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In quantum field theory, the Dyson-Schwinger equations are an infinite set of coupled equations relating
n-point Green’s functions in a self-consistent manner. They have found important applications in
nonperturbative studies, ranging from quantum chromodynamics and hadron physics to strongly correlated
electron systems. However, they are notoriously formidable to solve. One of the main obstacles is that a
finite truncation of the infinite system is underdetermined. Recently, Bender et al. [Phys. Rev. Lett. 130,
101602 (2023)] proposed to make use of the large-n asymptotic behaviors and successfully obtained
accurate results inD ¼ 0 spacetime. At higherD, it seems more difficult to deduce the large-n behaviors. In
this Letter, we propose another avenue in light of the null bootstrap. The underdetermined system is solved
by imposing the null state condition. This approach can be extended to D > 0 more readily. As concrete
examples, we show that the cases of D ¼ 0 and D ¼ 1 indeed converge to the exact results for several
Hermitian and non-Hermitian theories of the gϕn type, including the complex solutions.
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Introduction.—In the early stages of quantum field
theory, the Dyson-Schwinger (DS) equations [1–3] were
formulated as an alternative to operator theory. They
furnish nonperturbative self-consistency relations for the
n-point Green’s functions. To make concrete predictions,
one usually needs to restrict to a finite subset of the DS
equations for low-point Green’s functions. However, this is
known to be an underdetermined system, as higher DS
equations involve higher-point Green’s functions [4]. One
needs to introduce additional constraints to solve the DS
system.
A simple scheme is to close the system by setting high-

point connected Green’s functions to zero. However, as
emphasized recently in [5], the results from this naive
procedure do not converge to the exact values. The
resolution proposed in [5] is to make use of the asymptotic
behaviors of the connected Green’s functions at large n.
This has been successfully carried out at D ¼ 0 and the
results converge to the exact results rapidly. It seems more
challenging to deduce the large n behaviors at D > 0.
Since the seminal work on the numerical conformal

bootstrap [6], positive semidefiniteness has been used to
derive bounds on the solutions to the DS equations for
random matrix models [7,8]. As discussed explicitly
in [7], there exists nearly null eigenvectors on the boundary
of the non-negative region, corresponding to vanishing

eigenvalues. This is reminiscent of the vanishing Kac
determinant [9] in the D ¼ 2 minimal model conformal
field theories (CFTs) [10]. In fact, the majority of the
minimal models are nonunitary, such as the well-known
Mð5; 2Þminimal model associated with the Yang-Lee edge
singularity [11]. Inspired by the fact that the minimal
models are characterized by the existence of many null
states, it was proposed in [12] that one can bootstrap
nonconformal quantum systems by the null state condition,
which is applicable to both unitary and nonunitary theories.
Along these lines, we propose a novel approach to resolve
the indeterminacy of the DS equations based on null states
in this Letter.
Dyson-Schwinger equations.—Before discussing our

proposal and concrete examples, let us give a brief over-
view of the DS equations. The Green’s functions of single
scalar field are

Gnðx1;…; xnÞ≡ hTfϕðx1Þ � � �ϕðxnÞgi; ð1Þ
where Tf� � �g indicates that the operators are time ordered.
In the expectation value h� � �i ¼ hΩj � � � jΩi, the state jΩi is
usually assumed to be a ground state. The normalization is
set by h1i ¼ 1. The Green’s functions can be obtained
from the generating functional Z½J� by taking functional
derivatives

Gnðx1;…; xnÞ ¼
1

Z½0�
δnZ½J�

δJðx1Þ � � � δJðxnÞ
����
J→0

; ð2Þ

where Z½J� is defined as a functional integral

Z½J� ¼
Z

Dϕe−S½ϕ�þ
R

dDxJðxÞϕðxÞ; ð3Þ
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and S½ϕ� ¼ R
dDxL½ϕðxÞ� is the Euclidean action. In this

work, Gn denotes the full Green’s function, instead of
the connected Green’s function from the derivatives of
logðZ½J�Þ. An infinitesimal change in the integration
variable at x leads to a quantum equation of motion

hδS½ϕ�=δϕðxÞi ¼ hJðxÞi: ð4Þ

The infinite set of DS equations can be derived from
functional derivatives with respective to the classical source
J and setting J to zero.
Null state condition.—Null states should be orthogonal

to arbitrary test states. In practice, we consider approximate
null states that are orthogonal to a subset of test states

htestðLÞjnullðKÞi ¼ hOðLÞ
testO

ðKÞ
nulli ¼ 0: ð5Þ

The null and test states are generated by the action of null
and test operators on jΩi. The superscripts K and L label
the numbers of basis operators involved. For a given K, a
well-chosen L can lead to a determined system [13]. In
unitary theories, we use additional null constraints to select
out a discrete set of points on the boundary of the non-
negative region.
Below, we show that the solutions to the DS equa-

tions with null state constraints converge rapidly to the
exact values. They include the complex solutions, such
as the PT symmetric ones in non-Hermitian theories
[5,17–21], where PT denotes space [22] and time reversal.
Nonperturbatively, these complex solutions cannot be
derived from positivity constraints.
Zero-dimensional theories.—The D ¼ 0 generating

functional is given by a more standard integral. The
integration path is associated with the choice of Stokes
sectors. A simple choice in Hermitian theories is along the
real axis. Since there is no time coordinate at D ¼ 0, the
Lagrangian L has no kinetic term and we can only study
the n-point Green’s function at equal time. The DS
equations associated with the Lagrangian L ¼ ðg=nÞϕn are

gGnþk ¼ ðkþ 1ÞGk; k ¼ −1; 0; 1;…: ð6Þ

The general solution reads

Gmnþk ¼
�
n
g

�
m
�
kþ 1

n

�
m
Gk; Gn−1 ¼ 0; ð7Þ

where k ¼ 0; 1;…; n − 1. We have G0 ¼ 1 by definition,
so there are n − 2 free parameters. For n > 2, indetermi-
nacy is an intrinsic feature of the DS equations, rather than
a consequence of the finite truncation [23].
Let us first consider the Hermitian quartic theory

with L ¼ 1
4
ϕ4. Assuming that parity symmetry is not

broken, we have G1 ¼ 0, so there is only one free

parameter, i.e., the two-point Green’s function G2. The
exact value of G2 is

G2 ¼ � 2Γð3=4Þ
Γð1=4Þ ¼ �0.675 978 240…; ð8Þ

where the plus (minus) sign is associated with an integra-
tion path along the real (imaginary) axis.
To solve for G2, we impose the null state condition (5)

with

OðKÞ
null ¼

XK
m¼0

amϕm; OðLÞ
test ¼

XL
m¼0

bmϕm: ð9Þ

The null state condition should be valid for arbitrary bm, so
we have (Lþ 1) equations. The number of free parameters
in the null operator is (K þ 1). After fixing the normali-
zation, there remain K parameters. We choose L ¼ K to
obtain a determined system.
For K ¼ 3, the solutions for G2 are f−1;�1=

ffiffiffi
3

p g. The
latter pair of solutions are the same as the one from setting
the connected part of four-point Green’s function to zero,
whose error is −14.6% compared to the exact value [5]. As
shown in [5], the results do not converge to the exact values
by setting the connected part of higher-point functions to
zero. In contrast, our higher K results from the null state
condition (5) converge to the exact values rapidly.
For K ¼ 5, the solutions are f−2=3; 0;�1=

ffiffiffi
2

p g ¼
f−0.6667…; 0;�0.7071…g. The solution at zero seems
unphysical, while the errors in the other solutions are
f−1.4%; 4.6%g. For K ¼ 7, the solutions are f�0.5387…;
�0.6752…;�0.6787…;�1.098…g. The errors in the
second and third pairs are f−0.12%; 0.40%g. For K ¼ 9,
there is one solution at zero and four pairs of solutions with
errors f−0.0096%; 0.034%;−2.5%; 7.5%g. For K ¼ 11,
we find six pairs of solutions and their errors are
f−0.000 76%; 0.0027%;−0.26%; 0.82%;−24%; 71%g.
The solutions for the null operators exhibit definite parity.
In general, the solutions forG2 correspond to the roots of

some high-degree polynomial equations. Most of the roots
accumulate around the exact values and the errors in the
most accurate roots decrease rapidly. As the signs of the
errors change alternatively, we can extract an accurate
estimate from the median of a set of roots. A robust
procedure of extracting the median is to repeatedly throw
away the root with the largest distance from the average
value, which also applies to the case of complex solutions.
For example, there are ten pairs of solutions at K ¼ 19.

Eight of the positive solutions are in the range (0.67,0.69),
while four of them are in the tiny range (0.675 978,0.675
979), The median gives 0.675 978 2403… and reproduces
the numerical expression in (8). The rapid growth of the
root density is reminiscent of the critical behavior of the
Yang-Lee edge singularity [24–26], described by the iϕ3

theory [27].
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The second example is the non-Hermitian cubic model
L ¼ ði=3Þϕ3. The only free parameter is G1, whose exact
value is

G1 ¼ −31=3
Γð2=3Þ
Γð1=3Þ e

i2kπ=3i ¼ −0.729 011 133…ei2kπ=3i;

ð10Þ

where k ¼ 0, 1, 2 depends on the choice of the Stokes
sectors. We impose the null state condition as in the quartic
case (9) with L ¼ K. The solutions again exhibit the
phenomenon of root accumulation near the exact values.
For K ¼ 2, the solutions for G1 are −2−1=3ei2kπ=3i. The
same results can be obtained by setting the connected part
of G3 to zero [5]. As K increases, the results of the cubic
model converge more rapidly than the quartic case. At
K ¼ 10, there are eleven solutions with two of them at zero.
The remaining nine solutions form three groups of roots
related by threefold symmetry. One group consists of purely
imaginary solutions around −0.73i, which is expected to be
PT symmetric. The median gives a remarkably accurate
estimate −0.729 011 134…i.
In general, the L ¼ ðg=nÞϕn theory has n-fold sym-

metry. The above quartic case has twofold symmetry due to
parity symmetry. For the sextic theory with L ¼ 1

6
ϕ6, parity

symmetry implies that the free parameters are G2 and G4.
We should set L ¼ K þ 2 because of parity constraints. We
find three groups ofG2 roots related by threefold symmetry.
For K ¼ 10, the median of the root group around the real
axis givesG2 ¼ 0.578 616 25…, which is close to the exact
value 61=3

ffiffiffi
π

p
=Γð1=6Þ ¼ 0.578 616 52….

If we consider the quartic theory L ¼ − 1
4
ϕ4 without

parity symmetry, then G1 does not vanish. The null state
condition with L ¼ K þ 1 leads to a determined system.
For K ¼ 10, there are 66 roots for G1 and 44 of them are
located around ik with k ¼ 0, 1, 2, 3. The median of
the (−i) group gives −0.977 741 049…i, which is fairly
close to the exact solution with PT symmetry at
−2i

ffiffiffi
π

p
=Γð1=4Þ ¼ −0.977 741 067…i. For the quintic

theory with L ¼ −ði=5Þϕ5, we need to set L ¼ K þ 2
and there are ten groups of roots. For K ¼ 10, the two
independent groups of roots give −1.078 676…i and
0.411 84…i, corresponding to the PT symmetric solutions
at G1 ¼ −1.078 653…i and G1 ¼ 0.412 01…i.
One-dimensional theories.—As a natural extension of

the D ¼ 0 procedure, we first study the equal-time limit of
D ¼ 1 theories, then we consider the situation with unequal
time. In quantum field theory, the coincidence or zero-
separation limit of n-point Green’s functions is also known
as one-point functions of composite operators. In our
examples, this limit is regular and the typical issue of
additional divergences at higher D does not appear.

In the equal-time limit, one should be careful about the
order of operators. The contact terms on the right hand side
of the DS equations imply

h� � � ½ _ϕðτÞϕðτÞ − ϕðτÞ _ϕðτÞ þ 1� � � �i ¼ 0; ð11Þ

which is the counterpart of the canonical commutation
relation in the operator formalism. Translation invariance
implies

h _O1ðτ1ÞO2ðτ2Þ þO1ðτ1Þ _O2ðτ2Þi ¼ 0: ð12Þ

If O2 ¼ 1, we have ðd=dτÞhO1ðτÞi ¼ 0, the counterpart of
h½H;O1�i ¼ 0 in the Hamiltonian formalism [28].
Together with the dynamical part on the left hand side of

the DS equations, we can express the one-point functions of
composite operators in terms of

Fn ¼ ∂
n
τ2G2ðτ1; τ2Þjτ1→τ2þ0þ ¼

�
ϕðτÞ d

nϕðτÞ
dτn

�
; ð13Þ

which is independent of τ due to translation invariance. In
general, we may need more two-point functions as some
observables are not related to G2 by DS equations.
To determine the independent parameters in fFng, we

impose the null state condition (5) with

OðKÞ
null ¼

XK
m¼0

am
dmϕðτÞ
dτm

; OðLÞ
test ¼

XL
m¼0

bm
dmϕðτÞ
dτm

: ð14Þ

The null constraints can be expressed in terms of Fn

using (12). The solutions are again associated with some
high-degree polynomial equations. As in the D ¼ 0 case,
the majority of roots accumulate around the exact values.
We can also reconstruct other physical observables from the
solutions. In particular, the polynomial equation asso-
ciated with the null state encodes the spectral information.
The first concrete example is again the quartic theory

L ¼ 1
2
ð _ϕÞ2 þ 1

2
m2ϕ2 þ gϕ4. We set m ¼ 1 and g ¼ 1=2 to

make contact with the previous results based on the
Hamiltonian formalism. The DS equations are

ð−∂2τ1 þ 1ÞGnðτ1; τ2;…Þ þ 2Gnþ2ðτ1; τ1; τ1; τ2;…Þ

¼
Xn
i¼2

δðτ1 − τiÞGn−2ðτ2;…; τi−1; τiþ1;…Þ: ð15Þ

If τ1 ≠ τi≠1, the contact terms are irrelevant

h� � � ½ϕ̈ðτ1Þ − ϕðτ1Þ − 2ϕ3ðτ1Þ� � � �i ¼ 0; ð16Þ

then the smooth equal-time limit leads to constraints on the
one-point functions of composite operators. According to
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the system of (11), (12), and (16), they can be expressed in
terms of Fn. Some examples are

hϕ _ϕi ¼ 1

2
; hð _ϕÞ2i ¼−F2; hϕ4i ¼−

F0

2
þF2

2
; ð17Þ

hϕ3 _ϕi ¼ 3F0

2
; hϕ2ð _ϕÞ2i ¼ 1

2
þ F2

6
−
F4

6
: ð18Þ

The nonzero one-point functions involve even numbers of
ϕ due to parity symmetry. Higher time derivatives are
removed by (16). The independent composite operators
take the ordered form ϕmð _ϕÞn due to (11) [29]. The odd
case F2mþ1 do not appear because they are not independent,
such as

F1 ¼
1

2
; F3 ¼

1

2
þ 3F0; F5 ¼

1

2
− 3F0þ 9F2: ð19Þ

Therefore, all the one-point functions of composite oper-
ators are encoded in the equal-time limit of G2ðτ1; τ2Þ. We
set L ¼ 2K to obtain a determined system.
Let us examine the simplest caseK ¼ 1with a0 ≠ 0. The

constraints from f1; ∂τ1 ; ∂2τ1ghϕðτ1ÞOðKÞ
nullðτ2Þijτ1→τ2

¼ 0 are

�
a1
2a0

þ F0;
1

2
þ a1
a0

F2;
a1
2a0

þ 3a1
a0

F0 þ F2

	
¼ 0: ð20Þ

This system implies that F0 ¼ hϕ2i is a root of the
polynomial 24x3 þ 4x2 − 1. The real root at 0.2991… is
already close to the exact value hϕ2i ¼ 0.305 813 6507….
We may further require that the null state condition is
satisfied beyond the equal-time limit, then we obtain a
differential equation for the two-point function with
τ1 > τ2

ða0 þ a1∂τ2ÞGðK¼1Þ
2 ðτ1; τ2Þ ¼ 0; ð21Þ

whose solution is

GðK¼1Þ
2 ðτ1; τ2Þ ¼ c1eða0=a1Þjτ1−τ2j: ð22Þ

The real root of F0 corresponds to −a0=a1 ¼ 1.6717….
This is close to the exact energy gap Egap ¼ E1 − E0 ¼
1.628 230 531… in the Hamiltonian formulation.
At higher K, the number of solutions also increases. The

null state condition on the two-point function implies

GðKÞ
2 ðτ1; τ2Þ ¼

XK
m¼1

cme−ΔEmjτ1−τ2j; ð23Þ

where fΔEmg are the roots of the null polynomial

XK
m¼0

amxm ð24Þ

from the solution for the null operator. The interpretation of
fΔEmg is the energy differences of intermediate states and
jΩi. If the energy spectrum is real and jΩi is the lowest
energy state j0i, then the roots of (24) should be positive for
a gapped system. For each K examined, it turns out that
there is only one solution with all roots positive. In this
way, we can make a definite selection from a large number
of solutions.
The results converge rapidly to the exact values as K

increases. In Fig. 1, we present the real part of the two-point
function as a function of real time for K ¼ 1, 2, 3, where
t ¼ −iðτ1 − τ2Þ. The imaginary part also converges to the
exact function rapidly. For K ¼ 6, we obtain hϕ2i ¼
0.305 813 644… and ΔE¼f1.628230589…;5.882239…;
10.9536…;16.661…;23.3…;32.5…g. For comparison, the
exact energy differences between the ground state and the
low-lying states with odd parity are f1.628 230 531…;
5.882 226…; 10.9525…; 16.624…; 22.8…; 29.4…g. The
estimates are fairly accurate for the low-lying states and
reasonably good for higher states. We can further deter-
mine cm in (23) using Fn, which are related to the matrix
element hnjϕj0i. For instance, the square roots of the

leading coefficients c1=21 ¼ 0.552 565 9561… and c1=22 ¼
0.021 994 704… are close to the exact values jh1jϕj0ij¼
0.5525659593… and jh3jϕj0ij¼0.021994761….
The D ¼ 1 exact solution on the real axis is also a root

accumulation point. If we do not use the spectral constraint,
the median of a dense group of roots around the real axis
also leads to the same result or a small set of nearby roots.
In the complex plane, there exists a conjugate pair of root
groups around −0.255� 0.297i.
The second example is the non-Hermitian cubic

theory L ¼ 1
2
ð _ϕÞ2 þ gϕ3 with g ¼ i=2. The DS equa-

tions are

− ∂
2
τ1Gnðτ1; τ2;…Þ þ 3i

2
Gnþ1ðτ1; τ1; τ2;…Þ

¼
Xn
i¼2

δðτ1 − τiÞGn−2ðτ2;…; τi−1; τiþ1;…Þ: ð25Þ

FIG. 1. The real part of the real-time two-point function of the
quartic theory for K ¼ 1, 2, 3 and the exact function.
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The system of (11), (12), (25) determines the one-point
functions of composite operators and some Fn, such as

hϕi ¼−
2i
3
F3; hð _ϕÞ2i ¼−F2; hϕð _ϕÞ2i ¼ i

3
F4; ð26Þ

F0¼F5¼0; F1¼
1

2
; F6¼−

15

4
; F7¼−

45

2
F2: ð27Þ

Then we use the null state condition as in the quartic case.
Since hϕi does not vanish, the null operator should contain
a constant term −a0hϕi due to hOðKÞ

nulli ¼ 0. We again set
L ¼ 2K and the simplest approximation K ¼ 1 gives

�
a1
2a0

− hϕi2; 1
2
þ a1
a0

F2; F2 þ
a1
a0

F3

	
¼ 0: ð28Þ

This leads to a degree-five polynomial equation ðF3Þ5 ¼
ð81=128Þ with F2 ¼ ð9=16ÞF−2

3 , so the solutions of hϕi
exhibit fivefold symmetry. The real solution at hϕi ¼
−12−1=5i ¼ −0.608…i is close to the exact value
−0.590 072 533…i. The estimate of the energy gap
−a0=a1 ¼ ð9=2Þ1=5 ¼ 1.351… is the same as a truncation
result in [18], which is not far from the exact value
1.476 480 8747…. At higher K, the roots also exhibit
fivefold symmetry and five accumulation points.
ForK ¼ 6, theG1 roots are presented in Fig. 2. We obtain

hϕi ¼ −0.590 072 522…i by assuming the real part of
the roots of the null polynomial are positive and the
lowest one has no imaginary part. The resulting energy
differences f1.476 4812…; 3.202 970…; 5.081…; 7.008…;
9.45…� 1.05…ig are close to the exact values
f1.476 4809…; 3.202 996…; 5.079…; 7.059…; 9.16…;
10.09…g. Note that the last two real values become a
conjugate pair in the approximate solution. As shown in
Fig. 2, the median of the root group around hϕi ≈ −0.6i

gives the same result. In the end, we can deter-
mine cm using Fn, such as c1 ¼ 0.356 451 51… and
c2 ¼ −0.008 363 555…. The exact values are jh1jϕj0ij2 ¼
0.356 451 39… and jh2jϕj0ij2 ¼ 0.008 363 569….
Summary.—We have shown that the indeterminacy of

the DS equations can be successfully resolved by the null
state condition. In some sense, the null state condition can
be viewed as a quantization condition, playing a similar
role as the boundary condition on a functional integral. We
discovered that the exact solutions are root accumulation
points, which is analogous to the concentrations of roots in
[5]. For the gϕn theory at D ¼ 0, 1, we obtained rapidly
convergent estimates from the medians of nearby roots,
including the complex solutions, and reconstructed the
time-dependent two-point Green’s function. The extensions
to higher point functions [30] and higher D are in progress.
For more systematic investigations and improved numeri-
cal stability, it may be useful to apply the tools of
computational and numerical algebraic geometry or other
advanced techniques to solve the polynomial systems.
At D > 0, we proposed another method for extracting

the best estimate. The null polynomial from the null state
solution encodes the spectral information of intermediate
states, so a bounded-from-below spectrum should have
only positive roots. This requirement selects a unique
solution. The close relations among null states, differential
equations for n-point functions, and intermediate spectra
are in beautiful parallel with the classical work of Belavin-
Polyakov-Zamolodchikov on 2D minimal model con-
formal field theories [10].
We elucidated the intimate connection between approxi-

mate external null states and truncated spectra of inter-
mediate states. It would be interesting to revisit the general
D conformal bootstrap methods [31]. The truncation
approach initiated by Gliozzi [32] can be viewed as a
general D approach based on approximate null states. The
present Letter provides new insights on how to select the
best estimates from the solutions to truncated crossing
equations. Furthermore, the complex solutions in the CFT
context can have important implications on gauge theory,
statistical, and condensed matter physics [33].
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