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Conformal field theory (CFT) plays a crucial role in the study of various critical phenomena. While
much attention has been paid to the critical exponents of different universalities, which correspond to the
conformal dimensions of CFT primary fields, other important and intricate data such as operator product
expansion (OPE) coefficients governing the fusion of two primary fields, have remained largely
unexplored, especially in dimensions higher than 2D (or equivalently, 1þ 1D). Motivated by the recently
proposed fuzzy sphere regularization, we investigate the operator content of 3D Ising criticality from a
microscopic perspective. We first outline the procedure for extracting OPE coefficients on the fuzzy sphere
and then compute 13 OPE coefficients of low-lying CFT primary fields. Our results are highly accurate and
in agreement with the numerical conformal bootstrap data of 3D Ising CFT. Moreover, we were able to
obtain 4 OPE coefficients, including fTμνTρηϵ, which were previously unknown, thus demonstrating the

superior capabilities of our scheme. Expanding the horizon of the fuzzy sphere regularization from the state
perspective to the operator perspective opens up new avenues for exploring a wealth of new physics.
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Critical phenomena attract broad interests in various
fields of physics, ranging from condensed matter to high
energy physics. An intriguing reason is, enlarged symmetry
often emerges at the low energy and large length scale in
the vicinity of a critical point [1,2]. One well-developed
scenario is that at a continuous phase transition where scale
invariance is enhanced to the conformal invariance [3–5],
the low-energy physics is well captured by the conformal
field theory (CFT) [6,7], a field theory that is invariant
under the conformal symmetry. The nature of a CFT, hence
its corresponding critical point, is largely determined by a
set of conformal data, consisting of a list of conformal
dimensions and operator product expansion (OPE) coef-
ficients [3,8,9]. The complete conformal data is able to
reproduce many universal properties of the phase transition
and determine the stability of fluctuations close to a fixed
point [2]. For example, the scaling dimensions are critical
exponents and OPE coefficients give rise to a universal
(charge or thermal) conductivity [10] which are experi-
mentally measurable at a critical point. It remains an
outstanding challenge for various fields of physics to
accurately determine the conformal data of interacting
CFTs beyond 2D (or, equivalently, 1þ 1D).
Generally speaking, there are two strategies to study the

conformal data of an interacting critical system. The first
strategy, adopted by the conformal bootstrap program [11],

utilizes general axioms of CFTs to constrain the conformal
data. Although the bootstrap approach can produce a great
deal of conformal data accurately for certain critical
theories such as the 3D Ising [12–14], it very often loses
its power for many interesting universalities since its
starting point is too general to make contact with a specific
universality. In contrast, an alternative strategy, adopted in
condensed matter research, is to study the microscopic
model that directly realizes the universality of interest [15].
The weakness of this down-to-earth strategy is that it can
access only a very limited number of conformal data. For
example, in recent progress on computing OPE coefficients
of 3D classical transitions, either directly from three-point
correlators [16,17], or indirectly from off-critical two-point
correlators [18], due to various complications a very limited
number of (only two or three) OPE coefficients were
accessible in these computations [19].
In the 1980s, Cardy outlined a scheme to compute the

conformal data in microscopic models by making use of the
state-operator correspondence, i.e., radial quantization, on
the cylinder geometry Sd−1 ×R [20,21]. The OPE coef-
ficients can be computed directly via the one-point expect-
ation value hϕαjϕβjϕγi. This scheme not only greatly
reduces computational complexities, but also, in principle,
enables the access of all the conformal data that are
infinitely many. For the 2D (i.e., 1þ 1D) critical theory,
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this scheme has been applied extensively [22–27] since one
just needs to study a lattice quantum Hamiltonian defined
on a circle (S1, i.e., periodic boundary chain). Moving to
critical theories in higher dimensions, a fundamental
obstacle arises because spatial spherical geometry Sm≥2

has a curvature such that any regular lattice cannot fit in.
This fundamental obstacle has recently been removed by
the two of us using an innovative idea, the fuzzy (non-
commutative) sphere regularization [28]. The correspon-
dence between scaling dimensions and energy spectra of
the 3D Ising CFT has been demonstrated convincingly. In
this Letter we are extending the horizon of the fuzzy sphere
regularization to the precise determination of OPE coef-
ficients. In particular, we have accurately computed 13
different OPE coefficients of the 3D Ising CFT, including
four OPE coefficients that were unavailable in the existing
literature. Our successful access of CFT operator contents
in the 3D Ising criticality paves the way for studying higher
dimensional CFTs through the fuzzy sphere regularization.
3D Ising CFT on the fuzzy sphere.—We consider spinful

electrons moving on the sphere S2 in the presence of 4π · s
monopole placed in the sphere origin. Because of the
monopole, the single-electron states form quantized
Landau levels, with 2sþ 1 degenerate orbitals in the lowest
Landau level (LLL) [29]. In the case that the LLL is
partially filled and the gap between the LLL and higher LLs
is much larger than other interaction scales in the system,
we can effectively project the system into the LLL. After
the LLL projection, coordinates of electrons are not
commuting any more, ½x̃μ; x̃ν� ¼ iðR=sÞϵμνρx̃ρ. Thus, we
end up with a system defined on a fuzzy (noncommutative)
two-sphere [30]. Interestingly, these Landau orbitals form a
spin-s irreducible representation of SO(3), and the sphere
radius R ∼

ffiffiffi
s

p
. The thermodynamic limit is reached by

s → ∞.
In practice, the Hamiltonian on the fuzzy sphere can be

written in the second quantized form using the basis of
Landau orbitals. A 2þ 1D Ising transition can be realized
by the following Hamiltonian [28]

H ¼
Xs

m1;2;3;4¼−s
Vm1;m2;m3;m4

½ðc†m1
cm4

Þðc†m2
cm3

Þ

− ðc†m1
σzcm4

Þðc†m2
σzcm3

Þ�− h
Xs
m¼−s

c†mσxcm; ð1Þ

where c†m ¼ ðc†m↑; c
†
m↓Þ is the fermion creation operator on

the mth Landau orbital and σx;y;z is the Pauli matrix. The
element Vm1;m2;m3;m4

is connected to the Haldane pseudo-
potential Vl [29] by Vm1;m2;m3;m4

¼P
lVlð4s−2lþ1Þ

ð s
m1

s
m2

2s−l
−m1−m2

Þð s
m4

s
m3

2s−l
−m3−m4

Þ, where ð j1m1

j2
m2

j3
m3
Þ is the Wigner

3j symbol. In this Letter we will only consider ultra-local
density-density interactions in real space, corresponding to
non-zero Haldane pseudopotentials V0, V1. It is important
to note that our model is indeed local in real space

(see Ref. [28]), and, like any local model, it becomes
nonlocal in orbital (momentum) space as shown in Eq. (1).
At the half-filling (i.e., electron numberN ¼ 2sþ 1), the

transverse field h triggers a phase transition from a
quantum Hall ferromagnet [31] with spontaneous Z2

symmetry broken to a quantum paramagnet, which falls
into the 2þ 1D Ising universality class. Hereafter, we
consider the critical point at V1=V0 ¼ 4.75, h=V0 ¼ 3.16
that is determined by the order parameter scaling [28]. At
the critical point, the state-operator correspondence, a one-
to-one correspondence between Hamiltonian eigenenergies
and the scaling dimensions of the CFT operators, has been
convincingly demonstrated [28], which falls into the 3D
Ising universality class.
Operators on the fuzzy sphere.—One can appreciate the

beauty of the fuzzy sphere regularization by contrasting it
with the familiar lattice regularization/model: The former is
defined in the continuum with the full space symmetry [i.e.,
SO(3) rotation of sphere], while the latter is defined on a
discrete lattice with only discrete symmetries such as the
lattice translation and rotation. More importantly, the
continuum nature of the fuzzy sphere model does not lead
to any UV divergence, we still have a finite dimensional
Hilbert space to study, thanks to the representation in the
Landau orbital basis [28,32]. We can easily translate
between operators (and states) on the continuous sphere
and those on the discrete Landau orbitals, e.g.,

ψaðΩÞ† ¼
Xs
m¼−s

c†m;aY
ðsÞ
s;mðΩÞ: ð2Þ

Here we are using the spin-weighted spherical Harmonics

(also called monopole Harmonics) YðsÞ
s;mðΩÞ [33] because of

the monopole in the origin of the sphere. The more
interesting operators are spin operators, which are the
particle-hole pairs of electrons. For example, the simplest
spin operator is

naðΩÞ ¼ ψ†ðΩÞσaψðΩÞ ¼ N
X2s
l¼0

Xl

m¼−l
nal;mYl;mðΩÞ; ð3Þ

nal;m ¼ 1

2sþ 1

Z
dΩȲl;mðΩÞnaðΩÞ: ð4Þ

Here we are using spherical Harmonics Yl;mðΩÞ instead of
spin-weighted spherical harmonics because the spin is not
seeing the monopole placed in the origin. We note that the
charge excitation [e.g., created by ψ†ðΩÞ] gap is always
nonzero but spin degree of freedom undergoes a phase
transition [28].
Any gapless spin operator ÔðΩÞ in ourmicroscopicmodel

can be expressed as a linear combination of CFT scaling
operators [ϕ̂αðΩÞ] including primaries and descendants,

Ôðτ ¼ 0;ΩÞ ¼
X
α

cαϕ̂αðτ ¼ 0;ΩÞ: ð5Þ
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cα is a nonuniversal andoperator dependent numerical factor,
which is generically nonzero as long as the spin operator has
the same symmetry (i.e., Ising Z2 and parity symmetry) as
the CFT scaling operator. Now we can use Eq. (5) and
cylinder correlators ofCFT to computeOPE coefficients. For
any primary state jϕαi, hϕαjϕ̂βj0i is nonvanishing only if ϕβ

equals to ϕα or its descendant, giving rise to [34]

hϕαjOðτ ¼ 0;ΩÞj0i ¼
X∞
n¼0

cnhnðΩÞ
RΔαþn ; ð6Þ

where hnðΩÞ is a universal function fixed by the conformal
symmetry, and hnðΩÞ ¼ 1 if ϕα and ϕβ are both Lorentz
scalar primaries [34]. Similarly, we have

hϕαjOðτ ¼ 0;ΩÞjϕγi ¼
X
β

fαβγ
cβh̃αβγðΩÞ

RΔβ
: ð7Þ

Here fαβγ is the universal OPE coefficients [6,8], as it
determines the fusion channel of two primary operators
limy→xϕαðxÞ × ϕβðyÞ ∼

P
fαβγϕγðxÞ. h̃αβγðΩÞ is again a

universal function fixed by the conformal symmetry, and
is identity ifϕα;β;γ are Lorentz scalar primaries [34]. Here the
summation is over all the primaries and descendants in
the operator expansion Eq. (5). Next wewill demonstrate the
method of extracting OPE coefficients fαβγ using Eqs. (6)
and (7).
Numerical method.—We calculate the low-energy spec-

trum and corresponding eigenstates of the Hamiltonian
Eq. (1) using exact diagonalization (ED) on finite system
sizes with up to N ¼ 18 Landau orbitals [37]. To corrobo-
rate the finite-size extrapolations, we perform large-scale
density-matrix renormalization group (DMRG) simulations
[38,39]. With a bond dimension D ¼ 4000, we are able to
access system sizes up to N ¼ 48 Landau orbitals. The
DMRG data points beyond the ED data are important, as
they allow us to confirm and improve the precision of the
extrapolated OPE coefficients.
Extracting OPE coefficients.—To implement the idea of

accessing OPE coefficients through spin operators, we need
to first check if local spin operators produce the correct
scaling in Eq. (6). Below we will show the case for the
Z2 odd operator n̂zðΩÞ and two Z2 even operators n̂xðΩÞ
and ÔϵðΩÞ≡ ĤðΩÞ þ 2hn̂xðΩÞ, where ĤðΩÞ is the
Hamiltonian density, i.e.,

R
dΩĤðΩÞ is our Hamiltonian

in Eq. (1). Figure 1 shows the numerical data of candidate
operators, in good agreement with the CFT expectation,
indicating the lowest primary fields will dominate the
observables of spin operators when the system size is
large enough [40]. In particular, n̂zðΩÞ is dominated by σ̂
(with conformal dimension ≈0.518) with very small high
order correction from its descendants, and n̂xðΩÞ, ÔϵðΩÞ
are dominant by ϵ̂ (conformal dimension ≈1.412) [41].
Next we turn to extract the OPE coefficients. Let us take

the OPE coefficient fσσϵ as an example. As we explained

above, to approximate σ̂ a natural candidate is nzðΩÞ, and
its operator expansion should naturally contain all the Z2

odd primaries σ; σμν; σ0; � � � as well as their descendants
∂μσ;□σ; ∂μσμν; � � �. So we shall have,

hσjnzðΩÞj0i ¼ 1

RΔσ

�
cσ þ

X∞
n¼1

an
R2n

�
; ð8Þ

hσjnzðΩÞjϵi ¼ fσσϵ
RΔσ

�
cσ þ

X∞
n¼1

ãn
R2n

�
þ � � � ; ð9Þ

where 0...0 stands for the contribution from other primaries
and associated descendants. We note that only scalar
scaling operators can contribute to these two observables.
Therefore, we can compute fσσϵ using

hσjnzðΩÞjϵi
hσjnzðΩÞj0i ¼ fσσϵ þ

a1 − ã1
cσR2

þOðR−4Þ: ð10Þ

In principle, no finite size extrapolation is needed once the
system size R is large enough. In the small size simulation
like our case, we will perform a simple linear extrapolation
with respect to R−2 (i.e., N−1) that includes the contribution
from the descendant field □σ. Similarly, other OPE
coefficient fσϕ1ϕ2

can be computed by the Z2 odd spin
operator nzðΩÞ using fσϕ1ϕ2

≈ hϕ1jnzðΩÞjϕ2i=hσjnzðΩÞj0i
and OPE coefficients fϵϕ1ϕ2

can be computed by the Z2

even spin operators n̂xðΩÞ, ÔϵðΩÞ. One should be cautious
that certain OPE coefficient may have a different sublead-
ing term (see [34] for details).
First, we discuss the OPE coefficients involving three

scalar primary operators. For example, the OPE coefficient
fσσϵ can be extracted byEq. (10),where the lowest correction
comes from the descendant field□σ. Figure 2(a) shows the
finite-size extrapolation indeed agrees with Eq. (10), giving
fσσϵ ≈ 1.0539 by extrapolation. Alternatively, fσσϵ can be
obtained by choosing spin operators ÔðΩÞ ¼ nxðΩÞ and

(a) (b)

FIG. 1. Local operator content. Extrapolation of
(a) hσjn̂zðΩÞj0i × NΔσ=2, (b) hϵjn̂xðΩÞj0i × NΔϵ=2. The finite-size
correction of N−1, N−2, respectively, comes from the descendant
fields as shown in Eq. (6).
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ÔðΩÞ ¼ HðΩÞ þ 2hnxðΩÞ to approximate the ϵ̂ primary
(see Supplemental Material, Sec. III [34]). Figure 2(a)
confirms that different local operators give consistent esti-
mates of fσσϵ. Within the similar procedure, we also obtain a
few more OPE coefficients involving scalar primary oper-
ators as listed in Tab. I.
Second, for the OPE coefficients involving spinning

operators, the calculation is largely parallel except that
we need to consider the angle (Ω) dependence [34].
The angle dependence can be eliminated by integrating
over the sphere against the spherical Harmonics, for
example, one representative OPE coefficient fσσTμν

should follow (see [34])

ffiffiffiffiffi
15

8

r hσj R dΩȲ2;0ðΩÞn̂zðΩÞjTμν; m ¼ 0i
hσj R dΩȲ0;0ðΩÞn̂zðΩÞj0i ≈ fσσTμν

þ a
N
:

ð11Þ

The corresponding finite-size extrapolations are shown
in Fig. 2(c) and the estimates of OPE are in Table I.
Third, we can calculate a few more OPE coefficients

which are unknown before. Figures 2(e) and 2(f) show the
results of fσϵ0σμν and fTμνTρηϵ, the latter is defined as

hTμν; m ¼ 0j R dΩ ˆOðΩÞjTμν; m ¼ 0i − h0j R dΩOðΩÞj0i
hϵj R dΩ ˆOðΩÞj0i

≈ fTμνTρηϵ þ
a

N0.7937 þ
b
N
; ð12Þ

where Ô ¼ n̂x; Ôϵ. The estimated values are shown in
Table I [42].
To quantify the data we get, we compare these results

with the numerical bootstrap data in Table I. Most of OPE
coefficients match known results from the conformal
bootstrap [11,14] with discrepancies smaller than 2%.
Importantly, we also compute four OPE coefficients
which have not been computed before. The ability to
access OPEs which are not known before shows the
superiority of fuzzy sphere method. In addition, we
present a systematical error analysis in Supplemental
Material, [34], where the mean values are estimated by
n̂z or Ôϵ, which have smaller finite-size effect, and the
error bars are estimated by different fitting processes.

(a) (b)

(c) (d)

(e) (f)

FIG. 2. OPE coefficients of primary operators. (a)–(b) Two
representative OPE coefficients involving three scalar primaries
fσσϵ and fϵϵϵ, obtained from the finite-size extrapolation via spin
operator nzðΩÞ (red), nxðΩÞ (yellow), and OϵðΩÞ (green) (see
main text). (c)–(d) Two representative OPE coefficients involving
energy-momentum tensor fσσTμν

, fσ0σTμν
by using nzðΩÞ operator.

The dashed line in (a)–(d) is the value from conformal bootstrap.
(e)–(f) Two representative OPE coefficients fσϵ0σμν , fTμνϵTμν

that
are not known in conformal bootstrap calculation. In all figures
only the data points on largest six sizes are used in the fitting. In
(a)–(c) and (f), larger sizes up to N ¼ 48 are available by the
DMRG method which are labeled by solid symbols.

TABLE I. List of OPE coefficients of primary operators
obtained on the fuzzy sphere. The primary operators in consid-
eration have scaling dimensions Δσ ≈ 0.51815, Δϵ ≈ 1.4126,
Δϵ0 ≈ 3.8297, Δσ0 ≈ 5.2906, ΔTμν

¼ 3, and Δσμν ≈ 4.1803. The
conformal bootstrap (CB) data is from Ref. [14], where some
unavailable data are labeled by “NA.” We note that our con-
vention for fTμνϵTρη

is fTμνϵTρη
¼ ð1= ffiffiffiffiffi

4π
p Þ R dΩhTμν; m ¼

0jϵ̂ðΩÞjTρη; m ¼ 0i [34].

Operators Spin Z2 fαβγ (Fuzzy sphere) fαβγ (CB)

σ 0 − fσσϵ ≈ 1.0539ð18Þ fσσϵ ≈ 1.0519
ϵ 0 þ fϵϵϵ ≈ 1.5441ð23Þ fϵϵϵ ≈ 1.5324
ϵ0 0 þ fσσϵ0 ≈ 0.0529ð16Þ fσσϵ0 ≈ 0.0530

fϵϵϵ0 ≈ 1.566ð68Þ fϵϵϵ0 ≈ 1.5360
σ0 0 − fσ0σϵ ≈ 0.0515ð42Þ fσ0σϵ ≈ 0.0572

fσ0σϵ0 ≈ 1.294ð51Þ NA
fσ0ϵσ0 ≈ 2.98ð13Þ NA

Tμν 2 þ fσσT ≈ 0.3248ð35Þ fσσT ≈ 0.3261
fσ0σT ≈ −0.00007ð96Þ fσ0σT ¼ 0
fϵϵT ≈ 0.8951ð35Þ fϵϵT ≈ 0.8892
fTϵT ≈ 0.8658ð69Þ NA

σμν 2 − fσϵσμν ≈ 0.400ð33Þ fσϵσμν ≈ 0.3892
fσϵ0σμν ≈ 0.18256ð69Þ NA
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Summary and discussion.—We have explained the pro-
cedure of extracting the conformal data of emergent 3D
conformal field theory using the recently proposed fuzzy
sphere regularization. By exploiting the state-operator
correspondence, we accurately compute operator product
expansion (OPE) coefficients of CFT primary fields with
low-lying conformal dimensions in a (2þ 1)-D quantum
Ising model. As far as we know, most of the OPE
coefficients reported here have never been studied in a
microscopic model before. Some of OPE coefficients are
not even computed by the conformal bootstrap calculations.
More importantly, our work exposes the operator perspec-
tive of 3D CFTs on the fuzzy sphere, which enables a lot
more important physics to explore. For example, we can
directly compute 3D CFT four-point correlators—the core
object in the classic and modern story of conformal
bootstrap. Another interesting direction is to study the
operator growth of 3D CFTs under a quantum quench,
which will lead to new insights on the quantum chaos of
CFTs. We foresee that the fuzzy sphere scheme will be a
powerful tool to study 3D CFTs in a broad universality
class [e.g., Wilson-Fisher OðNÞ critical point and critical
gauge theories.].

We acknowledge the useful discussion with Yijian Zou.
We thank C. Han, E. Huffman, and J. Hofmann for
collaboration on a related project. L. D. H. and W. Z. were
supported by National Natural Science Foundation of China
(No. 92165102, No. 11974288), National key R&D program
(No. 2022YFA1402204), and the Key R&D Program of
Zhejiang Province (2021C01002). Research at Perimeter
Institute is supported in part by the Government of Canada
through the Department of Innovation, Science and Industry
Canada and by the Province of Ontario through the Ministry
of Colleges and Universities.

Note added.—Recently, we noticed that OPE coefficient
fTϵT was recently computed by bootstrapping a five-point
correlator [43]. Their numerical estimation is close to our
result.
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