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Large-momentum-transfer (LMT) atom interferometers using elastic Bragg scattering on light waves are
among themost precise quantum sensors to date. To advance their accuracy from themrad to the μrad regime,
it is necessary to understand the rich phenomenology of the Bragg interferometer, which differs significantly
from that of a standard two-mode interferometer. We develop an analytic model for the interferometer signal
and demonstrate its accuracy using comprehensive numerical simulations. Our analytic treatment allows the
determination of the atomic projection noise limit of a LMT Bragg interferometer and provides the means to
saturate this limit. It affords accurate knowledge of the systematic phase errors as well as their suppression
by 2 orders of magnitude down to a few μrad using appropriate light-pulse parameters.
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Atom interferometry enables the most precise determi-
nation of the fine-structure constant [1,2] and the most
accurate quantum test of the universality of free fall [3].
Allowing absolute measurements of inertial forces [4]
with high accuracy and precision, atom interferometers
are ideally suited for real-world applications [5] like
gravimetry [6,7], gravity cartography [8], and inertial
navigation [9,10]. Notably, they recently enabled the obser-
vation of the gravitational Aharonov-Bohm effect [11].
Large-momentum-transfer (LMT) beam splitting is a key
technology for quantum sensors with unprecedented pre-
cision, which may detect gravitational wave signatures
and ultralight dark matter [12–17]. Using different
beam-splitting techniques to increase the interferometer
sensitivity, several LMT implementations demonstrated
record-breaking spatial separations of coherent superposi-
tions of matter waves [18–21]. To date, all LMT atom
interferometers demonstratingmetrological gain [1,3,11,22]
use elastic Bragg scattering of atoms from time-dependent
optical lattice potentials [23,24]. Compared to a two-mode
interferometer, higher-order Bragg processes feature unde-
sired diffraction orders [25,26] [see Fig. 1(a)], causing
systematic uncertainties on the mrad level referred to as
the diffraction phase [4,19,27–29]. Yet, a comprehensive
analytical model of Bragg interferometers is still missing.
Here, we present such a model by taking into account the

multiport and multipath physics of Bragg diffraction. We
apply it to the popular Mach-Zehnder (MZ) geometry and
demonstrate a straightforward way to suppress the diffrac-
tion phase via a suitable choice of pulse parameters.
Figure 1(b) illustrates that a tailored combination of laser
intensity and duration of the mirror pulse prevents the

dominant parasitic paths from closing interferometers. We
show that by largely suppressing the parasitic interferences,
the physics of the diffraction phase simplifies dramatically
to a mere offset that can be readily determined. This allows
us to reduce the systematic error below the mrad level,
when considering high-order Bragg beam splitters [25,26]
with less than 10% diffraction losses. We verify the
accuracy of our model by comparison to simulations of
the MZ interferometer in numerical experiments.
Beyond systematic effects, parasitic paths and unde-

tected open ports affect the statistical properties of the
measurement. The statistical uncertainty is defined by the

FIG. 1. Space-time diagrams of MZ interferometers. Top row:
nth-order Bragg beam splitters (BS) populating the main trajec-
tories (solid black lines), open ports, and parasitic paths (dashed
lines; the dominant ones for n ¼ 5 are thick blue lines), all
affecting the MZ signal recorded in ports a, b. Trajectories are
shown in the optical lattice frame. Bottom row: Gaussian pulses
ΩðtÞwith pulse widths τBS;M spaced by time T. While in panel (a)
we choose identical peak Rabi frequencies Ω (which we refer to
as MZ type A), panel (b) illustrates deflection of dominant
spurious paths with a tailored choice for ΩM; τM (MZ type B).
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(quantum) Cramér-Rao bounds [(Q)CRB] [30], which
modify the standard quantum limit and are yet to be
determined for Bragg interferometers. We show that the
(Q)CRB exhibit a nontrivial dependence on the unavoid-
able diffraction losses. Moreover, we demonstrate that the
phase estimation strategies presented here allow saturation
of these fundamental bounds. Our study of the atomic
projection noise establishes important design criteria for the
operation of Bragg interferometers at or below the standard
quantum limit [31–34].
Analytical model of Bragg MZ interferometers.—

In Bragg diffraction, the intensity and relative frequencies,
2δ≡ ω1 − ω2, of two counterpropagating light fields
are adjusted to transfer a multiple of twice the photon
recoil 2nℏk via pulsed optical lattices, VðtÞ ¼ 2ℏΩðtÞ
cos ½kẑ − δtþ ϕLðtÞ�. Additionally, the phase of the light
field ϕLðtÞ is imprinted on the atomic wave function. The
integer n denotes the Bragg order, and we focus on smooth
Gaussian two-photon Rabi frequencies, ΩðtÞ ¼ Ωe−t2=2τ2 ,
which reduce the coupling to undesired diffraction
orders [25]. Different peak Rabi frequencies Ω and pulse
widths τ lead to beam-splitter and mirror operations if they
fulfill the respective condition on the pulse area [25,26].
This freedom gives the possibility to balance between
losses into unwanted momentum states and lower diffrac-
tion efficiencies due to the Doppler effect [26,35] which are
dominating at short and long pulses, respectively.
We characterize the two beam splitters and the mirror that

form the MZ interferometer via ΩBS, τBS and ΩM; τM,
respectively. We extend our previous treatment of single
pulses in Ref. [26] to include the dominant parasitic Bragg
orders; see Supplemental Material (SM) [36]. By combining
transfer matrices that account for diffraction and free
propagation, we obtain a scattering matrix of the MZ,
SMZðϕ; T;ΩBS; τBS;ΩM; τMÞ, which depends on the metro-
logical phase ϕ in addition to the pulse parameters. We
describe the incoming atoms by a Gaussian wave packet,
jψ inðσpÞi, centered around−nℏk and featuring amomentum
width well below the photon recoil, σp ≪ ℏk, considering
ultracold sources [46,47]. Thus, the relative atom number
signals in ports a and b in Fig. 1, PaðbÞðϕÞ ¼
NaðbÞðϕÞ=½NaðϕÞ − NbðϕÞ�, can be calculated via the output
state jψoutðϕ; T;ΩBS; τBS;ΩM; τM; σpÞi ¼ SMZjψ inðσpÞi;
see SM [36].
Phase estimation usually requires fitting a model

PaðϕÞ to the signal Pmeas
a ðϕÞ recorded by scanning ϕ,

e.g., via the phase ϕL. The use of relative popula-
tions suppresses statistical fluctuations in the initial atom
number Natoms. Since the estimate relies on the inversion
ϕest ¼ P−1

a ðPmeas
a Þ, the quality of the model crucially affects

the systematic accuracy and the statistical sensitivity of the
phase measurement.
Interferometer including parasitic paths.—Depending

on the pulse parameters, interferometers realized through

higher-order Bragg pulses exhibit parasitic interfero-
meters and open ports to varying degrees; see Fig. 1(a).
Their effect on the interferometer signal can be sub-
stantial [48–50]. Our analytical model for jψouti reflects
this in a signal for the relative atom number measurement,
which takes the form of an infinite Fourier series,

Pexact
a ðϕÞ ¼ P0 þ

X∞
j¼1

Aj cos ðjϕþ φjÞ; ð1Þ

whose coefficients P0; Aj;φj derive from jψouti; see
SM [36]. We contrast this with the standard result for an
idealized two-mode MZ interferometer of order n,
Pideal
aðbÞðϕÞ ¼ P0 � A cos nϕ.
Including dominant parasitic paths for n ¼ 5 in

Figs. 2(a) and 2(b), we demonstrate good agreement
between Eq. (1) and numerical simulations. The latter
are based on a one-dimensional description of the complete
matter-wave interferometer in position space as per
Ref. [51], accounting for all diffraction orders. We scan
the phase via the final beam splitter, selecting different
values ϕL ¼ ϕLðtÞ for each data point, and we set
Ω ¼ ΩBS ¼ ΩM. In the following, we refer to this con-
figuration shown in Fig. 1(a) as MZ type A. Suitable pulse
widths τBS; τM satisfy the pulse area conditions [25,26] and
provide high diffraction efficiencies, yielding a loss of
1.4% after the first beam splitter. Yet, Fig. 2(b) shows that
the ideal sinusoidal signal is shifted by several mrad,
making it an inaccurate description.
References [48–50] provide evidence of undesired addi-

tional Fourier components whose origin can be understood
as follows: (i) Multiport Bragg beam splitters render the

FIG. 2. MZ signal phase scan in port a. (a),(b) Comparison of
numerical simulations Pmeas

a ðϕÞ (symbols) with analytical pre-
dictions of Eqs. (1) (orange dashed line) and (2) (green dotted
line) and with the sinusoidal signal, Pideal

a ðϕÞ ¼ ð1þ cos nϕÞ=2
(gray solid line). The parameters Ω; τBS; τM ¼ 28.5ωr;
0.309ω−1

r ; 0.681ω−1
r cause approximately 1.4% beam-splitter

losses and amplify signal distortions. Here, ωr ¼ ℏk2=2m is
the recoil frequency of an atom with mass m, and we scan the
relative phase ϕLðtÞ ¼ ϕL of the final beam splitter. Zooms in
panels (b) and (c) reveal a mrad shift relative to Pideal

a ðϕÞ. Using
adapted mirror parameters ΩM; τM ¼ 31.8ωr; 0.463ω−1

r as in
Fig. 1(b), panel (c) confirms agreement between the numerics
and both analytical models at the mrad level, which we quantify
below.
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combined atom number in the detected ports phase
dependent, NaðϕÞ þNbðϕÞ ¼ Natoms −NopenðϕÞ. Here,
NopenðϕÞ denotes the population of all undetected (open)
output ports; see Fig. 1. The relative atom numbers,
NaðbÞðϕÞ=½Natoms − NopenðϕÞ�, are thus ratios of ϕ-
dependent functions and generally contain Fourier compo-
nents of arbitrary order. In contrast, considering idealized
two-mode interferometers, we simply obtain Natoms ¼
NaðϕÞ þ NbðϕÞ. (ii) Moreover, the absolute atom numbers
NaðbÞðϕÞ contain additional parasitic interference terms
(cf. Refs. [48,50]) due to the spatial overlap of undesired
diffraction orders with the main interferometry arms at
t ¼ 2T, as shown in Fig. 1(a). In particular, asymmetric
spurious interferometers make the coefficients in Eq. (1)
depend on the interrogation time T, as observed in
Refs. [48,49]. Notwithstanding its correctness, in experi-
ments, it will be challenging to use the waveform in Eq. (1)
for phase estimation due to the large number of parameters
involved and the limited control over them.
Interferometer with suppressed parasitic paths.—

Figure 1(b) illustrates the suppression of spurious interfer-
ence terms using the MZ mirror. In this configuration,
which we will call MZ type B, the central pulse can
efficiently deflect the dominant spurious trajectories for all
Bragg orders n ≥ 3. In addition to stating the correspond-
ing parameters ΩM; τM for n ¼ 5, we explain the exception
of the n ¼ 2 MZ geometry in the SM [36]. It is straightfor-
ward to suppress parasitic interferences in our analytical
model and consider only the effects of the open ports [point
(i) above]. Doing so simplifies the MZ signal to

PaðbÞðϕÞ ¼ P0 �
X3
j¼1

Aj sin

�
j

�
nϕþ γ þ π

2

��
þO½γ3�;

ð2Þ

where PbðϕÞ is shifted by π as expected; see SM [36].
Compared to Eq. (1), this expression contains only the
harmonics of a single Fourier component nϕ and a phase
shift γ common to all harmonics. In fact, γ is a small parameter
closely related to the losses to undesired diffraction orders
during beam splitting [26] and therefore can be calculated
given the parameters ΩBS, τBS; see SM [36]. Considering a
MZ interferometer with suppressed parasitic paths as in
Fig. 1(b), Fig. 2(c) shows excellent agreement at the mrad
level between the complex signal in Eq. (1) and the much
simpler formula in Eq. (2) with the numerical simulations.
Diffraction phase.—We further quantify the accuracy

of phase estimates ϕest ¼ P−1
a ðPmeas

a Þ that are applied to
numerical simulations of MZ interferometers as in Fig. 1
and based on Eq. (2). The systematic deviation between ϕest

and the true value ϕ is called the diffraction phase [28,49],

δϕ ¼ P−1
a ðPmeas

a Þ − ϕ ¼ P−1
a ðPmeas

a Þjγ¼0 − ϕ −
γ

n
: ð3Þ

In the second equality, we used the fact that in Eq. (2) γ is a
shift common to all Fourier components. Moreover, γ
can be inferred quite accurately for given ΩBS, τBS; see
SM [36]. Thus, the error of PaðϕÞ with respect to the
remaining phase, P−1

a ðPmeas
a Þjγ¼0, determines the system-

atic uncertainty. Additionally, scaling with nϕ in Eq. (2)
leads to a linear suppression of δϕ with the Bragg order n;
cf. Ref. [28].
After fitting PaðϕÞ in Eq. (2) to numerical signals,

Pmeas
a , of n ¼ 5MZ interferometers of types A and B with

different separation times T ∈ ½10; 10.017� ms, we evalu-
ate δϕ in Fig. 3. Spurious interference terms cause
oscillations with T at frequencies ð5� 1Þ 8ωr proportional
to the recoil frequency ωr ¼ ℏk2=2m (cf. Refs. [48,49]) of
an atomic mass m. Despite minimizing the beam-splitter
losses to approximately 0.18%, we observe oscillations at
the μrad level, which result from the kinetic energy
difference between main interferometer arms and spurious
paths; cf. Refs. [48,49]. We use beam-splitter parameters
that Parker et al. refer to as magic Bragg duration for
n ¼ 5 as they effectively reduce similar oscillations
in the conjugated Ramsey-Bordé interferometer in
Ref. [49]. Fitting fðTÞ ¼ B0 þ B1 cos ð4 8ωrT þ ν1Þ þ
B2 cos ð6 8ωrT þ ν2Þ to the data in Fig. 3 reveals the
same offset B0 ≈ −27 μrad without (MZ type A) and with
(MZ type B) suppression of parasitic paths. Thus, the
inclusion of γ=n ≈ 280 μrad in Eq. (3) accounts for most
of the T-independent shift. In contrast, the adapted
mirror suppresses the peak-to-peak (PP) value PP ≔
jmax∀TfðTÞ −min∀TfðTÞj by about 80% to less than
40 μrad. This is significant because the net diffraction
phase shift can be of similar magnitude due to insufficient

FIG. 3. Phase estimation error. Diffraction phases δϕ in Eq. (3)
evaluated for numerically simulated MZ interferometers with
different separation times T. Operation at the so-called “magic”
Bragg beam-splitter duration for n ¼ 5 (see main text) reduces
oscillation amplitudes for both MZ configurations to less than or
equal to 200 μrad due to small diffraction losses of approximately
0.18% (cf. Refs. [48,49]). Open circles (MZ type A) assume
parameters Ω; τBS; τM ¼ 30.75ωr; 0.218ω−1

r ; 0.519ω−1
r , while the

adapted Bragg mirror ΩM; τM ¼ 31.8ωr; 0.463ω−1
r (closed

circles, MZ type B) further suppresses the peak-to-peak value
by a factor of 5 to less than 40 μrad. Fits to the data (solid lines)
show identical offsets B0 ≈ −27 μrad (dotted line) for both sets.
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control over the separation time T at the μs level or
because of aliasing effects when T is sampled;
cf. Ref. [49].
In Figs. 4(a) and 4(b), we compare offsets jB0j and PP

between both Bragg mirror configurations for a parameter
rangeΩBS, τBS ensuring less than 10% beam-splitter losses.
Figure 4(a) confirms that accounting for γ in Eq. (3)
reduces the remaining T-independent contribution to δϕ
to at most a few tenths of μrad independent of the mirror. In
contrast, Fig. 4(b) shows that the adapted mirror effectively
suppresses the oscillations of δϕ. For relatively strong
couplings to undesired diffraction orders, we observe PP
values that are comparable to γ=n and on the order of
several mrad; see SM [36]. Figure 4(c) shows the close
relation between δϕ and the beam-splitter losses. Notably,
the local minimum indicates the aforementioned magic
Bragg duration for n ¼ 5, but in fact, such minima exist for
all orders n > 1 and are a feature predicted by Landau-
Zener theory [26].
In summary, using Eq. (2) (including γ) and adapting the

central MZ pulse to suppress parasitic interference reduces
the diffraction phase below 1 mrad for most parameters
ΩBS, τBS. Assuming sufficiently long beam-splitter

durations, we predict only a few μrad. In contrast, not
including the diffraction phase offset γ in Eq. (2) and not
suppressing parasitic interference would increase the sys-
tematic error to more than 0.5 mrad. This represents an
improvement of 2 orders of magnitude, limited only by
higher-order contributions in γ and a finite efficiency in
suppressing the spurious paths.
Phase sensitivity.—Finally, we discuss the statistical

uncertainty of the estimate ϕest ¼ P−1
a ðPmeas

a Þ based on
Eq. (2). We note that the projection noise ΔϕestðϕÞ ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½PaðϕÞð1 − PaðϕÞÞ�=½NaðϕÞ þ NbðϕÞ�
p f1=½j∂ϕPaðϕÞϕj�g
(see SM [36]) can be quite different from that of a two-
mode MZ interferometer, which evaluates to Δϕest¼
f½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0ð1−P0Þ
p �=½nA ffiffiffiffiffiffiffiffiffiffiffiffi

Natoms
p �g at midfringe PaðϕÞ ¼ 0.5.

We compare the phase sensitivity with the QCRB and the
CRB both derived from jψouti; see SM [36]. While the
CRB considers relative atom number measurements in
ports a and b, the QCRB bounds the projection noise for
arbitrary measurements performed on all output ports of
the final pulse.
Assuming the same pulse parameters as before, Fig. 5

(case A in inset) shows that the projection noise limit for a
Bragg interferometer lies a few percent above the CRB
of an ideal two-mode interferometer (P0 ¼ A ¼ 1=2):
Δϕest ¼ ðn ffiffiffiffiffiffiffiffiffiffiffiffi

Natoms
p Þ−1. Moreover, we find good agreement

between the analytical CRB and QCRB and the uncertainty
Δϕest of Eq. (2) applied to the numerical data. The visible

FIG. 4. Diffraction phase suppression. (a,b) Data points char-
acterizing oscillations in δϕ for MZ configurations A (open
symbols) and B (closed symbols) as in Fig. 3, but for a range of
pulse parameters; see SM [36]. Lines between symbols serve as a
guide for the eye. (a) Offsets jB0j ≤ 30 μrad (symbols), which are
largely identical for both MZ types. Panel (b) shows that in case
B, peak-to-peak (PP) values are mostly below 1 mrad and less
than 10 μrad for sufficiently long pulse durations. (c) Numerically
determined diffraction loss of a fifth-order Bragg beam splitter
(coupling j�5ℏki). Parameters used in Fig. 2 (Fig. 3) correspond
to the visible local maximum (minimum) denoted by the solid
(dotted) vertical line.

FIG. 5. Sensitivity bounds for uncorrelated particles. Cramér-
Rao bound (dashed lines) and quantum Cramér-Rao bound
(solid lines) for n ¼ 5 scanning ΩBS, τBS with T ¼ 10 ms.
Results are scaled to the projection noise of an ideal two-mode
MZ, n

ffiffiffiffiffiffiffiffiffiffiffiffi
Natoms

p
. Symbols represent the statistical uncertainty

ΔϕestðϕÞ of phase estimates based on Eq. (2) applied to
numerical MZ signals. Both CRB and Δϕest are obtained at
midfringe ðϕ ¼ 3π

2
1
5
Þ. The adapted Bragg mirror ΩM; τM ¼

31.8ωr; 0.463ω−1
r (case B) suppresses parasitic interference

and, compared to case A in the inset, is less susceptible to the
finite velocity spread of the wave packet σp ¼ 0.01ℏk (0.05ℏk) in
blue (purple) at longer pulse durations. The dotted (solid) vertical
line again corresponds to the local minimum (maximum) in the
losses in Fig. 4(c).
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deviations are at the expected level given our perturbative
treatment of finite velocity effects and beam-splitter losses;
see SM [36]. Sensitivity is lost at shorter pulses due to
increasing diffraction losses; see Fig. 4(c). Towards longer
pulses, the velocity selectivity of the Bragg process leads to
atom loss and an increase of the CRB, especially for wave
packets with larger momentum spreads σp; cf. Ref. [35].
We note that in case B, the velocity selectivity of the mirror
is reduced because of the relatively short pulse duration
chosen to deflect the dominant parasitic paths; see SM [36].
Since the diffraction losses primarily populate parasitic
interferometers with reduced scale factors less than n,
the resulting decrease in the space-time area worsens the
statistical uncertainty of the phase measurement. Therefore,
despite the intentional deflection of atoms from the
interferometer in scenario B [cf. Fig. 1(b)], we see no
difference in performance between the two configurations.
Operation at the local minimum of the beam-splitter losses
in Fig. 4(c) ensures the best sensitivity. This sets the
fundamental projection noise limit of a Bragg atom
interferometer.
Conclusions.—Our analytical model provides a thorough

understanding of the systematic and statistical uncertainties
of LMT Bragg atom interferometers. Hence, it yields
design criteria for reaching the fundamental sensitivity
bounds of these devices and paves the way towards
accuracies in the μrad range when using ultracold atomic
sources [46,47]. Operation of LMT interferometers at or
near the quantum projection noise limit is a critical
requirement if they are to be combined with entangled
sources [33,34]. The methods developed here are appli-
cable to other configurations such as the conjugated
Ramsey-Bordé interferometer (cf. Ref. [1]) or double
Bragg diffraction [52–54]. Our work contributes to the
development of high-precision quantum sensors for fun-
damental tests and to atom interferometers fulfilling the
size, weight, and power (SWAP) requirements of modern
real-world applications [4,29], especially in combination
with resonator-enhanced light fields [55,56].
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