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We show that double-copy maps for amplitudes in effective field theory are severely constrained at four
points by self-consistency and locality at six points. The resulting double-copy kernel depends only on two
parameters as well as a specific symmetric function in s, t, u and interpolates between the original Kawai-
Lewellen-Tye (KLT) string double copy and the open and closed string period integrals. Amplitudes double
copied with this map must obey either the string monodromy relations or the field theory Kleiss-Kuijf (KK)
and Bern, Carrasco, and Johansson (BCJ) relations; there are no other options. Our construction elucidates
the “single-valued projection” property of the Riemann zeta-function values for the four-point string theory
double copy.
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Introduction.—The double copy is a map between
observables in a variety of theories, including, famously,
Yang-Mills (YM) theory to gravity. It originates in string
theory as a relation between open and closed string ampli-
tudes [1] and has, in its field theory incarnation, dramat-
ically simplified higher-order amplitude computations. The
double copy has a wide range of applications, such as
derivations of compact formulas for n-point tree-level
amplitudes [2–12] and the simplification of higher-loop
calculations to examine, for example, the UV behavior of
supersymmetric scattering amplitudes [13–26]. It is used in
investigations of gravitational wave physics [27,28], studies
of the interplay between quantum field theory and string
theory [29–35], methods for finding exact solutions to
classical equations of motion [36–44], computations of
boundary observables in (anti)-de Sitter [45–57] explora-
tions of amplitudes in the soft and Regge limit [58–61], and
manifestation of symmetries in amplitudes [62–70].
Reviews of the double copy include Refs. [4,71–73].
In this Letter, we study the double copy in the context of

d-dimensional effective field theory (EFT) with massless
states and local higher-derivative operators. Reference [74]
proposed an algorithm, the Kawai-Lewellen-Tye (KLT)
double-copy bootstrap, to systematically construct higher-
derivative corrections to the field theory double-copy map.
When implemented at minimal rank (motivated by the
absence of spurious poles) for four- and five-point
amplitudes, Ref. [74] found that the bootstrap gives an

EFT double-copy map that is more general than the string
kernel.
We extend the minimal rank KLT bootstrap to six-point

and find novel restrictions on the four- and five-point
double-copy maps that leave very few parameters free.
Specifically, we find that any EFT amplitude compatible
with the four-point double-copy map must obey either the
string monodromy relations or the field theory KK and BCJ
relations [2,75–79]. It is surprising that string monodromy
arises in an EFT context because it is a property of the
world sheet description of string scattering [75–79].
Based on the low-energy expansion of the generalized

double-copy map, we propose a closed-form expression for
the four-point map: it takes a factorized form of one
function that depends on two parameters (a “left” and a
“right” choice of α0) and a symmetric functionU in s, t, u of
a simple form. Hence, the most general double-copy map is
a generalization of the string theory double copy such that a
continuous interpolation is possible between the string
kernel with α0L ¼ α0R ≠ 0, the open string period integrals
(“Z theory”) with either α0L or α0R zero, and the closed string
period integrals with α0L ¼ α0R ¼ 0. In an EFT context, the
double copy is effectively independent of the symmetric
function U in the sense that U can be absorbed into the
input amplitudes. In a string theory context, the symmetric
function provides insight into the single-valued projection
property of closed string amplitudes [80,81].
Review: KLT bootstrap.—The KLT double copy maps

on-shell tree amplitudes, AL
n and AR

n , of two theories L and
R to on-shell tree amplitudes in a third theory, denoted
L ⊗ R. Assuming all states are massless, we have

AL⊗R
n ¼

X
a∈BL;b∈BR

AL
n ½a�Sn½ajb�AR

n ½b�; ð1Þ
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where the sum is over two “basis choices” BL and BR of
ðn − 3Þ! color orderings among the ðn − 1Þ! single-trace
structures associated with a local or global color group of
theL andR theories. The double-copykernelSn is a function
of the n-point Mandelstam variables. In the original KLT
construction of Ref. [1], the L and R amplitudes are open
string tree amplitudes and Sn is the string kernel. In the low-
energy limit α0 → 0, the open (closed) string amplitudes
reduce to YM (gravity) tree amplitudes and the string kernel
becomes the field theory kernel.
A crucial property of Eq. (1) is that the double-copied

amplitudes, AL⊗R
n , are independent of the choice of color

orderings, BL=R, in the sum. As a consequence, the double
copy can be formulated as a multiplicative map of field
theories, FTL⊗R ¼ FTL ⊗ FTR, where the multiplication
rule ⊗ is defined by the kernel Sn. In string theory, basis
independence is ensured by the string monodromy relations
satisfied by the open string tree amplitudes. In field theory,
the KK and BCJ relations, denoted as KKBCJ relations,
guarantee the needed basis independence.
The goal of the KLT double-copy bootstrap introduced

in Ref. [74] is to determine the most general form of the
double-copy kernel, Sn, along with the associated linear
relations required by the L and R amplitudes such that the
double copy is a map on the space of field theories. This
requires that the output AL⊗R

n is free of spurious poles and
independent of the basis choices BL=R in Eq. (1).
Reference [74] showed that these desired properties are
linked to the existence of an identity element 1, i.e., a field
theory whose tree amplitudes obey

1⊗ 1¼ 1; ð2Þ

L⊗ 1¼ L; 1⊗ R¼ R: ð3Þ

This is the KLTalgebra. The identity model associated with
the field theory kernel is the cubic biadjoint scalar (BAS)
model,

LBAS ¼−
1

2
ð∂ϕaa0 Þ2þ 1

6
fabcf̃a

0b0c0ϕaa0ϕbb0ϕcc0 ; ð4Þ

for which Eq. (3) becomes the KKBCJ relations.
The identity model amplitudes of the string kernel were

constructed in Ref. [82], and their low-energy α0 expansion
shows that the identity model is a BAS model plus a
particular tower of higher-derivative terms with fixed
coefficients controlled by α0.
The core proposal of Ref. [74] is to take the KLT algebra

to be a fundamental property of the double copy.
Specifically, Eq. (2) becomes a bootstrap equation for
the kernel while the generalized KKBCJ relations arise
from Eq. (2). As the candidate for the identity model, we
consider BAS EFT: the cubic BAS in Eq. (4) plus all
possible local higher-derivative terms.

Let mn½ajb� be the doubly color-ordered tree amplitudes
of the general BAS EFT. The bootstrap equation 1 ⊗ 1 ¼ 1
says

mn½cjd� ¼
X

a∈BL;b∈BR

mn½cja�Sn½ajb�mn½bjd�: ð5Þ

The sums are over the ðn − 3Þ! color orderings in the bases
defined below Eq. (1). Since there is a total of ðn − 1Þ!
color orderings, we organize the amplitudes mn½ajb� into
ðn − 1Þ! × ðn − 1Þ! matrices mn. If the color choices c and
d in Eq. (5) run over ðn − 3Þ! color orderings B1 and B2,
then Eq. (5) becomes a matrix equation

mB1B2
n ¼ mB1BL

n :SBLBR
n :mBRB2

n ; ð6Þ
where the superscript indicates the choices of rows and
columns for the ðn − 3Þ! × ðn − 3Þ! submatrices of mn.
Choosing B1 ¼ BR and B2 ¼ BL, it follows from Eq. (6)
that

SBLBR
n ¼ ðmBRBL

n Þ−1: ð7Þ
This shows that the kernel is uniquely linked to the tree
amplitudes of the identity model. Plugging Eq. (7) into
Eq. (6) gives a nontrivial condition: the rank of the
ðn − 1Þ! × ðn − 1Þ! matrix mn must be ðn − 3Þ!. Generic
BAS EFT tree amplitudes give mn with full rank ðn − 1Þ!,
so the “minimal rank” condition imposes nontrivial rela-
tions on the Wilson coefficients. This way 1 ⊗ 1 ¼ 1
becomes a bootstrap equation for the double-copy
kernel [83]. We now summarize the results of Ref. [74]
for four- and five-point.
Four-point: At four-point, all 3! × 3! entries of mn can

be expressed in terms of just three functions [86]

f1ðs; tÞ ¼m4½1234j1234�; f2ðs; tÞ ¼m4½1234j1243�;
f6ðs; tÞ ¼m4½1234j1432� ð8Þ

via cyclicity and momentum relabeling, and the minimal
rank 1 condition is solved by

f6ðs; tÞ ¼ f1ðs; tÞ ¼
f2ðs; tÞf2ðu; sÞ

f2ðt; sÞ
;

f2ðs; tÞf2ðu; sÞf2ðt; uÞ ¼ f2ðt; sÞf2ðu; tÞf2ðs; uÞ: ð9Þ

These equations ensure that f1 is cyclic, f1ðu; tÞ ¼ f1ðs; tÞ.
These conditions are solved by the tree amplitudes of the
BAS in Eq. (4) and by the inverse string kernel of Ref. [82],
respectively,

fBAS2 ¼ −
1

s
; fstr2 ðs; tÞ ¼ −

πα0

sinðπα0sÞ : ð10Þ

Since on-shell local operators are in one-to-one corre-
spondence with local on-shell matrix elements, the most
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general ansatz for the BAS EFT is given by higher-order
polynomial terms in f2 as

f2ðs; tÞ ¼ −
1

s
þ
XN
k¼0

Xk
r¼0

ak;rsrtk−r: ð11Þ

Here all possible local operators up to 2N derivatives are
included. The Wilson coefficients a2i;2i must be set to zero
for all i ¼ 0; 1; 2;… to avoid unphysical poles in f1 via
Eq. (9). The four-point bootstrap equation, Eq. (9), is
solved order by order in the Mandelstam variables and for
the first few orders we find

k Constraints

1 None
2 a2;1 ¼ a2;0
3 None
4 a4;3 ¼ a4;0 − a4;1 þ a4;2
5 a5;4 ¼ a5;0 − a5;1 þ a5;3 þ a1;0a1;1ða1;0 − a1;1Þ

þa1;1ða3;1 − a3;2Þ − a1;0ða3;0 − a3;2 þ a3;3Þ.

To match the inverse string kernel fstr2 in Eq. (10), set all
ak;r ¼ 0 except for ak;k with k odd for which

a1;1¼−
π2α02

6
; a3;3¼−

7π4α04

360
; a5;5¼−

31π6α06

15120
;…:

A closed-form expression for the inverse string kernel
coefficients can be given in terms of the Bernoulli numbers.

Five-point: The five-point KLT bootstrap requires m5 to
have rank 2, which significantly constrains the Wilson
coefficients of the local five-point interactions. Since the
BAS EFT amplitudes m5 depend on m4 through factori-
zation, it is noteworthy that no additional constraints [as
explicitly checked up to Oðs8Þ] arise on the four-point
Wilson coefficients ak;r in the five-point analysis.
New results at six points.—New constraints on the four-

point double-copy kernel arise from the six-point KLT
bootstrap. The six-point analysis is done by first using
cyclicity and momentum relabeling to parameterize the
ð6 − 1Þ! ¼ 120 distinct amplitudes m6½123456jb� in terms
of 24 “basis” amplitudes. All pole terms of these 24 basis
amplitudes are then fixed by their factorization to the
known four- and five-point amplitudes. Local six-point
terms are included as all possible polynomial terms in a
choice of the nine Mandelstam variables that are indepen-
dent under six-point momentum conservation. Table I gives
the parameter count at each order.
We impose minimal rank 6 on the 120 × 120 matrix of

doubly color ordered six-point amplitudes of BAS EFT by
setting the 7 × 7 minors to zero up to and including cubic
order Oðs3Þ. This constrains the four-point coefficients ak;r
up to and including Oðs5Þ and the full results are

summarized in Table II. In the section “Hybrid decom-
position,”we extend these results to higher order. The result
is that at four-point, all parameters are fixed except

a1;0; a1;1 and a2k;0 for k ¼ 1; 2; 3;…: ð12Þ

The generalized KKBCJ relations arising from Eq. (3)
can all be written in terms of ratios of f2. For example one
of the relations required by L ⊗ 1 ¼ L is

AL
4 ½1234� ¼

f2ðu; sÞ
f2ðt; sÞ

AL
4 ½1243�: ð13Þ

The ratios of f2 turn out to be independent of all a2k;0. In
fact, the generalized L-sector KKBCJ relations only

TABLE I. Number of free parameters at each order in Man-
delstams in the BASþ EFT ansatz before and after the six-point
bootstrap. The counting in the table refers to parameters left free
after the four-point and five-point minimal rank bootstrap. For
example, for k ¼ 4, the three free parameters at four-point are
a4;0, a4;1, a4;2, because a4;3 was fixed by the four-point bootstrap
and we needed a4;4 ¼ 0 to ensure locality of f1. The six-point
bootstrap condition fixes all 3þ 4þ 1080 parameters except 1,
namely, a4;0.

k
Four-point
OðskÞ

Five-point
Oðsk−1Þ

Six-point
Oðsk−2Þ

Free after six-point
bootstrap

1 2 0 0 2 a1;0, a1;1
2 1 0 24 1 a2;0
3 4 0 216 0
4 3 4 1080 1 a4;0
5 5 10 3960 0

TABLE II. Combined results for the coefficients ak;r up to
Oðs5Þ in the four-point amplitude f2 in Eq. (11) after the KLT
bootstrap at four-, five-, and six-point. Note that a1;0, a1;1, and
a2k;0 for k ¼ 1; 2;… remain unfixed.

a2;1 a2;0
a3;0 ¼ 2

5
a1;0ða1;0 − 2a1;1Þ

a3;1 ¼ ð1=10Þa1;0ða1;0 − 12a1;1Þ
a3;2 ¼ 1

5
a1;0ð2a1;0 − 9a1;1Þ

a3;3 ¼ −ð7=10Þa21;1
a4;1 ¼ −a1;0a2;0 þ 2a4;0
a4;2 ¼ −ða1;0 þ a1;1Þa2;0 þ 2a4;0
a4;3 ¼ −a1;1a2;0 þ a4;0
a5;0 ¼ ð8=35Þa1;0ða21;0 − 3a1;0a1;1 þ 3a21;1Þ
a5;1 ¼ ð2=35Þa1;0ð3a21;0 − 16a1;0a1;1 þ 30a21;1Þ − ða22;0=2Þ
a5;2 ¼ ð1=70Þa1;0ð23a21;0 − 104a1;0a1;1 þ 216a21;1Þ − a22;0
a5;3 ¼ ð1=70Þa1;0ð12a21;0 − 71a1;0a1;1 þ 204a21;1Þ − ða22;0=2Þ
a5;4 ¼ ð1=70Þa1;0ð16a21;0 − 76a1;0a1;1 þ 153a21;1Þ
a5;5 ¼ ð31=70Þa31;1
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depend on a single parameter, namely, a1;1 − a1;0 whereas
the relations from 1 ⊗ R ¼ R only depend on a1;1. Writing

a1;1 ¼ −
π2α02R
6

; a1;0 ¼
π2

6
ðα02L − α02R Þ; ð14Þ

our results for the L and R generalized KKBCJ relations
can be identified precisely as the low-energy expansion of
the string monodromy relations with separate L or R
choices of α0. Depending on whether α0L;R are zero or
not means that that generalized four-point KKBCJ relations
are then either the field theory KKBCJ relations or the
string monodromy relations.
We now connect the results of the KLT bootstrap to

known special cases.
Inverse string kernel: The inverse string kernel has

monodromy relations with the same α0 for the two color
orderings, i.e., α0L ¼ α0R. By Eq. (14), this choice requires
a1;0 ¼ 0. Table II then shows that almost all coefficients
vanish except the a2k;0’s and ak;k for k odd, which directly
give the string kernel coefficients. Thus,

α0 ≡ α0L ¼ α0R and a2k;0 ¼ 0 ð15Þ

matches the inverse string kernel.
Hybrid models GF (generalized Z theory): Refer-

ence [87] studied BAS EFTs with tree amplitudes that satisfy
the field theory KKBCJ relations on the second color order-
ing. These relations are imposed as ðn − 1Þ! − ðn − 3Þ! null
vector conditions on the matrix mn. Hence, it has rank
ðn − 3Þ! and must be in the same class as the inverse double-
copy kernels studied in this Letter. We call these models
hybridmodels anddenote thembyGF to indicate that they are
general (i.e., no imposed constraints) on the first color-
structure and obey field theory KKBCJ relations on the
second color structure. It was shown in Ref. [87] that at four-
point the generalized KKBCJ relations of the first color
structure (i.e., G) are the stringmonodromy relationswitha1;0
simply a choice of the scale of α0.
We obtain the GF models of Ref. [87] by setting

a1;1 ¼ a1;0, i.e., α0L ¼ 0. Additionally choosing

a2k;0 ¼ −ζð2kþ 1Þα02kþ1; ð16Þ

where α0 ¼ α0R and ζðpÞ is the Riemann Zeta function, we
match the four-point amplitudes of Z theory in Ref. [88]. It
is useful to note that the open string tree amplitudes can be
obtained as the double copy

open string tree ¼ Z ⊗FF YM; ð17Þ

where⊗FF indicates the field theory kernel with no higher-
derivative corrections.
Closed string J integrals: The closed string tree

amplitudes can be written in terms of period integrals,

the “J integrals,” as a field theory kernel double copy
[32,89–92]

closed string tree ¼ YM ⊗FF J ⊗FF YM: ð18Þ

The J-integral amplitudes are a special case of the BAS
EFT amplitudes, namely, those that obey the field
theory KKBCJ relations on both color structures, i.e.,
α0L ¼ α0R ¼ 0. We obtain the J-integral amplitudes by
additionally choosing a2k;0 ¼ −2ζð2kþ 1Þα02kþ1.
Hybrid decomposition.—The process of solving the

vanishing conditions for 7 × 7 minors of m6 becomes
increasingly difficult at higher orders in the derivative
expansion. However, we can go to much higher orders
using the hybrid decomposition conjecture which posits
that the most general BAS EFT (denoted GG̃) (i.e., the tree
amplitude matrix mn has minimal rank ðn − 3Þ!) can be
obtained by a field theory double copy of two hybrid
models:

GG̃ ¼ GF ⊗FF FG̃: ð19Þ

Here GF is the hybrid model described above and FG̃ is the
hybrid model with first and second color orders inter-
changed. GF and FG̃ have independent coefficients, aGFk;r
and aFG̃k;r . The subscript FF on the product in Eq. (19)
emphasizes that the double copy is done with the standard
field theory kernel.
At four-, five-, and six-points, one can directly test

Eq. (19) using the results for GG̃ presented in the section
“New results at six points” and those for GF in Ref. [87].
Further evidence will be presented in Ref. [93]. The key
point here is that it is much easier to solve the linear field
theory KKBCJ constraints for GF than it is to impose
vanishing 7 × 7 determinant conditions for GG̃. The hybrid
model GF was solved to order 18 in the Mandelstam
expansion at four-point with constraints from six-point
KKBCJ relations in Ref. [87].
A closed-form expression for fGF2 was proposed in

Ref. [87] and using it with the hybrid conjecture
Eq. (19), we find

fGG̃2 ðs; tÞ ¼ fð0Þ2 ðs; tÞUðs; t; uÞ; ð20Þ

where

fð0Þ2 ¼ −
π

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α0Rα

0
Ls

2 sinðπα0RtÞ sinðπα0LuÞ
sinðπα0RsÞ sinðπα0RuÞ sinðπα0LsÞ sinðπα0LtÞ

s
;

logU ¼
X∞
k¼1

a2k;0
2kþ 1

ðs2kþ1 þ t2kþ1 þ u2kþ1Þ: ð21Þ

Here, a2k;0 ¼ aGF2k;0 þ aFG̃2k;0, and α0R=L are the α0’s associated
with the four-point string monodromy relations of the GF
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and FG̃ models, respectively. Using the definitions in
Eq. (14), the low-energy expansion of Eqs. (20) and (21)
matches the results in Table II. When α0R ¼ α0L and
a2k;0 ¼ 0 we recover the inverse string kernel fstr in
Eq. (10) from Eqs. (20) and (21).
When α0L ≠ α0R, the closed form expression in Eq. (21)

has unphysical poles, so it should be understood only in the
low-energy expansion. This may pinpoint the string kernel
with α0L ¼ α0R.
Additional constraints on the four-point coefficients ak;r

from a higher-point bootstrap are unlikely. Conditions on
a2k;0 are impossible because Z theory has a2k;0 fixed to
ζð2kþ 1Þ and there are (conjecturally) no polynomial
conditions that can relate these odd-argument transcenden-
tal numbers [81,88,94,95].
Implications for the KLT double copy.—Monodromy

relations: When the closed-form expression in Eqs. (20)
and (21) are plugged in to the generalized KKBCJ relations,
e.g., Eq. (13), we find the string monodromy relations,

sinðπα0LuÞAL
4 ½1234� ¼ sinðπα0LtÞAL

4 ½1243�: ð22Þ

In particular,U drops out from the ratios of f2 which is why
there is no dependence on the a2k;0’s. Moreover, by the
hybrid decomposition construction, the monodromy rela-
tions from the hybrid models are inherited by GG̃ in (19).
This means that the generalized KKBCJ relations of the
minimal double-copy kernel at four-point must be either the
string monodromy relations (αL=R nonzero) or the field
theory KKBCJ relations (αL=R zero). It is interesting that
such stringy properties arise from the basic assumptions of
the KLT algebra.
Kernel equivalence: Even though U in Eq. (20) does

not enter the generalized KKBCJ conditions, such as in
Eq. (13), it does contribute to the final double result.
However, any contribution from the U in the kernel can be
absorbed into the input amplitudes. Concretely, if we use U
to redefine the Wilson coefficients of the higher-derivative
terms of the L or R sector amplitudes, e.g., AR

4 ½b� →
UAR

4 ½b� for all color orders b and simultaneously rescale
m4½ajb� → m4½ajb�U, the result of the double copy is
unchanged:

AL⊗R
4 ¼ AL

4 ½a�S4½ajb�AR
4 ½b� → AL

4 ½a�ðS4½ajb�U−1ÞðUAR
4 ½b�Þ

¼ AL⊗R
4 : ð23Þ

This means that f2 and f2U are functionally equivalent in
the low energy expansion.
Single-valued projection: With the closed string tree

amplitudes being the double copy of the open string using
the string kernel, denoted ⊗α0α0 , we have from Eq. (17) the
identity

closed string tree ¼ YM ⊗FF ZT ⊗α0α0 Z ⊗FF YM; ð24Þ

where ZT is the model whose tree amplitudes are ðmZ
nÞT .

Comparing with Eq. (18) gives [32,89–92]

J ¼ ZT ⊗α0α0 Z: ð25Þ

Now, Eq. (20) is valid for the string kernel, with U ¼ 1
and for Z theory whose UZ is given by (21) with
coefficients (16). At four-point, the J integrals have

fð0Þ2 ¼ −1=s, so all the α0 dependence from the fð0Þ2 ’s of
Z theory and the string kernel must cancel: this eliminates
π. OnlyU2

Z remains, which has parameters 2aZ2k;0 due to its
exponentiated form in Eq. (21). Thus at four-point,
Eqs. (20) and (21) reproduce the “single-valued projec-
tion” J ¼ SVðZÞ [80,81]:

SV∶ ζðevenÞ→ 0; ζðoddÞ→ 2ζðoddÞ: ð26Þ

This implies that the closed (super)string tree amplitude
can be obtained as SVðopenÞ ⊗FF ðSÞYM [95,96].
The generalization to α0L ≠ α0R is straightforward. It

would be interesting to understand if the double-copy
bootstrap can similarly provide an explanation of the
single-valued projection at a higher point.
KLT vs BCJ: Higher-derivative corrections were incor-

porated into the BCJ-representation [2] of the double copy
in Refs. [97–101]. It appears that the BCJ construction can
be truncated at finite order in the derivative expansion, in
contrast to the KLT kernel in this work where locality at
six-point requires an infinite tower of higher-derivative
corrections.
BAS at leading order: We assumed the BAS EFT to

have a nonvanishing cubic interaction term. This ensured
that the usual field theory double copy was obtained from
the low-energy limit of the generalized double copy.
Relaxing this condition may result in a different form of
the double copy.
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