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Synchronization between limit cycle oscillators can arise through entrainment to an external drive or
through mutual coupling. The interplay between the two mechanisms has been studied in classical
synchronizing systems, but not in quantum systems. Here, we point out that competition and cooperation
between the two mechanisms can occur due to phase pulling and phase repulsion in quantum systems. We
study their interplay in collectively driven degenerate quantum thermal machines and show that these
mechanisms either cooperate or compete depending on the working mode of the machine (refrigerator or
engine). The entrainment-mutual synchronization interplay persists with an increase in the number of
degenerate levels, while in the thermodynamic limit of degeneracy, mutual synchronization dominates.
Overall, our work investigates the effect of degeneracy and multilevel scaling of quantum synchronization
and shows how different synchronizing mechanisms can cooperate and compete in quantum systems.
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Introduction.—Synchronization is a ubiquitous phe-
nomenon in which stable phase relations emerge between
multiple limit cycle oscillators [1]. There are two main
mechanisms that give rise to synchronization: (i) entrain-
ment that refers to the synchronization of an oscillator by
unidirectional coupling to a periodic external drive [2] and
(ii) mutual synchronization which refers to the adjustment
of rhythms of two or more mutually coupled oscillators,
such as in the widely known Kuramoto model [3]. These
two mechanisms may coexist in some systems [4–7], and
their interplay has also been experimentally studied in
globally coupled electrochemical oscillators [8].
In the same spirit as classical synchronization, quantum

synchronization is often studied through entrainment [9–14]
or mutual coupling [15–21] and has been experimentally
observed recently [22–24]. However, unlike classical syn-
chronization, the coexistence and the interplay between
these two mechanisms in the quantum regime have not been
investigated. Understanding this interplay is crucial in the
control of various quantum technologies where both driving
and interaction are important such as in superradiant
lasers [16], coupled time crystals [25], and coupled
machines [26–33].
In this Letter, we show that the phases of steady-state

coherence follow a phase synchronization model, where the
external entraining drive competes with the mutually
coupled phases. This opens up the possibility of observing

well-studied classical phenomena, such as synchronization-
antisynchronization transition [34] and chimeras [35,36], in
the quantum regime. Our framework applies to generic
quantum systems, with external drives that couple the
coherences (coherently) that themselves are mutually
coupled (dissipatively), leading to an interplay between
entrainment and mutual synchronization.
As a concrete example, we consider a degenerate

multilevel generalization of the Scovil–Schulz-DuBois
maser heat engine [37,38], where the external collective
drive connects transitions between the degenerate manifold
and the first-excited state [38]. The states within the
degenerate manifold form a stable collective symmetric
(in-phase) and antisymmetric (out-of-phase) superposition
due to mutual synchronization. At the same time, the
external drive causes the phases within the degenerate
manifold to be aligned in phase with the drive due to
entrainment. In the engine regime, stimulated emission
consumes the collective symmetric superposition state,
enhancing the population of the antisymmetric state.
Thus, there is competition between entrainment (in phase)
and mutual synchronization (out of phase). In the refrig-
erator regime, the stimulated absorption enhances the
population of the collective symmetric superposition state
thereby always cooperating with entrainment. Our work
sheds light on the synergistic interplay between entrain-
ment and mutual synchronization in quantum systems.
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Quantum synchronization inD-level systems.—Quantum
synchronization has been studied in systems with continuous
degrees of freedom such as oscillators [9–11,13,15,17,39]
and discrete degrees of freedom such as spin-1 systems
[12,14,20]. A wide variety of measures, based on various
physical and mathematical motivations such as phase-space
based measures [9,12,20], correlation measures [40], and
information-theoretic measures [41] have been used to
quantify synchronization.
Here we use the phase-space based measure built on the

Husimi-Q representation [42,43] of the steady-state ρss

with respect to SUðDÞ coherent state [43,44],

Q½ρss� ¼ D!

πD−1 hαDjρssjαDi; ð1Þ

where jαDi ¼
P

D
n¼1 αnjni is the SUðDÞ coherent state with

coefficients

αn ¼
(
eiϕn cos θn

Q
n−1
k¼1 sin θk 1 ≤ n < D

eiϕD
Q

D−1
k¼1 sin θk n ¼ D:

ð2Þ

Here it is implicitly assumed that the product term is the
identity for n ¼ 1 and the reference phase ϕD ¼ 0. The
synchronization measure is given by the difference between
integrating out the angles θk corresponding to the pop-
ulation degrees of freedom and doing the same for the
uniform measure, given by

Sðϕ1;…;ϕD−1Þ ¼
Z

Q½ρss�dΘ −
1

ð2πÞD−1

¼ 1

2Dþ1πD−2

X
n≠m

ρssnmeiðϕm−ϕnÞ; ð3Þ

which lives on a D − 1 dimensional torus (see the Supple-
mental Material [45]). The distribution Sðϕ1;…;ϕD−1Þ
is zero everywhere for a diagonal steady state which is
interpreted as a limit cycle [41] possessing stable ampli-
tudes (fix diagonal elements) but free phases. The notion of
free phase in a such diagonal limit cycle is analogous
to a classical stochastic limit cycle whose phase distribu-
tion approaches a uniform distribution in the steady
state [1,13,14,46,47].
We associate the peak of Sðϕ1;…;ϕD−1Þ as a phase-

space synchronization measure [12,20,47],

Smax ¼ max
ϕ1;…;ϕD−1

1

2Dþ1πD−2

X
n≠m

ρssnmeiðϕm−ϕnÞ: ð4Þ

The synchronization measure, Smax only depends on the
steady-state coherence. However, we note that a high value
of Smax requires all phase preferences Φij ¼ argðρssijÞ to be
compatible, i.e., Φij −Φjk ¼ Φik ∀ i ≠ j ≠ k, in addition
to the mere presence of coherence.

Degenerate thermal maser.—Entrainment in quantum
systems is the result of an interplay between coherent
driving and dissipation [10,12]. The system we consider is
depicted in Fig. 1 and consists of (N þ 2) levels whose bare
Hamiltonian is given by

H0 ¼ ω1j1ih1j þ
XNþ1

j¼2

ωjjjihjj; ð5Þ

with ωjþ1 ≥ ωj; ð ∀ j ¼ 2;…; NÞ and ω0 ¼ 0 is the
choice of ground-state energy. The upper N levels are
degenerate with ω2 ¼ ω3 ¼ � � � ¼ ωNþ1. Such systems
with a large degenerate manifold can be experimentally
realized using either rubidium atoms [23] or homonuclear
systems often studied in NMR [48,49]. Although we work
in the limit of exact degeneracy, our main results hold even
in the near-degenerate scenario and will be considered in
detail in an accompanying Ref. [50].
This system is driven by a monochromatic drive,

VðtÞ ¼
XNþ1

j¼2

λjeiΩtj1ihjj þ H:c:; ð6Þ

with frequency Ω. This drive can be rewritten as a
coupling to a collective-transition mode j1i ↔ jJi ¼
ð1=λeffÞ

P
j λjjji with λeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j jλjj2

q
being the effective

coupling strength. Such collective drives are realizable in
an ensemble of atoms driven by light, if the interatomic
distance is much smaller than the wavelength of the light,
such as in the case of Dicke superradiance [51].

FIG. 1. Schematic of the degenerate quantum thermal maser,
which is a generalization of the Scovil–Schulz-DuBois three-
level thermal maser. Here, N is the number of states in the
degenerate manifold and here we focus on Δ ¼ 0. The near-
degenerate case (Δ ≠ 0) is discussed in Ref. [50].
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The system is acted upon by a dissipator

D½ρ� ¼
X2
μ¼1

�
ΓcμL½cμ�ρþ

XNþ1

j¼2

ΓhμL½hjμ�ρ
�
; ð7Þ

which leads to a multilevel generalization of the Scovil–
Schulz-DuBois maser heat engine [37,38]. The dissipator
L½X�ρ ¼ 2XρX† − fX†X; ρg is of the Lindblad form such
that the hot (cold) bath with jump operators hj1 ¼ hj†2 ¼
j0ihjj (c1 ¼ c†2 ¼ j0ih1j) induce transitions between the
ground state and the degenerated manifold (first-excited
state). The associated rates follow local-detailed balance
and are given by Γh1ðc1Þ ¼ γhðcÞð1þ nhðcÞÞ and Γh2ðc2Þ ¼
γhðcÞnhðcÞ with γhðcÞ being the effective system-bath cou-
pling strength and nhðcÞ ¼ ½expðβhðcÞω2ð1ÞÞ − 1�−1 being the
Bose-Einstein distribution at inverse temperature βhðcÞ. The
action of the heat baths leads to a population inverted
steady state between the first-excited state j1i and the
degenerated manifold jji; ∀ j ¼ 2;…; N þ 1 if nh > nc.
If there is population inversion, the system behaves
as a maser heat engine [52]. However, if nh < nc, pop-
ulation inversion is lost, and the system behaves as a
refrigerator by attenuating the drive [52]. We can rewrite
the Hamiltonian in a frame corotating with the drive as
H̃ ¼ ðΩ=2ÞðPNþ1

j¼2 jjihjj − j1ih1jÞ giving us the rotating
frame quantum master equation,

dρ̃
dt

¼ −i½H0 − H̃ þ Ṽ; ρ̃� þD½ρ̃�; ð8Þ

where Õ≡ e−iH̃tOeiH̃t (O ¼ ρ, V) is an operator in the
rotated frame with Ṽ ¼ PNþ1

j¼2 λjj1ihjj þ H:c:
Competition vs cooperation.—Equation (8) can be

solved analytically for the case of homogeneous driving
strength λj ¼ λ (∀ j ¼ 2;…; N þ 1) and resonant driving
Ω ¼ ω2 − ω1. In this case, the steady-state coherences
read as

ρ̃ss1j ¼ i
λðnc − nhÞγcγhð1þ nhÞ
FðN; nh; nc; γc; γh; λÞ

; ð9Þ

ρ̃ssjl ¼
λ2γcðnc − nhÞ

FðN; nh; nc; γh; γc; λÞ
; ð10Þ

where j; l ¼ 2;…; N þ 1, j ≠ l and the function
FðN; nh; nc; γc; γh; λÞ ¼ AN2 þ BN þ C with A, B, and
C being positive constants that depend on all remaining
parameters (see the Supplemental Material [45]).
The nondegenerate coherence (ρ̃1j) is directly induced

(i.e., ∝ λ) by the drive whereas the degenerate coherence
(ρ̃jl) is an indirect consequence (∝ λ2) of the collective
nature of the drive. Their differences are clear as one
transforms back to the original frame in which

ρ1j ¼ ρ̃1je−iΩt and ρjl ¼ ρ̃jl. The phase preferences
induced by ρ1j rotate with the driving frequency while
that of ρjl remain stationary in the original frame. This
transformation also emphasizes the frequency locking in
this system. Even when the drive’s frequency is detuned
Ω ≠ ω2 − ω1, the nondegenerate coherences still rotate
frequency Ω, implying entrainment, as further corroborated
by the Arnold tongue [1] structure of Smax (see the
Supplemental Material [45]).
Both these coherences affect the phase distributions of

the states within the degenerate manifold. For these
reasons, we infer that there are two synchronization
mechanisms at play in this system, entrainment induced
directly by the drive and mutual coupling that occurs due to
the presence of a degenerate manifold. Entrainment induces
phases relative to driving whose effect is the emergence of
stable nondegenerate coherence ρ̃ss1j. On the other hand,
mutual coupling induces a relative phase between states in
the degenerated manifold independent of the driving phase,
which is reflected by stable degenerate coherence ρ̃ssjl.
Recall that we have denoted Φij ¼ argðρ̃ssijÞ as the

steady-state phase preferences. When there are multiple
such preferences, synchronization requires all the phase
relations to be compatible, i.e.,Φij −Φjl ¼ Φil (i ≠ j ≠ l).
However, we find that such a condition is only satisfied in
the refrigerator regime where Φj1 ¼ 3π=2 and Φjl ¼ 0 for
j; l ¼ 2; 3;…; N þ 1 and j ≠ l. In the engine regime, we
have Φj1 ¼ π=2 and Φjl ¼ π. We interpret this as a result
of an interplay between entrainment and mutual coupling.
We find that entrainment always pulls the degenerate states
to be in phase [Fig. 2(a)]. Meanwhile, mutual coupling
prefers out-of-phase configuration in the engine regime
[Fig. 2(b)], and in-phase configuration in the refrigerator
regime. Consequently, we expect entrainment and mutual
coupling to cooperate in the refrigerator regime and
compete in the engine regime.
The competition and cooperation are obvious when we

calculate the phase space synchronization measure Smax
[see Eq. (4)]. In general, this requires optimization over N
variables which we calculate analytically forN ¼ 2 (see the
Supplemental Material [45]):

Smax¼
1

16π2
×

8>>><
>>>:

jρ̃ss12jþjρ̃ss13jþjρ̃ss23j if nh <nc
jρ̃ss12jþjρ̃ss13j− jρ̃ss23j if nh >nc&k>2�
1þ k2

2

�
jρ̃ss23j if nh >nc&k≤2;

ð11Þ

where k ¼ γhð1þ nhÞ=λ ¼ jρ̃ss12j=jρ̃ss23j ¼ jρ̃ss13j=jρ̃ss23j is the
dissipation-to-driving ratio. The set of optimal phases
ðφopt

21 ;φ
opt
31 Þ≡ ðφ21;φ31ÞjS¼Smax

evaluated in Ref. [45] are
given by
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ðφopt
21 ;φ

opt
31 Þ¼

8>>>>><
>>>>>:

�
3π
2
;3π
2

�
if nh <nc�

π
2
;π
2

�
if nh >nc&k>2

ðχ;π−χÞ&ðπ−χ;χÞ if nh >nc&k≤2;

ð12Þ

where φij ¼ ϕi − ϕj and χ ¼ arcsinðk=2Þ. Equations (11)
and (12) show the effect of the coherent drive and bath
couplings on the synchronous dynamics of the system.
Cooperation in the refrigerator regime (nc > nh) is
reflected by the fact that each component of the magnitude
of coherence adds up in the synchronization measure
Smax, whereas in the engine case, there is competition

since the mutual coupling component jρ̃ss23j reduces the
effect of the entrainment contribution jρ̃ss12j þ jρ̃ss13j.
Note that this is different from the previously reported
phenomenon of synchronization blockade [14,53]; in
our case, Smax cannot vanish except for λ ¼ 0 or nh ¼ nc
where the steady state is diagonal (see the Supplemental
Material [45]).
In the engine regime, Smax is also divided into regimes

where entrainment is dominant (k > 2) and where the
mutual coupling is dominant (k < 2). The phases are either
equal in some cases or arranged antipodally in other cases.
The transition from entrainment to a mutual coupling
dominant regime is shown in Figs. 2(a) and 2(b) where
we plot the phase distribution Sðφ21;φ31Þ for different k
values. In particular, we see that as we cross k ¼ 2, the
relative phases go from in phase to out of phase. Moreover,
the localization pattern changes from a point localization to
ring localization (on a torus), wherein the latter only the
relative phase φ23 ¼ φ21 − φ31 is fixed, indicating that
entrainment is lost.
The competition and cooperation observed is also robust

with respect to all values of individual driving strength
ratio λ2=λ3 as shown in Fig. 2(d). Interestingly, Smax is
symmetric with respect to a transformation λj → −λj
which transforms ρ̃ssjl → −ρ̃ssjl for all k ≠ j. This can be
intuitively explained by Smax only depending on the norm
of coherence. In this case, the phase preference of entrain-
ment and mutual coupling is reversed, i.e., both prefer out
of phase in the refrigerator regime while mutual coupling
(entrainment) prefers in phase (out of phase) in the engine
regime.
Scaling with N.—Calculating Smax boils down to per-

forming N-variable optimization which is analytically
difficult for N > 2. However, in the refrigerator regime,
assuming homogeneous driving λj ¼ λ the problem
simplifies, and one can show that Smax saturates the
l1-norm bound [41] Smax ∝ Cl1 ¼

PNþ1
i<j jρ̃ijj with opti-

mum phases φopt
j1 ¼ 3π=2 ∀ j ≥ 2 (see the Supplemental

Material [45]). The proportionality of Smax with l1 norm is
due to cooperation between entrainment and mutual
coupling. Entrainment tends to pull all the phases to
3π=2, and phase-attractive mutual coupling amplifies the
effect. Cooperation can also be seen from Fig. 3(b) where
we observe scaled synchronization measure Smax ≡
ð2πÞNSmax always exceeds the contribution from entrain-
ment for any N. Furthermore, all optimum phases coalesce
to a single point 3π=2 [Fig. 3(d)] as predicted analytically.
Overall for large N, we predict mutual coupling to
dominate Smax since the number of degenerate coherences
ρ̃ssjl scale as N

2 whereas the nondegenerate coherences scale
linearly with N. In the limit N → ∞, we predict that in
the refrigerator regime, Smax approaches a constant
that depends only on the baths’ properties (see the
Supplemental Material [45]),

(a) (b)

(c) (d)

FIG. 2. Interplay between entrainment and mutual coupling for
N ¼ 2. Panels (a) and (b) show phase quasidistribution function
Sðφ21;φ31Þ [Eq. (3)] where φij ¼ ϕi − ϕj in the engine regime
(nh=nc ¼ 100). For k ¼ 3, Sðφ21;φ31Þ shows a localized maxi-
mumwhen the phases are in phase [φ21 − φ31 ≈ 0 in the red region
in (a), entrainment dominant]. Whereas for k ¼ 0.75, when
Sðφ21;φ31Þ is maximized the phases do not localize but their
difference is out of phase [φ21 − φ31 ≈ π in the red region in (b),
mutual coupling dominant]. Panel (c) shows Smax (solid circle) as a
function of nh=nc with the solid line representing the analytic
prediction of Eq. (11). The dashed line is the entrainment
contribution to Smax, i.e., ðjρ12j þ jρ13jÞ=16π2. The boundary
between refrigerator (nh=nc < 1) and engine (nh=nc > 1) regime
is given by nh=nc ¼ 1. Panel (d) shows Smax (solid circle) and
ðjρ12j þ jρ13jÞ=16π2 (dashed line) plotted against inhomogeneous
driving strength ratio jλ2=λ3j ≤ 1 in the engine (red) and refrig-
erator (blue) regimes indicating competition (cooperation)
between entrainment and mutual coupling is robust in the engine
(refrigerator) regime. The other parameter values are ω2 ¼
ω3 ¼ 3ω1, Ω ¼ ω2 − ω1, γc ¼ 0.2ω1, γh ¼ 0.05ω1, nc ¼ 0.5,
and λ2 ¼ 0.1ω1.

PHYSICAL REVIEW LETTERS 131, 030401 (2023)

030401-4



Smax ¼ lim
N→∞

ð2πÞNSmax

nc >
¼

nh
γcðnc − nhÞ

8nh½γcð1þ ncÞ þ γhð1þ nhÞ�
: ð13Þ

In the engine case, it is difficult to find an analytic
closed-form expression for Smax. However, we observe in
Fig. 3(a), that the competition between entrainment and
mutual coupling persists for any N. In this regime, the
dominant phase repulsive mutual coupling pushes the
phases toward uniform distribution as shown in Fig. 3(c).
Using this phase uniformity, we analytically (see the
Supplemental Material [45]) show that Smax is zero
asymptotically (N → ∞) explaining the decay seen in
Fig. 3(a). Thus, in the limit of macroscopic degeneracy,
the qualitative behavior of this engine model is analogous
to the Kuramoto model with phase-repulsive coupling,
where the mean-field synchronization order parameter
approaches zero [54].
Summary.—We have shown that there exists an interplay

between entrainment and mutual coupling in a collectively
driven-dissipative degenerate thermal maser. The interplay
depends on the thermodynamic functionality of the maser,
i.e., they compete in the engine regime and cooperate in the

refrigerator regime. The results rely on two key ingredients:
(i) a coherent drive that collectively couples to the degen-
erate manifold causing entrainment and mutual coupling to
coexist and (ii) a dissipative mechanism that causes a
population inversion between the nondegenerated and
degenerated manifolds to observe the competition.
We demonstrate our findings using a minimal model of a

generalized Scovil–Schulz-DuBois maser heat engine and
show that in the thermodynamic limit (N → ∞) the
dominance of mutual coupling leads to phase repulsiveness
causing the engine’s working substance to be asynchron-
ized (Smax ¼ 0). On the other hand, since there is co-
operation in the refrigerator case, the phases coalesce to
3π=2 giving a finite Smax that is independent of system
properties. In other words, as the system size increases in
order for the working substance to be synchronized the
external drive needs to perform work on the system.
Our work not only contributes to the growing field of

quantum synchronization by adding valuable insights when
distinct synchronizing mechanisms coexist but helps one to
understand quantum heat engines from a synchronization
perspective.
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