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We report on the experimental realization of a Kapitza trap for ultracold atoms. Using time-periodic
attractive and repulsive Gaussian potentials, we create an effective trap for ultracold neutral atoms in a
regime where the time average of the potential is equal to zero. We analyze the role of experimental
imperfections, the stability of the trapped atomic cloud, and the magnitude of the effective potential. We
find good agreement with the high-frequency expansion of the underlying system dynamics. Our
experimental approach opens up new possibilities to study Floquet systems of neutral atoms.
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Manipulating states and dynamics of a system by
periodic driving is known as Floquet engineering [1,2],
which is increasingly employed in many areas of physics,
including cold atoms [3], photonics [4], and solid-state
physics [5]. By designing suitable periodic driving, one can
engineer an effective time-independent Hamiltonian with
properties that are otherwise not attainable in the corre-
sponding static system. Kapitza’s pendulum [6,7], an
inverted pendulum that is dynamically stabilized by a fast
driving of its pivot point, is the most prominent example of
such engineering in classical physics. Many applications of
Kapitza stabilization in quantum systems have been pro-
posed, including the breaking of translation symmetry [8],
the periodically driven sine-Gordon model [9], the stabi-
lization of bright solitons in a Bose-Einstein condensate
(BEC) [10], cold atoms with oscillating interactions [11],
optical molasses [12], preparation of molecular ions [13],
the stability of optical resonators [14], polariton Rabi
oscillation [15], and unconventional dynamical phases
[16]. In particular, Kapitza stabilization can be employed
to trap particles. The most notable example of such an
application is the Paul trap [17,18], where a saddle point
potential is modulated periodically to create a confining
harmonic potential. Light confinement in dielectric struc-
tures with a transverse refractive index distribution peri-
odically modulated in the longitudinal coordinate has been
proposed [19] and experimentally demonstrated [20].
Regarding trapping atoms by laser fields, Ref. [21] has
proposed and analyzed how a spatially oscillating red-
detuned optical lattice could localize a repulsively interact-
ing BEC, and Ref. [22] has investigated the case where
a time-periodic localized attractive and repulsive Gaussian
potential with a vanishing time average creates a
conservative trapping potential.
In this Letter, inspired by the theoretical work in

Ref. [22], we demonstrate a “Kapitza trap” for ultracold

atoms and thereby extend the field of Kapitza pendulum
physics toward the regime of ultracold quantum gases. The
Kapitza trap is created by superimposing time-modulated
focused laser beams to induce a time-varying dipole
trapping potential for neutral atoms.
Specifically, we confine ultracold 87Rb atoms using a

time-periodic Gaussian potential of the form [Fig. 1(a)]

Vtðr; tÞ ¼ V0 exp

�
−
2r2

σ2

�
cosðωtÞ; ð1Þ

where σ and V0 are the waist and amplitude of the Gaussian
profile, respectively, and r ¼ ðx2 þ y2Þ1=2 is the radial
coordinate. In practice, Vt is the result of the superposition
of a repulsive potential,

Vbðr; tÞ ¼ Vb0 exp

�
−
2r2

σ2b

�
1þ cos ðωtÞ

2
ð2Þ

¼ GbðrÞ½1þ cos ðωtÞ�=2; ð3Þ

and an attractive potential,

Vrðr; tÞ ¼ Vr0 exp

�
−
2r2

σ2r

�
1 − cos ðωtÞ

2
ð4Þ

¼ GrðrÞ½1 − cos ðωtÞ�=2; ð5Þ

created by a blue-detuned laser (777.827 nm) and a red-
detuned laser (782.325 nm) [23]. These two lasers are
referred to as Kapitza lasers. In Eqs. (3) and (5), we have
introduced Gb and Gr to represent their unmodulated
Gaussian profiles. For equal power, the two laser beams
induce dipole potentials with the same magnitude but
opposite sign for 87Rb, i.e., Vb0 ¼ −Vr0 ¼ V0. Both lasers
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have the same linear polarization, but their power modu-
lation is out of phase by 180°. In order to ensure maximum
spatial overlap and equal waists (σb ¼ σr ¼ σ) of the two
beams at the position of the atoms, we couple both lasers
into the same polarization-maintaining single-mode fiber.
The resulting effective potential Veff in the high-frequency
limit then reads to first order [22,26] [Fig. 1(b)],

VeffðrÞ ¼
4V2

0

mσ4ω2
r2 exp

�
−
4r2

σ2

�
; ð6Þ

where m is the mass of a trapped atom. Applying the
harmonic approximation to Veff at r ¼ 0, we derive the
oscillation frequency Ω ¼ 2

ffiffiffi
2

p
V0=mσ2ω of an atom in

the Kapitza trap. Equation (6) is a good approximation for
ω ≫ Ω [22]. Because Veff stems from the mean kinetic
energy stored in the micromotion of the particles, it is
always positive and peaks at maxima of the kinetic energy
of the particle’s micromotion. The same microscopic
dynamics is also responsible for the effective potential
of a Paul trap.
The two maxima of Veff , Vmax

eff ¼ Veffðr ¼ �σ=2Þ, are
separated by the waist of the Kapitza beam σ. Note that in
order to create the same trapping potential exclusively
using lasers without time modulation, one requires a waist

that is smaller by a factor of
ffiffiffi
2

p
. While more subtle

methods [27,28] are available for creating optical potentials
with even better resolutions, our approach is, at least in
principle, a straightforward way to surpass the diffraction
limit modestly.
The experimental setup is sketched in Fig. 1(d). We start

by producing a BEC of 87Rb atoms confined in a crossed
optical dipole trap (ODT, λ ¼ 1064 nm). The trap frequen-
cies are ωx=2π ¼ 55 Hz, ωy=2π ¼ 93 Hz, and ωz=2π ¼
108 Hz, where the z direction is antiparallel to the direction
of gravity. The central chemical potential of the condensate
is μ ≈ kB × 300 nK. The Kapitza lasers, which are focused
on the condensate along the z direction by an objective with
a numerical aperture (NA) of 0.3, are then linearly ramped
up [29] and held until the system is probed by in situ
absorption imaging using the same objective. Power
modulation of the Kapitza lasers is always on during the
ramp and the hold time. Since the dominant confinement
along the z direction is from the ODT, the total trapping
potential is well approximated by the two-dimensional
Kapitza trap in the radial direction [Eq. (6)] and the
superimposed ODT.
In Fig. 1(e), we show a typical absorption image of the

trapped atomic cloud with Kapitza beams whose waists are
12 μm. The Kapitza trap in the center is clearly visible and
demonstrates the basic working principle. The annular
depletion zone between the Kapitza trap and the outer
ring of atoms is a direct consequence of the rotationally
symmetric effective potential, which creates a ring barrier.
Although both Kapitza beams share the same spatial

mode, the different wavelength is likely to cause a slight
displacement between their beam profiles via dispersive
optical elements. Because of the displacement, the Kapitza
trap is always closer to the right side of the outer ring,
where the atomic density is higher than the rest of the ring.
To quantitatively analyze this phenomenon, we introduce a
displacement d along the x axis of the red-detuned beam:

Grðx; y; dÞ ¼ Vr0 exp

�
−
ðx − dÞ2 þ y2

σ2r=2

�
: ð7Þ

The effective potential can then be written as [26]

Vd
effðx; y; dÞ ¼

Gb þGr

2
þ 1

mσ4ω2
fðx2 þ y2ÞG2

b

þ 2½xðx − dÞ þ y2�GbGr

þ ½ðx − dÞ2 þ y2�G2
rg

≡ Vres þ VK; ð8Þ

where Vres is the residual potential induced by the dis-
placement and VK is the potential of the Kapitza trap, a ring
barrier potential similar to Veff but not centered at the
coordinate origin when d ≠ 0. According to Eq. (8), a small
displacement of 120 nm is already sufficient to imbalance

FIG. 1. Working principle of the Kapitza trap. Kapitza laser:
waist σ ¼ 12 μm, amplitude V0 ¼ kB × 14 μK, modulation fre-
quency ω=2π ¼ 2.4 kHz. (a) Time-modulated Gaussian potential
Vt for one oscillation period. Vb and Vr are the individual
potentials of the two Kapitza lasers. (b) Effective potential Veff in
the high-frequency limit [Eq. (6)]. The distance between the two
peaks is σ. (c) Effective potential Vd

eff at y ¼ 0 for a small
displacement of d ¼ 120 nm between the two laser beams
[Eq. (8)]. (d) Experimental setup. (e) Absorption image of the
atomic cloud in the Kapitza trap. (f) Calculated atomic density
plotted with the same coordinate and length scale of (e). Densities
in both cases are rescaled from 0 to 1, where 1 is the maximum
density in each individual case.
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the Kapitza trap [Fig. 1(c)]. For d > 240 nm,which amounts
to only 2% of the beam waist, the trap disappears as Vres
dominates. We determine the displacement as 120 nm
(corresponding to 0.01 × σ by comparing the experimental
result and the calculated atomic density [23], which is given
by the time-independent Gross-Pitaevskii equation in
Thomas-Fermi approximation). Figure 1(f) shows the recon-
structed density for Vd

effðx; y; d ¼ 120 nmÞ and a chemical
potential of μd ¼ kB × 400 nK. This model capturesmost of
the features observed in the experiment, including the
asymmetry of the cloud.
Similar to the spatial displacement, any other imperfect

alignment (e.g., power imbalance, beam waist mismatch)
of the two Kapitza beams will result in a finite Vres.
The maximum of VK has the same order of magnitude
as Vmax

eff . From Eq. (6), one can deduce that V0=Vmax
eff ¼

ð2 ffiffiffi
2

p
eÞðω=ΩÞ ≃ 8ω=Ω. In the experiment shown in

Fig. 1(e), we have ω=Ω ¼ 9, which corresponds to
V0=Vmax

eff ≃ 72. Such conditions require that Vres is about
2 orders of magnitude smaller than V0 in order to observe
the Kapitza trap. This can only be achieved by a careful
alignment of the two laser beams. In the experiment, we
change the relative power of the two beams in subpercent
steps until the Kapitza trap appears together with the outer
ring. We refer to this as the balanced situation, going away
from which the feature disappears already for a few percent
beam imbalance.
It is instructive to compare the Kapitza trap for neutral

atoms with the Paul trap for charged particles. While the
electric field couples directly to the charge of the particles,
neutral atoms couple via their polarizability to the light
field. Accordingly, the later coupling is orders of magnitude
weaker, so realizing a Kapitza trap for neutral atoms is
much more challenging. On the other hand, a maximum of
the light field can easily be created in free space. Thus, in
principle, the Kapitza trap provides a way to confine neutral
atoms in all three spatial dimensions by oscillating optical
potentials alone without requiring close-by electrodes as in
a Paul trap.
We now turn to the stability analysis and characteristics

of the Kapitza trap. In the high-frequency limit, Veff
remains constant when proportionally increasing V0 and
ω [Eq. (6)]. Hence, the trap frequency Ω also remains
unaffected. The ratio ω=Ω, however, increases. This way,
we can test the system behavior in the high- and low-
frequency limits by measuring the lifetime of the trapped
atoms. This works, however, only in a limited parameter
range for a given displacement. While VK will remain
unchanged, Vres will increase monotonously and therefore
become dominant. In other words, a given displacement
sets an upper limit for ω=Ω in such a test. The highest ω=Ω
we achieve for a beam waist of 12 μm is about 9 [Fig. 1(e)].
Figure 2(a) shows the measured lifetimes of atoms

inside the Kapitza trap (τK) and the outer ring (τc) as V0

and ω increase proportionally, keeping Ω approximately

constant [30]. Equation (6) becomes a more accurate
approximation for increasing modulation frequency ω. At
the same time, the excitation of the atomic motion is
expected to become less pronounced as the time-varying
potential couples less efficiently to the atoms at higher
frequencies. The above trends are clearly observed in our
experiment as measured lifetimes, τK and τc, increase with
the modulation frequencies. On the other hand, τK is still
strongly affected by the time-periodic potential even at
high frequencies, and it is at least one order of magnitude
smaller than τc for the same ω=Ω. This can be attributed to
several effects. As shown in Fig. 2(b), Vres resulting from
the beam displacement pushes atoms away from the trap
center. These atoms move in an area with larger oscillating
potential, which leads to additional heating because the
energy of the micromotion can be converted into the energy
of themacromotion. This phenomenon can be analogized to
the well-known excess micromotion of charged particles in
a Paul trap without proper dc compensation voltages [31].

FIG. 2. (a) Lifetimes of atoms inside the Kapitza trap (τK) and
the outer ring (τc, scaled down by a factor of 10) dependent on the
modulation frequency ω for approximately constant Ω, plotted
against ω=Ω. To determine the number of atoms in the Kapitza
trap, we integrate the atomic density over a circle with a diameter
of 2σ=3 [8 μm; see also Fig. 1(b)]. The upper axis shows the
potential V0, which is increased proportional toω. Data points are
connected by dashed lines for better visualization. (b) Vres (green
line) and VK (orange line) at ω=Ω ¼ 8.8, plotted with the same
scale.
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Collisions between atoms intensify such a heating process
[32]. Light scattering from the Kapitza beams, unstable
orbits due to the nonparabolic central well structure of the
effective potential, and three-body losses constitute addi-
tional heating and loss processes, which further reduce the
lifetime.
The stability of the Kapitza trap can also be analyzed in

terms of the classical equation of motion for the atoms in
the trap. Approximating the center of the Kapitza trap with
a harmonic trap, the equation of motion can be written as

d2x
dτ2

− 2q cosð2τÞx ¼ 0; ð9Þ

where τ ¼ ωt=2 and

q ¼ 8V0

mσ2ω2
¼ 2

ffiffiffi
2

p

ω=Ω
: ð10Þ

Equation (9) is a standard Mathieu differential equation.
For q ≤ 0.9, i.e., ω=Ω ≥ 3.2, this equation has a periodic
solution, which implies that the atoms undergo closed
orbits and are therefore trapped [33]. In other words, when
considering the single-particle picture, Vt can be replaced
by Veff for ω=Ω ≥ 3.2.
For values of ω=Ω larger than 5, τc is roughly on a

plateau. Without the Kapitza beams, the atomic density
amounts to 3 × 1014 cm−3 in the trap center, corresponding
to a lifetime of 2 s. When switched on, the Kapitza trap
compresses the outer ring of atoms due to the effective
repulsion and leads to enhanced three-body losses. As they
depend on V0 (see Fig. 4), which changes slightly for
ω=Ω > 5, one would expect τc are roughly on a plateau.
Furthermore, the measured lifetime of several tens of
milliseconds could be realistic, if one takes into account
that noncondensed atoms have a sixfold higher three-body
loss rate compared to Bose-condensed atoms [34].
To understand the effect of the beam size on the Kapitza

trap, we have also performed experiments with smaller
Kapitza beams (σ ¼ 6 μm). We first note that the Kapitza
trap is no longer visible in the absorption images, which is
most likely due to amore significant relative displacement of
both beams.However,we observe the appearance of a hole in
the density distribution as a signature of the time-modulated
potential. The effective potential can be estimated by
analyzing the characteristics of this hole. Figure 3(a) shows
the appearance of the hole when the modulation frequency
decreases. At very highmodulation frequencies, the effective
potential is negligible compared to the chemical potential of
the condensate, and only a minor effect is visible. As the
modulation frequency decreases, a hole starts to show up at
the center of the cloud when the effective potential becomes
comparablewith the chemical potential. At smallmodulation
frequencies, the effective potential is no longer a good

approximation, and the small frequency perturbations
strongly affect the cloud.
For a quantitative evaluation, we take images of the

cloud for different combinations of the Kapitza lasers’
powers and modulation frequencies, and determine the
number of atoms inside the hole area [green dashed circle in
Fig. 3(a)]. The result is shown in Fig. 3(b). We observe that
there is a frequency above which the hole disappears for
each power level. The transition is rather steep. In order to
provide a theoretical estimate for the creation of the hole,
we proceed as follows. The effective potential leads to a
spatially varying reduction of the density. Averaging the
effective potential in the transverse direction over an area A
gives Vav ¼ A−1∬ dxdyVd

effðx; y; dÞ. We chose σ=
ffiffiffi
2

p
as the

radius for the area. An evident hole is then formed, when
this averaged potential is equal to the chemical potential of
the atoms. These points are shown as gray dots in Fig. 3(b).
The quantitative agreement confirms that the effective
potential is a good description for this parameter range.
We measure the lifetime τ0c of the whole atomic cloud to

investigate further the validity of the effective potential
approximation for the smaller Kapitza beams. The result is
plotted as 1=τ0c againstω=Ω (Fig. 4) for better visualization.
As one would expect, τ0c has a similar behavior as τc. It first
increases and then reaches a plateau beyond a specific
ω=Ω. For larger V0, the compression of the atomic cloud

FIG. 3. (a) Appearance of a hole in the atomic cloud upon
applying the Kapitza lasers (σ ¼ 6 μm, V0 ¼ 70 μK). The
dashed green circle defines the hole area, in which we determine
the number of expelled atoms. (b) Atom number inside the hole
area. Measured atom numbers are normalized to the maximum
number of atoms measured inside the green circle. Gray points
(with dashed line as a guide to the eye) represent ðV0;ω=2πÞ for
forming evident holes.
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caused by the repulsion of the effective potential is stronger.
Therefore, the corresponding τ0c on the plateau is smaller.
In summary, we have experimentally demonstrated a

Kapitza trap for ultracold atoms. Employing a rapid time-
periodic Gaussian potential, realized with red- and blue-
detuned focused laser beams, we confine ultracold 87Rb
atoms with an effective ring barrier potential. We validate
the approximation of the effective potential in the high-
frequency limit. At present, our trapped samples suffer
from limited lifetimes, limited achievable modulation
frequency, and residual static potentials due to relative
beam displacement. Further eliminating this 1% beam
displacement is the key to verifying and sorting out these
issues. We suspect the in-vacuum objective used in this
experiment induces the displacement since it is designed
for monochromatic light. In principle, exclusively using
reflective optics after the fiber employed for overlapping
the Kapitza beams can avoid chromatic aberration so that
the two beams fully overlap and have the same size at the
position of the atoms.
Once the lifetime of the atoms in the Kapitza trap is

increased, our approach allows for various new research
directions. First, we recall that the effective potential
exhibits a tunneling barrier. This feature allows for studying
quantum tunneling in time-periodic potentials, where the
tunneling rate can be reduced or even completely sup-
pressed [35–37]. A further extension of our work is the
detailed study of the low-frequency limit. This is the realm

of resonant Floquet systems, where the modulation fre-
quency matches an intrinsic frequency of the system. Such
driving has been proposed, for instance, to implement
energy and spin filters [38,39] and has recently been
extended to interacting systems [40]. Because of the
Gaussian envelope of the time-periodic potential Vt
[Eq. (1)], our system is intrinsically nonlinear. This makes
it also a potential tool for investigating chaos in the classical
and quantum regime [41].
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