PHYSICAL REVIEW LETTERS 131, 034002 (2023)

Direct Path from Turbulence to Time-Periodic Solutions
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Viscous flows through pipes and channels are steady and ordered until, with increasing velocity, the
laminar motion catastrophically breaks down and gives way to turbulence. How this apparently
discontinuous change from low- to high-dimensional motion can be rationalized within the framework
of the Navier-Stokes equations is not well understood. Exploiting geometrical properties of transitional
channel flow we trace turbulence to far lower Reynolds numbers (Re) than previously possible and identify
the complete path that reversibly links fully turbulent motion to an invariant solution. This precursor of
turbulence destabilizes rapidly with Re, and the accompanying explosive increase in attractor dimension
effectively marks the transition between deterministic and de facto stochastic dynamics.
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The origin of turbulence in pipe and channel flows has
been debated for over a century. In recent years much effort
has been dedicated to link the formation of turbulence to
simple invariant solutions of the governing Navier-Stokes
equations (periodic orbits, equilibria, and traveling waves),
which are commonly referred to as exact coherent struc-
tures (ECS) [1,2]. ECSs are suggested as building blocks of
the turbulent dynamics [3-7]. However, efforts to directly
link specific ECSs to the turbulent state, let alone to identify
a reversible path connecting the two, have remained so far
unsuccessful. While specific ECSs have been identified as
starting points of bifurcation sequences into chaos [8—12],
the traceable path in parameter space towards turbulence in
all these cases ends at a boundary crisis [13]. At this point
the attractor ceases to exist, giving way to short-lived
transient chaos. Although a sufficiently fast ramp up in Re
will prevent relaminarization and lead to turbulence,
strictly, this only shows that the chosen route leads to
the basin of attraction of turbulence [14]. It does not
necessarily prove, however, that the turbulent state origi-
nates from the specific ECSs, e.g., via a sequence of
bifurcations. An unambiguous way to determine its roots
would require starting directly from the turbulent state and
tracing it quasistatically down to its origin, a path prohib-
ited by the aforementioned relaminarization barrier.

This situation is markedly different from simpler tran-
sition scenarios encountered, e.g., in supercritical Taylor-
Couette flow and Rayleigh-Bénard convection. In such
cases a linear instability of the base flow gives rise to a
primary vortex state, which is the starting point of the
bifurcation sequence leading to chaotic and eventually
high-dimensional, turbulent motion. In particular, signa-
tures of the primary vortex state tend to persist and can be
detected in turbulent flow fields at values of Re several
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orders of magnitude larger than the instability threshold
[15]. Hence, the role of the primary state and the connection
with the subsequent dynamics is without question.

The purpose of the present study is to unambiguously
identify the equivalent of the primary vortex state in
aforementioned linearly stable flows, i.e., to determine
the precursor turbulence originates from for channel flow.
While given the transient nature of turbulence this may
appear unfeasible, we show that by bypassing the regime of
fully localized turbulent structures, turbulence can be traced
beyond the transient regime all the way to its origin. The
reverse path towards fully turbulent flow extends across a
considerable Re range. However, surprisingly, stochasticity
arises directly at the outset of this route, when the
dimension increases explosively across a minute variation
in parameter.

Turbulence is space filling at sufficiently large Re (Re is
based here on the half-gap 4, the kinematic viscosity and
the laminar centerline velocity). At lower velocities turbu-
lence becomes spatiotemporally intermittent (STI) and
tends to organize in stripes interspersed with laminar
regions [16-19]. Below Re = 650 [20] stripes are short
lived. Under standard circumstances this transient nature
prevents continuation of turbulence towards lower Re (see
Fig. 1 top row) and prohibits further insights into its
dynamical origin.

In an attempt to circumvent this problem, we carry out
direct numerical simulations in a domain that, on the one
hand, is sufficiently large to capture generic turbulence at
high Re and, on the other hand, is of the minimal size to
capture turbulent stripes of a prescribed angle. Such
minimal flow units for stripes [21] make use of the freedom
to choose the orientation of the computational domain in
the periodic directions. In our case we selected a tilt angle

© 2023 American Physical Society
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FIG. 1. Sketch of the Re descent in a tilted domain vs large

nontilted domains. Shown are wall-normal velocity (v) contours
(range limited from v = —0.1 in blue to v = 0.1 in red) in the
midplane for various values of Re. Flow is from left to right.
Dashed rectangles indicate the size and orientation of the tilted
domain. (Bottom row images) 10 x40 sized tilted domain
investigated in this work. (Top row images) 100 x 100 crops
from nontilted domains (display scale is half that of bottom row
images).

of 45° with respect to the streamwise direction. Owing to
the periodic boundary conditions stripes align at this
prescribed angle (see Fig. 1 bottom row for examples).
This choice of a 45° angle is motivated by channel
experiments where the same orientation is observed for
stripes close to the onset of turbulence [17]. The selected
domain size, as in [22], is 10 x 40 (L, x L.) in units of A.
The incompressible Navier-Stokes equations are advanced
in time using a standard spectral method in a three-
dimensional domain with periodic boundary conditions
in the plane and no-slip at the walls, with constant mass flux
[23-25].

The simulations started from a fully turbulent flow field
at Re = 4200 (corresponding to a friction Reynolds num-
ber of Re, = 180 [26]). Re was subsequently reduced in
several steps down to Refll ~ 1500, where turbulence
becomes patterned [27] (see Table I for a list of transitions
encountered for decreasing Re). From here the descent was
continued in small steps, allowing the flow to settle for 500
advective time units (ratio of & by the laminar centerline
velocity) between consecutive steps. Below Re = 900 the
step size was set to ARe = 2. Typical adjustments of the
turbulent flow occur within less than 100 advective time
units. Once Re falls below Repll ~ 650, and in agreement
with the aforementioned experimental observations [20]
stripes are found to decay. However, in the present case
lifetimes remain much larger and typically exceed several
thousand advective time units. In agreement with these
recent experiments we hence propose that Regil ~ 650 is
close to the point above which turbulence in extended

TABLE 1. List of Reynolds numbers, at which the dynamics
changes qualitatively. The third column specifies the dynamics
observed below the given Re in simulations in the 10 x 40 sized
tilted domain. Subscripts refer to the observations below the
given Re whereas superscripts refer to the observations above.

Name Value Observations below Re
Reldl ~1500 Spatio-temporal intermittency
ReSTL ~650 Transient chaos

Refns ~420 Sustained chaos

Reghaos 412.8 Quasiperiodicity

Relols 403.2 Periodic orbits"

*See SM [27] for a table continued beyond this point.

domains (large L,) first becomes sustained. In our tilted
domain simulations lifetimes below this threshold remain
sufficiently long for turbulence to reach what can be
considered a statistically quasisteady state.

As shown in the Supplemental Material, movie [27], the
thereby stabilized stripe is followed far below ReSll, a
regime previously inaccessible in experiments and simu-
lations. With decreasing Re the perturbation kinetic energy
of the stripe reduces [see Fig. 2(a)], nevertheless fluctua-
tions remain large and the flow is strongly chaotic even for
Re as low as 450. For lower Re, as attested by the phase
portrait of the dynamics in Fig. 2(b), fluctuations reduce
fast in amplitude and the state space region explored by the
chaotic dynamics shrinks substantially. Eventually, the
dynamics ceases to be chaotic (Ref’) and instead
becomes quasiperiodic: the trajectory evolves on a 2-torus
in state space [Fig. 2(c)], and below Rejj® becomes
periodic [see Fig. 2(d) and the Supplemental Material,
movie [27]]. The previously turbulent stripe hence sim-
plifies to an exact coherent structure (Fig. 1). Despite its
dynamical simplicity, the key spatial features, such as
streamwise localization, characteristic spacing of streaks
and vortices, associated large-scale flow parallel to the
interface [28], have been preserved all along this reduction
in Re. As we further discuss in the Supplemental Material
[27], the periodic orbit (PO) can be continued [25,29] to
even lower Re. It is shown to originate from a lower branch
traveling wave, an edge state previously identified in
[17,30]. To probe the robustness of this transition scenario,
we repeated the descent in a much larger (10 x 120)
domain and observed the same bifurcation sequence. A
notable aspect of the above Re reduction is the sudden
decrease of the attractor size at the final stages of the
approach to the PO: the energy fluctuations displayed by
the turbulent stripe at Re = 450 [Fig. 2(b)] are more than 2
orders of magnitude larger than those of the PO at Re =
402 [Fig. 2(d)].

To obtain a better understanding of the emergence of
turbulence, we take the PO as the starting point and
investigate how the dynamics unfolds in the reverse
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FIG. 2. Stripe turbulence during the Re descent. (a) Time-
averaged perturbation kinetic energy E vs Re. Annotations refer
to the respective dynamics encountered as Re is decreased.
(b) (E,E|) phase portraits of the instantaneous dynamics at
various Re demonstrating some of the dynamics annotated in (a),
with enlarged panels for (c) the torus at Re = 407 and (d) the
periodic orbit at Re = 402. E,| is the kinetic energy associated
with the wall-normal component (v) of perturbation velocity u,
E, = fv v?/2dV, and E the perturbation kinetic energy,
E= [,u-u/2dV, where V is the computational domain. E; =
E — E, is the kinetic energy associated with the in-plane
components of perturbation velocity.

direction, i.e., with increasing Re. To this end we analyze
the time series of the perturbation kinetic energy E. The
method assumes the knowledge of consecutive values
Ey, E,,....E,_;, sampled every At. We first monitor the
Hurst exponent H(Re) associated with this time series of
length n. H quantifies the correlation of a signal, and is
defined as the exponent in the scaling relation

E(R/S) ~n', n— co, (1)
where R is the range of the first n cumulative deviations
from the mean, S the sum of the first » standard deviations,
and E stands for the expected value [31]. The quantity D =
2 — H is interpreted as a fractal dimension, namely, that of
the related signal [32]. As shown in Fig. 3, the stochastic
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FIG. 3. R/S vstime in log-log scale, the slope of which defines
the Hurst exponent (H). For Re =438, a slope of 1/2 is
approached after 100 advective time units. H = 1/2 is expected
for stochastic time series.

limit of H = 1/2 is already observed for a time horizon of
100 advective units at Re = 438, i.e., in the transient
regime far below the onset of sustained turbulence [20].
This testifies that, for time horizons larger than 100
advective time units, the time series is indistinguishable
from a purely stochastic signal. O(100) advective time
units match the typical time for localized turbulent struc-
tures to lose their memory after being created from a
disturbance [33] (this timescale is also referred to as 7, in
lifetimes studies [34]).

As a further estimation of the trend towards stochasticity,
we compute another fractal dimension, the correlation
dimension D, of the full turbulent set, using the
Grassberger-Procaccia algorithm [35,36]. For any integer
m > 0 and any real ¢ > 0, C,,(¢) is defined by

1
Cole) = lim >0~ sy =sill,). (2
(k)

where §;, = (Ek_<m_1>f, ..oy Ex_;, Ey) is adelay vector in the
m-dimensional embedded space, ||-|,, @ norm in that
space, and © the Heaviside function. 7 > 0 is a finite time
delay expressed in Eq. (2) in units of the sampling time Az
(in practice v =60 advective time units, close to the
correlation time). C,, counts temporal near recurrences
in the m-dimensional embedded space. The dimension D,
is fitted as the exponent, for large m, in the scaling relation

C,n(g) ~ e, e— 0. (3)
The amount of uncorrelated data necessary for the estima-
tion of D, rises exponentially with its value [37], which in
practice limits computations to values below 10. D, is
computed here starting from the PO at Re = 395 up to
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FIG. 4. Dimension (D,) increase with Re at the onset of chaos
in channel flow and Taylor-Couette flow. Blue squares are
computed from time series of plane channel flow. Orange circles
are from the turbulent Taylor-Couette flow experiments in
Ref. [38]. Re,, denotes the onset of chaos.

Reli"s = 420 deeper into the chaotic regime (blue squares
in Fig. 4).

Figure 4 shows D, as a function of Re/Re,,, where Re,,
stands for the onset of chaotic dynamics. For channel flow,
Re,, is identical to ReS?2% = 412.8. Temporal chaos devel-
ops at a rapid pace: exceeding Re,, by just over 1% causes
the dimension to quadruple. This rapid increase is con-
sistent with the high dimension estimated for turbulent
channel flows for larger Re [39]. For comparison we show
the classical case of the supercritical transition in Taylor-
Couette flow [38] (orange circles in Fig. 4) where even a
50% increase above Re,, results in only a doubling of the
dimension.

The explosive dimension increase encountered in chan-
nel flow sharply limits the forecasting horizon directly at
the onset of chaos, and decorrelates the fast turbulent
internal dynamics of stripes from slow processes such as
their proliferation and decay [40-42]. Moreover, the Hurst
exponent of 1/2 marks such slow processes as stochastic
random events, a key requirement for the statistical nature
of the percolation phase transition [43—46] encountered at
higher Re in many shear flows.

Hydrodynamic stability concepts developed more than a
century ago allowed for the identification of the first
bifurcation to a nontrivial vortex state [47], and with it
the starting point for the supercritical route to turbulence in
linearly unstable flows. Finding corresponding flow states
for the much more volatile transition characteristic of most
flows of practical relevance, such as pipe and channel
flows, has proven far more difficult. Exploiting that the
statistics of turbulence are generic and independent
of the numerical domain at sufficiently high Re (see
Supplemental Material [27]), we selected a domain that
stabilizes stripes in the transitional regime of channel flow.
The stripe solutions identified in this configuration are

spatially periodic in the stripe direction and hence differ
from the doubly localized stripes observed in experiments
close to the critical point. It is likely that doubly localized
stripe solutions [48,49] bifurcate from the ECS presented in
this study. However, the continuous route from turbulence
to ECSs identified here can only be established by
bypassing the doubly localized stripe regime, in which
flows unavoidably relaminarize (as illustrated in Fig. 1).
Although the tilted domain may appear specific, the two
states shown to be dynamically connected, i.e., the periodic
orbit and fully turbulent flow, are generic to the classic
channel flow problem and entirely independent of this
particular choice.

A striking feature of the route towards turbulence is the
abruptness of the dimension change directly at the onset of
chaos, long before turbulence is observable in experiments.
This steep dimension increase marks the border up to which
deterministic concepts are suitable whereas above statistical
mechanics descriptions become more appropriate, setting
the stage for the nonequilibrium phase transition [40,43]
encountered at larger Re.
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