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The emergence of photonic quantum correlations is typically associated with emitters strongly coupled
to a photonic mode. Here, we show that semiconductor Rydberg excitons, which are only weakly coupled
to a free-space light mode can produce strongly antibunched fields, i.e., quantum light. This effect is fueled
by a micron-scale excitation blockade between Rydberg excitons inducing pair-wise polariton scattering
events. Photons incident on an exciton resonance are scattered into blue- and red-detuned pairs, which
enjoy relative protection from absorption and thus dominate the transmitted light. We demonstrate that this
effect persists in the presence of additional phonon coupling, strong nonradiative decay, and across a wide
range of experimental parameters. Our results pave the way for the observation of quantum statistics from
weakly coupled semiconductor excitons.
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Semiconductor excitons, bound electron-hole pairs,
have been at the forefront of semiconductor research ever
since their discovery in the 1950s. One of their central
features is their optical activity [1] and hence their innate
ability to interface with light. These capabilities have
been demonstrated in a number of observations including
polariton formation [2], parametric scattering [3,4], four-
wave mixing [5,6], optical bistability [7,8] and polariton
lasing [9,10]. Despite intense recent efforts [11,12],
pushing these effects down to the level of individual
photons has proven difficult. The observation of highly
excited Rydberg states of excitons [13] promises access to
strong interactions [14], an ingredient that may prove
valuable for producing quantum light using the effect of
Rydberg blockade, as pioneered in atomic gases with great
success [15–17].
In Rydberg blockade, the presence of an excitation

inside the medium inhibits the excitation of another
Rydberg state within the so-called blockade radius Rb,
which in semiconductors can be several microns large [18].
The highest principal quantum number of n ∼ 30 and
largest associated blockade radii were observed in the so-
called yellow series of Cu2O [13,19,20]. These exciton
states feature only relatively weak dipole transition ele-
ments, as the valence and conduction band have the same
parity [21]. In addition, the exciton series is superimposed
by a phonon-assisted absorptive background, which can
account for more than half of the absorption on a Rydberg
exciton resonance [Fig. 1(a)]. While both factors, in
general, counteract the buildup of quantum correlations,
we here describe conditions under which quantum light
can still be observed from lossy semiconductor Rydberg
excitons.

In particular, we describe the transmission of light
through a crystal with Rydberg excitons, e.g., Cu2O, and
show that the transmitted light can develop quantum
properties. Importantly, these correlations survive even in
the presence of strong damping, a regime typically incom-
patible with elusive quantum effects. As such, the resulting
dynamics may open up a new regime in the exploration of
excitons, and may provide insights into the parameters of
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FIG. 1. The spectrum of Rydberg excitons, as in cuprous oxide,
is often superimposed on a broad phonon-assisted absorptive
background (a). Rydberg excitons (P̂), as created by near-
resonant light, blockade each other over a distance of Rb (b).
This correlated dynamics converts a weak coherent beam at the
input (c) into a highly nonclassical photonic state (d), as
evidenced by the second-order correlation function gð2Þð0Þ ≈ 0
(for L ≈ 2.4, β ¼ 10, Rb ¼ 0.1).
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these system, which are currently poorly understood. We
further establish a formal link between Rydberg exciton
transmission and discrete scatterers coupled to wave-
guides [22,23]. We expect that this connection will be
a fruitful link for the exploration of excitonic Rydberg
states, where quantum states of light have so far not been
observed.
We consider a cuprous oxide crystal of thickness L

which is illuminated by a light beam detuned by Δ ¼
ω − ωx from one of the discrete exciton resonances ωx
(Fig. 1). Focusing on a paraxial light beam and a single
transverse mode, the slowly varying electric-field envelope
of the electromagnetic field can be described by the bosonic
operator ÊðrÞ that yields the photon density operator Ê†Ê. It
propagates at the group velocity vg [24] and near resonantly
couples to excitons, described by the bosonic operator
P̂ðrÞ. However, it also couples to a broad absorptive
phonon-assisted resonance that underlies the Rydberg
exciton spectrum in Cu2O [25]. This background can be
integrated out [26] to effectively give a finite absorption
rate γbg. The light propagation is hence described by the
effective Hamiltonian

Ĥ0=ℏ ¼ −Δ
Z

drP̂†ðrÞP̂ðrÞ þ g
Z

drP̂†ðrÞÊðrÞ þ H:c:

þ
Z

drÊ†ðrÞ
�
−ivg∂z þ

ℏ
2m⊥

∇2⊥
�
ÊðrÞ

− iγbg

Z
drÊ†ðrÞÊðrÞ; ð1Þ

with the light-matter coupling strength g and the trans-
verse effective mass m⊥ ¼ nℏωx=ðcvgÞ with the dielectric
constant n and the speed of light c. The source of photon
correlations lies in the extraordinarily strong interactions
between highly excited Rydberg excitons [27], giving rise
to an excitation blockade wherever they exceed the
exciton linewidth γ. While the optically active excitons
in Cu2O have p-state character and are thus multiply
degenerate [28,29], we employ here a simplified model
with a single effective potential energy surface [30]
V̂ ¼ 1

2

R
dr

R
dr0Vðjr − r0jÞP̂†ðrÞP̂†ðr0ÞP̂ðr0ÞP̂ðrÞ with

VðRÞ ¼ C6=R6. The total Hamiltonian is thus
Ĥ ¼ Ĥ0 þ V̂.
The quantum dynamics in the semiconductor are

described by expanding the wave function into sectors
with different excitation numbers. When the crystal is
excited by a weak coherent light field, higher excitation
sectors are suppressed by a small amplitude α. Therefore,
we approximate the full state using sectors with 0, 1,
and 2 excitations. In the single-excitation sector, the
excitation can reside in either the photon or the exciton:
jΨðtÞið1Þ ¼ R

drEðr; tÞÊ†ðrÞj=0i þ R
drPðr; tÞP̂†ðrÞj=0i. In

the doubly excited sector, the possible combinations

are having two photons [EEðr; r0; tÞ], two excitons
[PPðr; r0; tÞ] or one of each [EPðr; r0; tÞ], where the first
coordinate describes the photon and the second the exciton
location.
To elucidate the system dynamics, we apply the

Schrödinger equation to each excitation sector jΨðtÞiðnÞ.
Loss from the n-excitation sector can, in principle, con-
tribute to the sectors with fewer excitations. However, due
to the relative suppression with α such contributions are
small and can be neglected, leaving separate dynamics in
each sector. The noninteracting paraxial wave equations are
solved by the complete set of Laguerre-Gauss and Hermite-
Gauss modes. For simplicity, we project into the lowest
such mode, the TEM00 mode, and discuss the general case
in Ref. [31].
The equations of motion for a single excitation are

∂tEðz; tÞ¼−vg∂zEðz; tÞ− γbgEðz; tÞ− igPðz;tÞ; ð2Þ

∂tPðz; tÞ ¼ −igEðz; tÞ − Γ
2
Pðz; tÞ; ð3Þ

where we have defined the complex linewidth Γ ¼ γ − 2iΔ
with γ being the combined excitonic decay (out of the
mode) and dephasing rate. We consider continuous wave
(cw) driving such that for times long compared to the
relaxation time 1=γ, the system will be in the steady state
(∂tE ¼ 0, ∂tP ¼ 0) and we obtain

PðzÞ¼−
2ig
Γ

EðzÞ; EðzÞ¼ αe−ð
2g2

vgΓ
þγbg

vg
Þz; ð4Þ

describing standard Beer-Lambert absorption. This solu-
tion reveals some important quantities, which we employ to
rescale our equations: the resonant excitonic field absorp-
tion length, labs ¼ ðvgγ=2g2Þ (z → z=labs), the associated
absorption time, tabs ¼ labs=vg (t → t=tabs), the ratio of
coherence and absorption lengths, β ¼ γ2=ð4g2Þ, and the
scaled detuning δ ¼ Δ=γ. We thus denote all distances in
units of labs, all times in units of tabs and all energies in units
of ℏ=tabs. To focus on the effects of interactions, we move
to an interaction picture by factoring the linear solutions
f0ðz; z0Þ out of each two-excitation wave function compo-
nent Fðz; z0Þ via Fðz; z0Þ ¼ fðz; z0Þf0ðz; z0Þ. As shown
explicitly in Ref. [31], two excitations in the crystal then
follow the coupled dynamics

∂ReeðR; rÞ ¼
2

1 − 2iδ
eeðR; rÞ − 1

1 − 2iδ
epþðR; rÞ;

∂RepþðR; rÞ ¼ −2∂rep−ðR; rÞ þ 4ð1 − 2iδÞβeeðR; rÞ
þ 2ð−ð1 − 2iδÞβ − iVeffðrÞÞepþðR; rÞ;

∂Rep−ðR; rÞ ¼ −2∂repþðR; rÞ − 2ð1 − 2iδÞβep−ðR; rÞ

þ 2

1 − 2iδ
ep−ðR; rÞ: ð5Þ
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Here, we have switched to center-of-mass and relative
coordinates, defined by R ¼ ½ðzþ z0Þ=2� and r ¼ z − z0
and use symmetrized, epþ, and antisymmetrized, ep−,
wave functions. Note that these equations are only strictly
valid in the cw limit, where the wave function component
describing two excitons, PP, can be eliminated exactly. The
general time-dependent equations are given in Ref. [31].
Special attention must be attributed to the boundary con-
ditions of Eq. (5), describing the state of the system when
one excitation is the medium, while the other has not entered
or has already exited. They are given by eeðR; rÞ ¼ 1,
epþðR; rÞ ¼ 2, and ep−ðR; rÞ ¼ 0 when z ¼ 0 or z0 ¼ 0.
Conveniently, the transformations yield a particularly sim-
ple form of the second-order photonic correlation function
in transmission gð2ÞðτÞ ¼ jeeðL;L − vgτÞj2.
Remarkably, we observe in Eq. (5) that the problematic

phonon-assisted absorption background γbg has been iden-
tically eliminated from the equations via the ansatz in
Eq. (4) [31], showing that the photon correlations in
transmission are immune to loss from such parallel absorp-
tion pathways. Thus, we can analyze the transmission of an
initially flat beam through the Cu2O crystal (as illustrated in
Fig. 1) and interpret the emergent correlations as signatures
of the semiconductor’s Rydberg excitations.
A key role is played by the effective potential Veff , which

breaks the noninteracting solution and induces correlations.
As derived in Ref. [31], its functional form is

VeffðrÞ ¼ −
1

2δþ i
þ 1

2δ − R6
b

r6 þ i
: ð6Þ

Figure 2(a) illustrates the effective potential for resonant
excitation and repulsive exciton-exciton interactions [32].
Its dominant feature is a short-ranged nonperturbative
plateau of width Rb that represents a nonlinear reduction
of absorption, corresponding to a gain in the rescaled
variables. In addition, there is a “refractive” effect at finite
distances, reflecting a change in the effective detuning
caused by a Rydberg excitation.
Strictly speaking, the photon propagation defines a

boundary value problem on the domain ðz; z0Þ ∈ ½0; L�.
However, since the absorption length in Cu2O is much
longer than the blockade radius, labs ≫ Rbl, the minimal
build-up of correlations when the photons enter and exit the
crystal can be neglected and Eq. (5) be solved as an initial
value problem, as shown in Ref. [31].
We begin discussing the case of long coherence length

(β ≈ 1), where an excitation has equal coupling rate to the
input mode and other channels. Figure 2(b) shows how
propagation through the crystal converts an initially flat
state into a nontrivial photonic correlation function: After
short propagation distances, the gð2Þ function develops a dip
at short time separations τ, which subsequently widens and
deepens, until it hits the limit of very antibunched light,

gð2Þð0Þ ≈ 0. Beyond that point, the second-order correlation
function grows and develops a distinct maximum at τ ¼ 0,
while new minima emerge at finite τ. In the limit of very
long crystals, we find bunched light gð2Þð0Þ → ∞.
The above behavior can be understood by unraveling

the scattering events in the crystal. Transforming Eq. (5)
into reciprocal space in the relative coordinate yields
i∂Rψ⃗ðRÞ ¼ ðH0 þ VÞψ⃗ðRÞ, with a noninteracting diago-
nal matrix H0 and an off-diagonal interaction matrix V.
This offers a convenient perturbation expansion in
V, i.e., in the number of scattering events. We obtain
ψ⃗ðLÞ ¼ TðLÞψ⃗ð0Þ with the transfer matrix TðLÞ ¼
exp ð−i½H0 þ V�LÞ ¼ Tð0ÞðLÞ þ Tð1ÞðLÞ þ…. The low-
est orders are Tð0ÞðLÞ ¼ expð−iH0LÞ and

Tð1ÞðLÞ¼−i
Z

L

0

expð−iH0RÞVexp½−iH0ðL−RÞ�dR: ð7Þ

This perturbation expansion can easily be implemented by
discretizing the integral, mapping it to the dynamics of
light interacting with discrete scatterers, such as atoms
coupled to a waveguide [33,34].
The first-order approximation to the scattering is excel-

lent and reproduces the exact numerical results very well.
The observed second-order photonic correlations functions
[Fig. 2(b)] thus find a simple interpretation: V projects the
first-order scattered waves into the state epþ, which then

FIG. 2. During their propagation through the crystal, the
excitations are subject to a Rydberg-mediated interaction poten-
tial (a), featuring nonlinear absorption or gain (imaginary part,
dashed line) as well nonlinear refraction (real part, solid line). The
response at short distances takes a flat-top profile, reflecting the
excitation blockade, shown here for Rb ¼ 0.1. Low-loss con-
ditions (b) (β ¼ 1) feature long-range photon correlations, and
photon bunching at t ¼ 0 for long crystals, while high-loss
(c) (β ¼ 10) evokes correlations on the scale of Rb and finite-
time bunching for long crystals. In either case, quantum light,
gð2Þð0Þ < 0, can be found at some crystal lengths. Dashed lines
mark the crystal boundaries.
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pick up a phase shift π upon emission, and add up
coherently during the propagation [22]. They then interfere
with the uncorrelated zeroth-order wave, which is an
eigenstate of H0, resulting in destructive interference and
the observed antibunched light feature in gð2Þ. With increas-
ing propagation distance, the amplitude of the first-order
wave components at τ ¼ 0 cancels the zeroth order weight
and gives the special point gð2Þð0Þ ≈ 0. We note that this
cancellation is not perfect as the scattered wave amplitudes
carry an imaginary component. Beyond the point of
minimal gð2Þð0Þ, the same scattered wave functions domi-
nate and ultimately lead to the bunching feature in gð2Þð0Þ.
If the loss rate is large (β ≫ 1), qualitatively different

photon correlations emerge in transmission, cf. Figs. 1
and 2(c). In this case, the photonic correlation function also
develops a dip after short propagation distances but its
features are much narrower, limited now by the blockade
radius Rb. This can be explained by a single excitation
blocking the creation of another exciton. A second photon
will thus move faster until it eventually slows down again
when it is a blockade radius away. Furthermore, the
depression in gð2Þ still continues to the critical point of
g2ð0Þ ≈ 0 but additionally forms wings at finite time delay
τ, shortly before gð2Þð0Þ begins growing again. The result-
ing photon correlations for reasonably long crystals still
feature a significant reduction from the classical limit of
gð2Þð0Þ ≥ 1, indicating the quantum nature of the trans-
mitted light. For even larger β, the minimal value of gð2Þð0Þ
grows and the mentioned wings followed by finite-time
bunching develop earlier. For very long crystals, the
bunching feature at finite τ dominates the correlations.
A convenient picture for the lossy regime is given

by the complex eigenstates of H0, the “polariton basis”
[Figs. 3(a)–3(b)]. While the dispersion relations are almost
independent of the loss rate β, the damping rate of two
polariton branches is proportional to β. For large β, these
branches thus do not appreciably contribute to the dynam-
ics and we can formulate an effective description in
terms of the remaining polariton branch, ϕ⃗ðRÞ, alone:
i∂Rϕ⃗ðRÞ ¼ ωðkÞϕ⃗ðRÞ þ Ṽ ϕ⃗ðRÞ, with the complex polar-
iton branch ωðkÞ and the projected interaction matrix Ṽ.
Much like in the above case of low absorption, a scattering
event induces a phase shift, leading to interference with the
unperturbed wave component and, ultimately, the reduction
of gð2Þð0Þ < 1. Figure 3(c) shows this evolution of a single
complex partial scattered polariton wave, ϕð1Þ, propagating
through the crystal after the scattering event. Conserving
overall momentum, the interaction spreads the initial
polariton wave from k ¼ 0 into a range of relative momenta
[Fig. 3(d)]. The scattered polariton pairs thus contain a red-
and a blueshifted polariton each, which are both detuned
from the exciton resonance and thus enjoy relative pro-
tection from absorption. These frequency components,
whose characteristic length scale is given by the inverse

blockade radius R−1
b , hence experience relative gain, and

eventually dominate the transmitted wave. The competition
between interference and momentum-dependent damping
results in the initial dip in gð2Þð0Þ shown in Fig. 2(c),
followed by the dominance of photon pairs with finite
separations τ ∼ Rb after long propagation lengths.
Photonic correlations are particularly interesting when

they cannot originate from a classical state of light, as
evidenced by the criterion g2ð0Þ < 1 [35,36]. It is, there-
fore, an important question under which conditions “quan-
tum light” can be produced by Rydberg excitons under the
influence of loss. Figure 4 shows a map of g2ð0Þ as a
function of the loss β and the crystal length L for resonant
excitation conditions. We observe that for given β there is
an optimal range of crystal lengths making the photonic
state most nonclassical. Lower values of β are, in general,
helpful for the emergence of quantum light. Remarkably,
nonclassical light can, however, even be found under very

FIG. 3. For large loss (β ¼ 10), the three polariton branches
have quasilinear dispersion relations (a). Two of the branches are
strongly damped, leaving a single active polariton (b). After a
scattering event, the polariton wave’s imaginary component
(dashed dotted) develops a pronounced dip at r ¼ 0, while the
real component (solid) plays a minor role, as illustrated for
propagation distances ΔR ¼ 0 (black), ΔR ¼ 1 (red), and ΔR ¼
2 (blue) at Rb ¼ 0.1 (c). In momentum space, the emergence of
finite-time wings can be understood from the dominance of off-
resonant wave components that are relatively protected from
absorption (d). Color coding as in (c).

FIG. 4. The second-order correlation function at zero time
delay, gð2Þð0Þ < 1, indicates quantum light for a wide range of
parameters at corresponding optimal crystal lengths L. The
blockade radii are Rb ¼ 0.1 and Rb ¼ 0.05 in (a) and (b),
respectively. All values gð2Þð0Þ > 2 are whitened out for better
visibility.
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large loss, β ≫ 1. Smaller blockade radii can enhance the
light’s quantum features, although the required crystal
lengths tend to be longer. This phenomenon can be traced
back to the wider spread of momentum states that are
populated by the scattering interaction, which are better
protected from absorption.
In conclusion, we have demonstrated that quantum light

can be expected from the propagation of weak coherent
light through a semiconductor crystal under a wide span of
parameters. The excitonic field absorption lengths of
cuprous oxide Rydberg states range from tens to hundreds
of microns, depending on the addressed principal quantum
number n [13]. The blockade radii have been measured to
be several microns, justifying the assumed ratios
Rb=labs ≲ 10%. Remarkably, the presence of a parallel
absorption pathway, as given by a phonon-assisted back-
ground, is insignificant for the photon correlations in
transmission, although it will increase the time required
to measure the predicted correlations [37]. Nonradiative
decay, on the other hand, has a strong bearing and tends to
suppress quantum states of light. To the best of our
knowledge, the value of β has not been determined
experimentally. However, even for dissipation ratios as
large as β ¼ 40, quantum light can be obtained. These
photonic correlations can be seen as unambiguous signa-
tures of the Rydberg states and be used to benchmark their
interactions. Furthermore, this Letter formalizes the link
between atom-coupled waveguides and Rydberg photonics
and shows that the easily controllable crystal length takes
the place of the difficult-to-control number of atoms at the
waveguide, the main cause of imperfect antibunching [22].
The underlying mechanism in the present Letter is the

modulation of absorption. Exciting outlooks therefore
include using loss-mitigating schemes, that correlate pho-
tons through dynamical changes in the dispersion. The
simplest such example is the dispersive limit (Δ > γ), as
discussed in Ref. [31]. There, the dynamics becomes fully
coherent and can be described by an effective Schrödinger
equation for the correlated motion of the photon pair
through the crystal with an effective mass and a photon
potential. Other promising avenues to explore are electro-
magnetically induced transparency [26] and cavity polar-
itons [11,12,38]. Under such conditions, it could be
possible to observe more exotic effects, such as photon
bound states [39–42], Efimov states [43], and many-body
states [44–46] including photon trains [47–49] and topo-
logical states [50,51].
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