TSI (ky ¼ 0) and of the CFI
(kx ¼ 0), typically larger in absolute value than those of
the OIs, are not represented in the contour plot, whereas
the two branches corresponding to the OI-A and OI-B
modes are explicitly indicated, therein. The OI-A mode
(label A) corresponds to the upper lobe. The OI-B mode
(label B), corresponding to the lower lobe, displays a
significantly lower growth rate (and because of this it is
typically neglected in the counting of the “roots” of the
OI—see, e.g., Refs. [23–25]) but has a higher frequency.
Determining the roots of the kinetic dispersion relation

related to the OI-B mode is not a trivial task, from a
numerical point of view (e.g., the fact that both OI-A and
OI-B modes overlap in a region in the wavevector space,
makes it difficult to distinguish them). Details of the
procedure with which the OI-B branch has been
identified, by using the polynomial dispersion relation
obtained using an extended fluid description including
the full pressure dynamics, so as to “guide” the research
of the kinetic roots, can be found in Ref. [5].
In the overlapping region, both OI-A and OI-B modes

can be resonantly excited for the same values of kx and ky,
if the appropriate resonant conditions on the respective
phase velocities are met. In general, their propagative
character gives them the possibility to resonate and/or
nonlinearly couple with higher frequency perturbations.
So, in spite of the smaller growth rate of both the non-
resonant CFI mode [which has ReðωÞ ¼ 0] and of the
lower-frequency OI-A modes [which have ReðωÞ≪ωpe],
OI-B modes can play an important role for the emergence
of a direct cascade process, which is in turn a preliminary
step for the appearance of a developed turbulence.

Appendix B: Further details about the Kuramoto-type
synchronization and entropy fluctuations.—The Kuramoto-
type description of the Hamiltonian Vlasov system, intro-
duced in the phase synchronization section, allows us
to introduce an entropy density Sk ¼ kB ln ð1=jfkðp; tÞjÞ
for each Van Kampen mode k. Sk is equivalent to a
Boltzmann entropy, with the quantity W¼1=jfkðp;tÞj
representing the number of configurations (i.e., of
Boltzmann’s “complexions”) of a population of osci-
llators of wave vector included between k and kþ dk, for
a given momentum p. Entropy is of course conserved in
the case of the “kinematic filamentation” associated with
the free streaming distribution of a bunch particles (i.e.,
of an f evolving in absence of forces and collisions): an
exact solution of the free advection equation in the

FIG. 5. Contour plot of the growth rate of the oblique “filame-
ntation” instability in the normalized ðkxc=ωpe; kyc=ωpeÞ plane
in log-log scale. The two classes of solution OI-A (“low-
frequency,” or nonpropagative) and OI-B (“high-frequency,” or
propagative), obtained from the full kinetic dispersion relation
(A1)–(A2), are noted A and B, respectively.
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Fourier space, fkðv; tÞ ¼ fkðv; 0Þeikvt, yields Skðv; tÞ ¼
kB ln ½1=jfkðv; 0Þj� ¼ Skðv; 0Þ. In presence of large ampli-
tude, small-scale phase-space fluctuations of f, however,
the conservation of Casimir invariants of the Vlasov-
Maxwell system is not granted anymore: the conservation
of Casimir integrals is indeed formally “measured” in
terms of weak convergence, which demands a certain
regularity of the solution of the transport equation
[18–20]. In the presence of forces in the transport
equation, plasma instabilities can make small-scale, large-
amplitude fluctuations of f appear (what we called
“dynamic filamentation”), which therefore allows
macroscopic variations of the entropy, in spite of the
Hamiltonian character of the Vlasov-Maxwell system.
This is the case of the enhanced filamentation, which we
have here identified in a Kuramoto-type description, by
linking the formation of filaments in the phase space, i.e.,
of particle acceleration, to the variation of the L2 norm or
“phasestrophy flux,”which is known to provide a good
proxy for the momentum transfer associated to the
fluctuations of the distribution function [53,54].
Combination of filamentation and of coarse graining
related to phase mixing allows for an increase of the
Shannon entropy S. In the limit of a finite number of
Kuramoto-type oscillators φi with frequencies ωi, as they
are expressed in the action-angle formalism [cf. phase
synchronization section, below Eq. (3)], a Kolmogorow-
Sinai entropy production rate σ ≡ dS=dt ¼
kBKr

P
i sin ðφ̄ − φiÞ can be shown to fulfill d2S=dt2 ¼

ð1=kBÞ
P

N
i ð∂σ=∂φiÞ2 ≥ 0 by formal identification φi −

ωit → ϕi in Eq. (38) of Ref. [75]. In these terms can be
interpreted the T 2 transformation of Fig. 4. On the other
hand, as the Kuramoto-type phase synchronization goes
on, a decrease of the entropy density Sk, is expected,
once the number of independent Van Kampen oscillators
is diminished in a globally synchronized state: this agrees
with the T 3 transformation of Fig. 4. Conversely, one can
expect good entropy conservation only if the processes of
phase synchronization and filamentation lead to mutually
canceling entropy fluctuations (transformation T 1 of
Fig. 4, associated to the linear growth of the initial OIs).
Quantifying then the amount of entropy which may be
produced or reduced (i.e., of information which may be
lost or “organized”) in a reversible rather than in an
irreversible way during each transformation T 1 − T 3 is
a task which deserves a dedicated study on its own, of
both numerical and theoretical character, and it will be
discussed elsewhere.
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