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Trapped atomic ion crystals are a leading platform for quantum simulations of spin systems, with
programmable and long-range spin-spin interactions mediated by excitations of phonons in the crystal. We
describe a complementary approach for quantum simulations of bosonic systems using phonons in trapped-
ion crystals, here mediated by excitations of the trapped-ion spins. The scheme enables a high degree of
programability across a dense graph of bosonic couplings, utilizing long-lived collective phonon modes in
a trapped-ion chain. As such, it is well suited for tackling hard problems such as boson sampling and
simulations of long-range bosonic and spin-boson Hamiltonians.
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Bosons are identical particles whose quantum state is
invariant to their exchange. This property governs phe-
nomena such as Bose-Einstein condensation and photon
bunching, forms the basis of continuous-variables quantum
applications [1,2], and renders certain bosonic problems to
be computationally hard, such as the longtime evolution of
bosonic Hamiltonians [3,4] and the sampling of the
distribution of interfering bosons [5]. While the boson
sampling problem may be esoteric, it has attracted great
interest as a quantum benchmark for challenging classical
computing power [6].

Bosonic simulations have been demonstrated in various
physical platforms using photons and atoms [7-17]. All of
these platforms have been limited by either the program-
mable control and complexity of the bosonic inter-
ferometers or the extent of bosonic mode inputs to the
interferometers. Ultracold bosonic atoms in optical lattices
have been employed for simulation of various bosonic
Hamiltonians and enabled the observation of various emer-
gent phenomena [18-24]. While the number of bosonic
particles and lattice sites can be large in this platform, the
underlying hopping-type couplings between different sites
is short range, which limits the class of models that can be
efficiently simulated.

Phonons residing in local modes of trapped-ion crystals
have also been proposed as a platform for simulation of
bosonic Hamiltonians with short-range hopping terms and
for boson sampling [25-30], with several demonstrations of
interference, quantum walks, and blockade using a small
number of ions and phonons [31-34]. Control over local
phonon modes, however, requires considerable reduction of
the trapping potential, which in turn limits the strength of
hopping terms. These modes also exhibit a short lifetime
that is limited by ion heating [33,35-37]. Trapped-ion
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systems more naturally involve phonons representing
collective normal modes of the entire crystal, coupled to
the ions’ internal state via radiation fields [38—41]. In this
regime, the emergent spin-phonon couplings are nonlocal
and densely connected, allowing programmability and
control over a large class of spin-spin interactions spanning
dozens or hundreds of spins and challenging classical
computational simulation [42,43]. In this Letter, we pro-
pose an efficient scheme to generate a similarly large class
of dense programmable bosonic “beam splitter”” couplings
between long-lived collective phonon modes in a trapped-
ion crystal.

Trapped-ion quantum simulations of bosonic interactions
and evolution consist of three stages: preparation, evolution
under a target bosonic Hamiltonian, and detection. High-
fidelity preparation of various nonclassical phononic states
[44-49] and their faithful detection [50-53] have long been
demonstrated in trapped-ion systems. While couplers
between bosonic modes of a few trapped ions have been
realized [36,54-57], the programming of efficient couplings
between the many phonon modes in long ion chains remains
an outstanding challenge, owing to the decoherence of
phonons and fluctuations in the mode frequencies and drifts
in the ion positions [35,37,45,58,59].

Here we propose a simple method to generate dense
programmable beam splitter couplings between collective
phonon modes in a trapped-ion crystal. The scheme
operates in a dispersive regime of spin-boson interactions,
akin to the root of trapped-ion quantum spin simulators
[41,60]. But instead of exploiting geometric phases of
phonon modes to create spin Hamiltonians, here we harness
geometric phases of the spins in order to produce a large
class of programmable bosonic Hamiltonians. We discuss
the robustness of the method, demonstrate several simple
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configurations, and consider the effects of dominant noise
sources. We also demonstrate efficient preparation and
detection protocols, and outline the scheme applicability
for simulation of bosonic and spin-boson systems.

The collective phonon modes in a crystal of N trapped
ions are determined by the external trapping potential and
the Coulomb interaction between the ion charges. We
represent each of the N phonon modes along the x principal

axis using the bosonic creation and annihilation operators

ay, and a,, in the interaction picture, each rotating at its

unique oscillation frequency w,,. The external potential
also determines the contribution of the ith ion to the motion
of the mth mode, described by the orthonormal mode-
participation matrix b;,, [41].

The modes are coupled through the effective spin-1/2
systems hosted by internal electronic states of the ions. We
consider the spin-phonon interaction realized by driving the
ions on the first lower or “red” motional sideband tran-
sitions from the spin-flip carrier [54], using a radiation field
with multiple tones as shown in Fig. 1. We assume M < N
ions are illuminated with control over the Rabi frequencies
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FIG. 1. Quantum simulation of bosons. (a) Transverse collective
modes of motion in a chain of N ions along one axis comprise a set
of 1 < k < N decoupled bosonic modes hosting phonons. (b) Pro-
grammable coupling between the phonon modes is realized by
driving M < N spin-down ions with P < N tones near the red-
sideband transitions in the dispersive regime (see text). (c) Calcu-
lated red-sideband mode spectrum for a chain of 40 equidistant
ions. Exemplary P tones are detuned by A from the mode spectrum
to suppress spin-phonon excitations. Hopping amplitude K,
between the k and m motional modes with frequencies w; and @,,
is generated predominantly by pairs of tones p and ¢ with
frequencies v, and v, which satisfy the resonance condition
wy — w,, =V, —v,. (d) The emergent coupling between normal
phonon modes manifest as the programmable hopping amplitudes
K., using the ion spins as a quantum bus.

Q,(t) proportional to the drive strength at the position of the i
ion, and represent the drive by a superposition of P < N
tones as Q;(1) =), Q,,e”"" + H.c.. For simplicity, we
assume a constant (complex) amplitude matrix €;, [74] and
uniform red detunings v, > 0 over all illuminated ions. We
assume the field drives predominantly the red sidebands
(|, —v,| < ,,) and that motion is confined within the
Lamb-Dicke regime [3,, 7203, ((an + a,,)%)]"* < 1,
where 7,, = K\/f#/2Muw,,. Here, K denotes the effective
wave number of the driving field aligned with the x axis and
M the mass of a single ion. Under these conditions, the time-
dependent spin-phonon interaction is given by the multi-
mode off-resonance Jaynes-Cummings Hamiltonian [75],

ih
Hoy =5 > NinQipe 6 a, +He. (1)

im,p
where 8(i’) are the Pauli spin-flip operators of ion i, A, =

m — Up 18 the detuning of tone p from the red sideband of
mode m, and #;,, = 1,,b,-

The Hamiltonian in Eq. (1) describes the usual exchange
of excitations between spins and phonons, where absorp-
tion (emission) of a phonon into one of the normal modes is
correlated with flipping one of the spins upward (down-
ward). We consider the dispersive regime for which direct
spin-phonon exchange is considerably suppressed owing to
the large detuning of the drive, characterized by the
parameter sS,’l)p = NimQip/Apn < 1. We can derive the
time-evolution operator of spins and phonons under
Eq. (1) through the Magnus expansion, consisting of a
sequence of nested commutators of the Hamiltonian with
itself at different times [41]. While the expansion does not
truncate, we find that the dominant contribution to the
evolution from the lowest order in 85,?,, arises from
the second term in the Magnus expansion [61], and the
evolution operator at time 7" takes the form

i
U(T) = exp —%(HS+HP)T+€ : (2)
The evolution is thus well described by two effective
Hamiltonians, H,; and H,. The additional operator e
encompasses a small error to the simulation output due
to residual spin-phonon coupling, discussed further in

Supplemental Material (SM) [61].
The first effective Hamiltonian term is

==Y 7,660 + 6067, (3)
i.j

describing nonlocal hopping of spins with hopping matrix
J;; between spins i and j. For long evolution times 7', given
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sufficient spectral resolution between pairs of tones p, g, or
lv, = vy|T > 1, the matrix J;; is given by [61]

erlzmnﬂn zp jp (4)

m 1 p= I”

This matrix is similar to the spin-spin couplings that
emerge in trapped-ion based quantum spin simulators,
featuring a tunable interaction range and full programm-
ability [40,41,74].

The second effective Hamiltonian term is

== Ko aahs! (5)

k.m,i

describing spin-dependent hopping of phonons between
pairs of modes, or equivalently, phonon-dependent Stark
shifts. The matrix element K,({lyil describes the hopping
amplitude between the m and k modes that is generated
by driving spin i. For long evolution times A,,, the

hopping amplitudes are given by [61]

K=Y

p.q

niknimgiqgjp(Aqm + Apk) S (6)
8ApkAqm Aqm’APk’

where the time-dependent function,

- ) 1
Ba = € b Tsin |3 (8, = 2,07 ()

with sinc(x) = sinx/x. For sufficiently long evolution
times considered here, Oa,,.A,, ACts approximately like a

Kronecker delta function. This is essentially energy con-
servation, as only pairs of tones p, g whose frequency
difference are resonant with the freequency difference
between the k, m modes (A, = A,,) give a sizable
contribution to the boson hopping amplitude in Eq. (6),
as illustrated in Fig. 1.

We find that the error term in Eq. (2) is given by (see
SM [61])

A
€= E 6'mp(7+ Qe /28 sm(ﬂ

T
) +He, (8)
i,m,p

describing spin flips which are correlated with emission or
absorption of phonons. Unlike the secular terms in the
evolution of Eq. (2), whose contributions increase linearly
in time and correspond to effective Hamiltonians H and
H ,, the contribution of the error term is small and bounded
in time.

To generate a beam splitter interaction between the
collective phonon modes in the trapped-ion crystal, we
focus our discussion on initial states for which spin and

phonons are disentangled, and specifically, with all spins
pointing down. The system wave function can then be cast
as [{1z, ..., Lnz) ® |y) for any initial phononic state |y).
Such initialization can be efficiently realized via standard
sideband cooling and optical pumping schemes [76,77].
This configuration determines the sign of the phonon-
hopping terms in Eq. (5), and casts H, as the bosonic beam
splitter Hamiltonian,

Hys =Y Kinlylth. 9)

k,m

with hopping terms,

KD =KD, (0

for <8§’>> = —1. Furthermore, this particular choice elim-
inates the effect of H, on the simulation, which could
otherwise flip spins and temporally change the couplings
Ky, via (89). Here, hopping between different pairs of
spins i # j is forbidden since 6)||;) = 0, and terms with
i = j only append a global phase that is independent of the
phonon state.

The Hermitian beam splitter matrix K;, in Eq. (9)
contains N(N — 1)/2 unique elements which can be pro-
grammed by the M P < N? control parameters of the matrix
Q,, in Eq. (6). Thus, the control parameters for a target
matrix K, can be found using standard optimization
techniques, similar to the techniques used for simulations
of spin systems [74].

We now present a few examples of K, that are
efficiently calculated for simple Rabi frequency matrices
Q,,, satisfying MP < N?. We consider a linear chain of
N =40 ions with typical experimental parameters: We
assume a radial center of mass trap frequency of w, =
4 MHz for which ,, =~ 0.1, drive amplitude of Q; = 200 —
300 kHz for a few selected tones and ions, a detuning of
A =400 kHz from the middle of the red-sideband spec-
trum and a (short) simulation time of 7 = 1 ms. The
electrostatic axial trap potential is composed of a quadratic
and quartic terms set to produce a nearly equidistant
spacing between the ions of about 3.6 pm [78], mainly
to ease access by an equidistant array of beams [79-81].
Interestingly, this potential also renders the spacing
between the frequencies of the central modes to be
approximately equidistant, as shown in Fig. 1. The constant
spacing (of about 8.5 kHz) enables efficient simultaneous
coupling to multiple modes using a small set of tones. As
the central radial modes feature low heating rates and high
mode stability [82—-84], we choose to program the cou-
plings between the central 20 modes, which are well isolate
from the edge modes. Detailed parameters and the full
beam splitter matrices are provided in Ref. [61].
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FIG. 2. Programmable bosonic hopping matrix. Exemplary coupling between the 20 central phonon modes in a N = 40 ions chain for
T = 1 ms. (a) Nearest-neighbor coupling is realized via illumination of four ions (2 < i < 5) with two in-phase tones whose relative
frequencies match the average frequency spacing between modes. (b) Next-nearest-neighbor coupling using the same configuration but
doubling the relative frequency between the two tones. (c) Long-range coupling via illumination of a single ion (i = 3) with six tones.
Staggered-sign amplitudes are realized by shifting the phase of odd tones by z. The calculation uses Eq. (7) and does not assume any
frequency selectivity. On-site terms are suppressed in (a)—(c) by driving the ions with an additional single tone near the blue sidebands,

and other unwanted couplings are very small; see Ref. [61].

First we consider uniform driving of all ions, where
M = N and Q;), is independent of i. Summation over the
contribution of all ions in Eq. (10) renders K}, diagonal
with no intermode hopping, owing to the orthogonality of
the mode-participation matrix ), b;ib;,, = 6y, Such on-
site hopping terms can be controllably suppressed, if
necessary, by driving an additional single tone near the
blue-sideband transition [61]. This simple technique is
applied in the following examples.

In Fig. 2(a) we present K, with hopping terms
predominantly between (spectrally) nearest-neighbor
modes, illuminating only M =4 ions (2 <i<5) with
two (in-phase) tones near the red sidebands, choosing their
frequency difference to be v, — vy = 8.5 kHz. In Fig. 2(b)
we present K, with hopping terms predominantly
between the next-nearest-neighbor modes, using the same
configuration but doubling the relative frequency of the two
tones (v, — vy = 17 kHz). These examples illustrate the
crucial role of § in Eq. (7), which enables efficient and
simple engineering of the hopping terms via control over
the tone spectrum. The residual couplings between other
modes, and particularly to the rapidly heating center-of-
mass mode, are very small [61]. Finally, in Fig. 2(c) we
present the beam splitter matrix K;,, realized by illuminat-
ing a single ion (i = 3) using six tones, demonstrating long-
range hopping amplitudes. Here we realize staggering
amplitudes by setting Q;, = Qyd;3(—1), i.e., shifting
the relative phase between the odd and even tones by 7.
Notably, the hopping terms are not limited to real values
and can take complex values via tuning of the relative phase
between the tones. Importantly, the relative phase between
tones at each ion requires neither interferometric stability
nor control over the optical phase between different beams;
instead, the necessary phase control can be achieved via
simple low frequency modulation of each beam, e.g., with
acusto-optical modulators [79-81].

We can analyze the scaling of light-induced error and
hopping terms with the chain length by assuming #;,, ~
n/v/N for the Lamb-Dicke parameters. For typical Rabi
frequencies Q and detuning A with ¢ = 7Q/A and € < 1,
the probability for error scales as MPe?/N per mode
[Eq. (8)]. In the dispersive regime, the typical hopping
amplitude is given by MPe’A/N, where AT > 1 is the
ratio between the hopping-accumulated phase and light-
induced noise. Although this ratio is independent of N,

(a) (b)
Pm
am; z q)é)m)
Xm

Phonon mode m

FIG. 3. Geometric phase-gate interpretation. The evolution of
spins and phonons by Hamiltonians H, and H, emerges from
simultaneous accumulation of geometric phases in the phonon’s
phase space (a) and spin’s Bloch sphere (b). (a) Illustrative
trajectory of the phonon state in phase space of mode m, where
% = (8, + aly)/2 and p,, = i(a}, — a,,)/2 [85.86]. The state
moves in loops by the spin-dependent displacement a,,, enclos-

ing the area that corresponds to the geometric phase (I)<pm) which is

associated with the spin-hopping Hamiltonian H. (b) The spin of
ion 7 is rotated in loops by the phonon-dependent angle ©;,
enclosing the area on the Bloch sphere that corresponds to the
geometric phase <D§’), which is associated with the phonon-
hopping Hamiltonian H,. The total phase appended to the

quantum state »_; o) + >om CI>§,’") yields the spin-spin and
phonon-phonon hopping Hamiltonians in Eqgs. (3) and (5).
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increasing the simulation time 7 linearly with N compen-
sates for the decrease in frequency spacing and hopping
amplitudes, which are inversely proportional to N. See
Ref. [61] for more details.

We now compare the timescale of coherent evolution
with that of noise mechanisms. Coherent evolution time is
usually determined by when K;,, T equals one, which takes
around 1 ms for the aforementioned 40-ion chain example.
In Ref. [61] we examine motional decoherence caused by
heating, confinement noise, and light coupling. Electric
field noise, which changes slowly across the ion chain, does
not heat most collective modes, as it couples poorly to
modes whose participation factors change quickly.
Confinement noise has little impact on the relative dephas-
ing between collective phonon modes, because it originates
from a common source. Small light-induced errors can be
efficiently detected and excluded. Our analysis concludes
that most collective modes away from the center-of-mass
mode have coherence times of over 1 s under feasible
experimental conditions, at least 3 orders of magnitude
greater than simulation time. In contrast, techniques using
local phonon modes are essentially limited by the much
faster heating rate of one ion.

The scheme proposed here can be applied for simulation
of a large variety of bosonic models. The nonlocal nature of
the collective phonons naturally allows the simulation of
bosonic Hamiltonians featuring long-range hopping ampli-
tudes [4,5]. The proposed method also enables universal
and efficient programming of beam splitter matrices for the
boson sampling problem [6], realization of topological
phases [87], and potentially computation using continuous
and discrete variables [36,57,88]. These applications also
require efficient initialization and detection. While both
have been demonstrated for a few phonon modes
[29,36,45], in Ref. [61] we demonstrate numerically
simultaneous and high-fidelity preparation and detection
of phonons in multiple modes, within about 1 ms for the
40-ion chain configuration.

The scheme can also be used for simulation of various
spin-boson models, which are expected to manifest emer-
gent phenomena [89-92]. Potentially, spin-boson cou-
plings can be realized by resonant driving one subset of
ions on the red or blue sideband transitions [93], while
hopping between phonon modes can be realized by
illumination of another subset of ions with multiple tones
in the dispersive regime. In the Supplemental Material [61],
we discuss the implementation of the Jaynes-Cummings-
Hubbard [89,90] and the Hubbard-Rabi [92] models using
the scheme reported above.

Before concluding, we find it insightful to highlight the
physical mechanism that enables the simulation of bosonic
Hamiltonians and generates the evolution in Eq. (2). Using
the Heisenberg picture, we can illustrate the simultaneous
action of the red-sideband Hamiltonian [Eq. (1)] in the phase
space of the phononic modes and the spins’ Bloch sphere, as

shown in Fig. 3. In the phase space of mode m, the phononic
state is displaced in small loops by spin-dependent dis-

placement a,, (1) = =% [§37,, 85,[,)56_16”’”75(3 (7)dr. Atlong
evolution times, the loops are traversed numerously and
accumulate a sizable phase-space area that corresponds to a
geometric phase  ®)"(T) = (i/4) S (@it — ) dt
that is appended to the quantum state. The total geometric
phase enclosed by all modes (>_,, (IDE,M) then yields the
evolution governed by the effective Hamiltonian H, in
Eq. (3), when considering the dispersive regime for which
high order correlations between the spins and motion are
negligible [61].

Concurrently, the spin state of ion i is rotated as a
function of time in small loops around the pole of the

Bloch sphere by the phonon-dependent angle ©;(t) =
—Ypm I e,(,’,),fe‘i‘sﬁm’&;(r)dr, which corresponds to the
rotation angles ©; = )@ + i9§,i). At long evolution times,
these loops are traversed numerously and accumulate a

sizable area that corresponds to a geometric phase CI)@

(i/4) fg(@j@i - @ié)j)?;g)dt that is appended to the quan-
tum state. Intriguingly, the operator &2’7 emerges here
owing to the curvature of the Bloch sphere. The total

geometric phase enclosed by all ions ), dbg’) then corre-
sponds to the evolution governed by the -effective
Hamiltonian H, in Eq. (5), when neglecting high order
correlations between the spins and motion in the dispersive
regime [61]. We therefore conclude that our scheme
realizes boson-boson couplings by geometric phase gates,
accumulated over the Bloch spheres of ion spins.
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