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Predicting cellular metabolic states is a central problem in biophysics. Conventional approaches,
however, sensitively depend on the microscopic details of individual metabolic systems. In this Letter, we
derived a universal linear relationship between the metabolic responses against nutrient conditions and
metabolic inhibition, with the aid of a microeconomic theory. The relationship holds in arbitrary metabolic
systems as long as the law of mass conservation stands, as supported by extensive numerical calculations. It
offers quantitative predictions without prior knowledge of systems.
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Metabolism is the physicochemical basis of life.
Understanding its behavior has been a major goal of
biophysics [1–4]. At the same time, the prediction of
cellular metabolic states is a central problem in biology.
In particular, prediction of the responses of metabolic
systems against environmental variations or experimental
operations is essential for manipulating metabolic
systems to the desired states in both life sciences and in
applications such as matter production in metabolic engi-
neering [5] and the development of drugs targeting cellular
metabolism [6–8].
Previous studies have mainly attempted to predict the

metabolic responses by predicting the metabolic states
before and after perturbations, and they require building
an ad hoc model for each specific metabolic system.
In systems biology, constraint-based modeling (CBM)
has often been used to predict the cellular metabolic states
[9–11]. In this method, the intracellular metabolic state is
predicted by solving an optimization problem of models
of metabolic systems, including a detailed description of
each metabolic reaction. To construct the optimization
problem, metabolic systems of cells are assumed to be
optimized through (sometimes artificial) evolution for
some objectives [9,10,12], e.g., maximization of the
growth rate in reproducing cells such as cancer cells and
microbes [13] and maximization of the production of some
molecules in metabolically engineered cells [14]. Indeed,
metabolic systems of reproducing cells exhibit certain
ubiquitous phenomena across various species, and those
phenomena can be explained as a result of optimization
under physicochemical constraints [13]. Although the
assumption of optimal metabolic regulation seems accept-
able, knowing the true objective function of cells, which is
essential to making a model for CBM, remains nearly
impossible. Besides, even with remarkable progress in omics
research, fully reconstructing metabolic network models for
each individual species or cell of interest is still a challenge.
Moreover, the numerical predictions are sensitive to the

details of the concerned constraints and the objective
functions selected [15–18]. Therefore, new methods inde-
pendent of the details of metabolic systems are required.
Instead of metabolic states themselves, here, we focus on

the responses of metabolic states to perturbations. At first
glance, such a prediction is seemingly more difficult than
predicting the cellular metabolic states because it seems to
require information not only on the steady states but also on
their neighborhoods. However, from another perspective,
to predict only the metabolic responses, we may need to
understand the structure of only a limited part of the state
space of feasible metabolic states. In contrast, we must seek
the whole space to predict the metabolic states themselves.
If optimization through evolution and some physicochemi-
cal properties unique to metabolic systems constrain the
behavior in the state space, there might be universal
features in the responses of metabolic systems to pertur-
bations, independent of system details, as in the linear
response theory in statistical mechanics [19–21].
In this Letter, we demonstrate a universal property of

intracellular metabolic responses in the optimized meta-
bolic regulation, using a microeconomic theory [22–24].
By introducing a microeconomics-inspired formulation of
metabolic systems, we can take advantage of tools and
ideas from microeconomics such as the Slutsky equation
that describes how consumer demands change in response
to income and price. We thereby derive quantitative
relations between the metabolic responses against nutrient
abundance and those against metabolic inhibitions, such as
the addition of metabolic inhibitors and leakage of inter-
mediate metabolites; the former is easy to measure in
experiments while the latter may not be. The relations
universally hold independent of the details of metabolic
systems as long as the law of mass conservation holds. Our
theory is applicable to any metabolic system and will
provide quantitative predictions on the intracellular
metabolic responses without detailed prior knowledge of
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microscopic molecular mechanisms and cellular objective
functions.
Microeconomic formulation of metabolic regulation.—

We first provide a microeconomic formulation of optimized
metabolic regulation, which is equivalent to linear pro-
gramming problems in CBM (Fig. 1).
We denote the set of all chemical species (metabolites)

and that of all constraints by M and C, respectively. C can
reflect every type of constraint such as the allocation of
proteins [29,30], intracellular space [31], membrane sur-
faces [32], and Gibbs energy dissipation [18] as well as the
bounds of reaction fluxes.
In the microeconomic formulation, variables to be

optimized are the fluxes of metabolic pathways, whereas
they are fluxes of reactions in usual CBM approaches; a
metabolic pathway is a linked series of reactions and thus
comprises multiple reactions. The sets of reactions and
pathways are denoted by R and P, respectively. Let us
then consider two stoichiometry matrices for reactions and
pathways, S and K, respectively (see also the Supplemental
Material [25], Table S1). For chemical species αð∈ MÞ,
jSαij represents the number of units of species α produced if
Sαi > 0 and consumed if Sαi < 0 in reaction i; whereas if α

denotes a constraint (α ∈ C), Sαi is usually negative and
jSαij represents the number of units of constraint α required
for reaction i. The stoichiometry matrix K for metabolic
pathways P is also defined similarly. Throughout the
Letter, we use indices with primes such as i0 to denote
pathways and those without primes such as i to denote
reactions, and jSαij and jKαi0 j are called input (output)
stoichiometric coefficients of reaction i and pathway i0,
respectively, if Sαi and Kαi0 are negative (positive).
Cells are assumed to maximize the flux of some

objective reaction oð∈ RÞ such as biomass synthesis in
reproducing cells and ethanol or adenosine triphosphate
(ATP) synthesis in metabolically engineered cells. We
define the set of the species consumed in and the compo-
nents required for reaction o as objective components
Oð⊂ M ∪ CÞ, and thus Sαo for each objective component
αð∈ OÞ is negative. Because the reactants of a reaction
cannot be compensated for each other due to the law of
mass conservation [24,33,34], the flux of objective reaction
o, i.e., the objective function, is limited by the minimum
available amount of objective components O as follows:

ΛðfÞ ≔ min
α∈O

�
1

−Sαo

�X
j0∈P

Kαj0fj0 þ Iα

��
; ð1Þ

where f ¼ ffi0 gi0∈P represents the fluxes of metabolic
pathways. The arguments of the above min function
represent biologically different quantities: if α is a species
(α ∈ M), Iα is its intake flux and

P
j0 Kαj0fj0 represents its

total production rate, while if α is a constraint (α ∈ C), Iα is
the total capacity for constraint α and

P
j0 Kαj0fj0 þ Iα is

the amount of α that can be allocated to the objective
reaction.
The optimized solution f̂ is determined as a function ofK

and I with the following constraints for the available
pathway fluxes f:

−
X
j0∈P

Kαj0fj0 ≤ Iα: ðα ∈ E ∪ CÞ ð2Þ

Here, Eð⊂ MÞ denotes the set of exchangeable species that
are transported through the cellular membrane. That is, the
above constraints reflect that the total consumption of
species cannot exceed their intakes. If species α is produced
by objective reaction o, the intake effectively increases, and
SαoΛ is added to the right-hand side of Eq. (2), although
this is not the case for most species.
This optimization problem [Eqs. (1) and (2)] can be

interpreted as a microeconomic problem in the theory of
consumer choice [22–24], considering ΛðfÞ as the utility
function. By focusing on an arbitrary component ν, one of
the inequalities in Eq. (2) serves as the budget constraint for
ν if Kνj0 ≤ 0 for all pathways j0, while the remaining
inequalities in Eq. (2) then determine the solution space
[Fig. 1(a)]: for example, if we choose glucose as ν, the

(a)

(b)

FIG. 1. Schematic illustration. (a) (left) Metabolic CBM for-
mulation with reaction fluxes v as variables. The solution
subspace (convex set of possible allocations), called the flux
cone, is shown in pink. (right) Microeconomic formulation with
pathway fluxes f as variables and an objective flux Λ. The pink
area in the f plane (bottom surface) represents the solution
subspace, whereas the blue plane vertical to the f plane is the
budget constraint for a component ν. The blue points v̂ and f̂
represent the optimized fluxes of reactions and pathways,
respectively. Given v ¼ Pf with pathway matrix P, both for-
mulations are equivalent optimization problems (see the Supple-
mental Material [25], Sec. S1 for details and Sec. S2 and Fig. S1
for a simple example). (b) Liner relation between the metabolic
responses against changes in nutrient conditions (yellow) and
those against metabolic inhibitions (green) [Eq. (3)].
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corresponding inequality in Eq. (2) represents carbon
allocation. Here, the maximal intake Iν of ν corresponds
to the income, and the input stoichiometric coefficient for
each pathway, pν

j0 ≔ −Kνj0 , serves as the price of pathway
j0 in terms of ν.
Relation between responses of pathway fluxes to nutrient

abundance and metabolic inhibition.—Because Eqs. (1)
and (2) can be interpreted as a microeconomic optimization
problem, we can apply and generalize the Slutsky equation
in the theory of consumer choice [22]. The equation shows
the relationship between changes in the optimized demands
for goods in response to income and price. In metabolism, it
corresponds to the relationship between the responses of
optimal pathway fluxes f̂ (see the Supplemental Material
[25], Sec. S4 for derivation):

∂f̂i0 ðK; IÞ
∂pν

j0
¼ −f̂j0 ðK; IÞ ∂f̂i0 ðK; IÞ

∂Iν
: ð3Þ

The right-hand side represents the responses of pathway i0
against increases in Iν, whereas the left-hand side repre-
sents those against metabolic inhibitions in pathway j0
because the metabolic price pν

j0 ¼ −Kνj0 quantifies the
inefficiency of conversion from substrate ν to end products
in pathway j0 [24].
The derivation of Eq. (3) relies solely on the law of mass

conservation, i.e., the reactants of a reaction cannot be
compensated for each other. Because the law of mass
conservation stands in every chemical reaction, the relation
of the two measurable quantities must hold in arbitrary
metabolic systems as long as their metabolic regulation is
optimized for a certain objective. In particular, the case i0 ¼ j0
will be useful: it indicates that measuring the responses of a
pathway flux to changes in the nutrient environment provides
quantitative predictions of the pathway’s responses to meta-
bolic inhibition or activation, and vice versa.
To confirm the validity of Eq. (3), we numerically solved

the optimization problems [Eqs. (1) and (2)] with pathway
fluxes f as variables using the E. coli core model [9,35] and
randomly chosen stoichiometric coefficients for the single
constraint (Fig. 2). In this numerical calculation, metabolic
pathways from exchangeable species to objective compo-
nents are chosen as linear combinations of extreme path-
ways or elementary flux modes [36] for stoichiometry
without objective reaction o [Fig. 2(b)], although the above
arguments do not depend on the specific choices of
metabolic pathways (see the Supplemental Material [25],
Sec. S3 for details). As shown in Fig. 2(a), the linear
relation between metabolic responses is indeed satisfied.
Notably, it is satisfied regardless of the number and type of
constraint(s) C, whereas the metabolic states themselves
can sensitively depend on the concerned constraints and
environmental conditions.
Relation between responses of reaction fluxes.—

Although Eq. (3) generally holds for arbitrary metabolic

pathways, it may be experimentally easier to manipulate a
single metabolic reaction. Manipulation of a single reaction
can affect multiple pathways because they are often tangled
via a common reaction in the metabolic network. Thus, we
should consider the contributions of multiple pathways.
The simplest way to do this is to sum up Eq. (3) for all the
pathways that include the perturbed reaction i. However, to
precisely conduct this summation, we need to know the
whole stoichiometry matrix or metabolic network. Hence,
another relation closed only for the reaction fluxes v is
required for application without the need to know the
details of the metabolic systems.
To derive such a relation, we consider effective changes

in the stoichiometric coefficients Sαi for reaction i as
metabolic inhibitions: e.g., inhibition of enzymes, admin-
istration of metabolite analogs, leakage of metabolites, and
inefficiency in the allocation of some resource. We then
obtain an equality on the optimized reaction fluxes v̂,
formally similar to Eq. (3) (see the Supplemental Material
[25], Sec. S4 for derivation),

∂v̂iðS; IÞ
∂qνi

¼ −v̂iðS; IÞ
∂v̂iðS; IÞ

∂Iν
; ð4Þ

by defining the metabolic price qνi of reaction i in terms of ν
as a function of S, instead of the metabolic price pν

i0 of
pathway i0 as a function of K,

qνi ≔
X

α∈M∪C
− Sαi

∂v̂i
∂Iα

=
∂v̂i
∂Iν

: ð5Þ

The coefficient ð∂v̂i=∂IαÞ=ð∂v̂i=∂IνÞ≕ cναðiÞ quantifies the
number of units of component ν that can compensate for
one unit of α in reaction i and is experimentally measurable.
For example, if ν is glucose and α is another metabolite

FIG. 2. Responses of the optimized pathway fluxes f̂.
(a) Responses to metabolic inhibitions, Δf̂i0 ðΔKGlc;j0 Þ=ΔpGlc

j0 ,

are plotted against the nutrient responses, f̂j0Δf̂i0 ðΔIGlcÞ=ΔIGlc.
All different shapes and colors of markers represent different i0
and j0, respectively. IGlc ¼ 5 ½mmol=gDW=h�. (b) Thirteen active
extreme pathways, computed using efmtool [37], are shown.
Colors correspond to those of the markers for manipulated
pathways j0 in panel (a). The whole metabolic network of the
E. coli core model is shown in gray.
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such as an amino acid, cνα indicates how many units of
glucose are required to compensate for one unit of the
amino acid, similar to the “glucose cost” in previous
studies [38].
For the linear response relation [Eq. (4)], it is sufficient to

calculate only the change in metabolic price (not the
metabolic price itself), which depends on the type of
manipulations of concern: (I) manipulations leading to
the loss of a single component and (II) those leading to the
loss of multiple components.
If experimental manipulation causes the loss of a single

component αð∈ M ∪ CÞ in reaction i, Sαi effectively
changes only for that α [Fig. 3(a)]. In such a case, the
metabolic price change is just given by Δqαi ¼ ΔSαi. An
example of such experimental manipulations is the admin-
istration of an analog to a reactant of a multibody reaction:
if α and β react [see Fig. 3(a)], the metabolic analog of β
can produce incorrect metabolite(s) with α, leading to the
loss of α, and thus, reaction i requires more α to produce the
same number of products, causing effective increases in
the input stoichiometric coefficient jSαij. Another example
is the changes in the total capacity and effective stoichi-
ometry for a constraint: for example, the mitochondrial
volume capacity will work as such a constraint and can be
genetically manipulated [39–41]. Equation (4) for case (I)
is numerically confirmed in Fig. 3(a).
If metabolic inhibition of multiple reactant species of a

reaction i is simultaneously caused, the stoichiometric

coefficients Sμi for multiple reactants μ of reaction i will
effectively change [Fig. 3(b)]. Accordingly, the reaction
price changes by Δqνi ¼

P
μ ΔSμicνμðiÞ. In experiments,

such cases would correspond to the inhibition of enzymes,
leakage of the intermediate complex of reaction i, and so
forth. Even in this case (II), the linear relation [Eq. (4)] is
verified by numerically calculating the price changes of
reaction j defined in Eq. (5) with the E. coli core model
including 77 reactions [Fig. 3(b)] as well as a larger-
scale metabolic model including 931 reactions [42]
(Supplemental Material [25], Fig. S2). Here, although
the precise calculation of the coefficients cνμðiÞ requires
information regarding not only the responses of v̂i to Iν but
also those to Iμ, they can be approximated in ways easier
and independent of reaction i. For example, under extreme
situations in which only the carbon sources limit the
objective reaction, cνμ should be the ratios of the carbon
numbers of species μ and ν; alternatively, the simplest
approximation could be just taking cνμ as unities. Even with
these approximations, the relation [Eq. (4)] appears to hold
well (Supplemental Material [25], Fig. S3), and thus such
approximations will be useful for qualitatively predicting
whether metabolic inhibition promotes or suppresses the
reaction of interest.
Remarkably, our above argument does not depend on

specific choices of objective reaction o, whereas we have
utilized the biomass synthesis reaction as o (Figs. 2 and 3).
To highlight the independence of the relation [Eq. (4)] from
cellular objective functions, we also numerically confirmed
that it is satisfied even when objective reaction o is set as a
reaction for matter production, such as ethanol or ATP
synthesis (Supplemental Material [25], Fig. S4). These
synthesis reactions are often considered as the objectives
for metabolically engineered cells [5,43,44].
In the present study, we showed that the metabolic

responses against resource availability and those against
metabolic inhibitions are negatively proportional. The
quantitative relations we found should be universally
satisfied with arbitrary reaction networks, constraints,
and objective functions of cells. In particular, although
the predicted optimal metabolic states can drastically
depend on the assumed objective function, the relations
of the responses should be always satisfied independent of
it (see also the Supplemental Material [25], Fig. S4). Even
though we can never know the true objective function of
cells, we can still predict the metabolic responses.
In the linear relations, the metabolic responses against

different perturbations are linked because both are deter-
mined from the identical objective function and constraints
(see also Fig. 1). It is similar to the linear response theories
in statistical mechanics: they are derived from the fact that
different thermodynamic quantities are given as the
derivatives of an identical thermodynamic potential [45].
Note here that the thermodynamic potential works as an

FIG. 3. Responses of the optimized reaction fluxes v̂ against
metabolic inhibitions of reaction i. As the simplest example, a
two-body reaction of components α and β is illustrated in the
upper panels. (a) Metabolic inhibition of a single component (α in
upper panel): case (I). The horizontal axis shows the responses to
the available amount of a constraint αð∈ CÞ, v̂iΔv̂iðΔIαÞ=ΔIα,
and the vertical axis shows the responses to metabolic inhibitions,
Δv̂iðΔSαiÞ=Δqαi . (b) Metabolic inhibition of multiple compo-
nents (α and β in upper panel): case (II). Responses of the reaction
flux v̂i to effective changes in the input stoichiometric coef-
ficients fSμigμ∈M for reaction i, Δv̂iðfΔSμigμ∈MÞ=ΔqGlci , are
plotted against those to intake changes, v̂iΔv̂iðΔIGlcÞ=ΔIGlc.
IGlc ¼ 8.05 ½mmol=gDW=h�. Each marker denotes a different
reaction i.
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objective function: e.g., entropy is maximized at the
thermal equilibrium.
The independence from cellular objective functions is

derived from the microeconomic formulation for metabolic
regulation and application of the Slutsky equation in
economics. Note that the Slutsky equation basically
requires detailed information regarding the objective func-
tions (utility functions in economics) because it includes a
term for the so-called substitution effect that quantifies the
substitutability of goods and depends on the objective
functions (see also the Supplemental Material [25],
Sec. S4). However, the term disappears when applied to
metabolism because the law of mass conservation implies
the nonsubstitutability of reactants.
Although the linear relations [Eqs. (3) and (4)] are

general due to the generality of the law of mass conserva-
tion, there are also some limitations. First, since our results
rely on the assumption of optimal metabolic regulation,
they will not hold in suboptimal metabolic responses;
conversely, any observed deviation from the relations
[Eqs. (3) and (4)] will indicate the suboptimality in the
regulation of the real metabolic system in question. Second,
our linear relations work only for continuous metabolic
responses. Third, the approximation of coefficients cνμ in
Eqs. (4) and (5) could be prohibitive when the coefficients
become negative, e.g., in the case that the fluxes from
different nutrient sources must be balanced for a metabolic
reaction of interest and an increase in one source promotes
the reaction while an increase in another source inhibits it.
Because our results are valid regardless of how abstract

the concerned model is, from coarse-grained toy models to
genome-scale metabolic networks, they would be impor-
tant both for quantitative predictions and for discovering
qualitatively novel phenomena. The Warburg effect or
overflow metabolism is a prominent example of the latter.
In the Warburg effect, as the amount of the carbon source
taken up by a cell increases, the cell decreases the flux of
the respiration pathway and utilizes fermentation or aerobic
glycolysis instead [13,46]. From the relation [Eq. (3)], one
can immediately predict that the inhibition of respiration
(e.g., administration of uncouplers of respiration [47]) will
counterintuitively increase the respiration flux. Such an
increase in the respiration flux was observed in a coarse-
grained model, which was termed the drug-induced reverse
Warburg effect [24]. This phenomenon has been indeed
reported in several published experiments [47–50].
Likewise, for controlling cellular metabolic states, e.g.,

for metabolic engineering and medicine, some counterin-
tuitive manipulations can promote pathway or reaction
fluxes. Although metabolic inefficiency is considered to
suppress the flux in general, when an increase in the intake
of a substrate suppresses a pathway or reaction flux,
making the metabolic pathway or reaction less efficient
will counterintuitively promote the flux (see also the
Supplemental Material [25], Sec. S2 and Fig. S1 for an

example of coarse-grained models). In experimental appli-
cation, the intake or total capacity can be altered by shifts in
environmental conditions, genetic manipulations, and so
forth. Changes in the metabolic price can be also imple-
mented in various ways: e.g., administration of a metabolite
analog, leakage of a metabolite, addition of an alternative
pathway or reaction through metabolic engineering manip-
ulations, and inhibition of some enzyme that will lead to the
accumulation of the reactants and possibly promote their
excretion or conversion to other chemicals. They cause a
loss of reactants, and thus, the corresponding reaction(s)
require more metabolites to produce the same number of
products.
The relations [Eqs. (3) and (4)] allow us to predict the

responses of an arbitrary reaction or pathway flux to
metabolic inhibitions only by measuring its fluxes in
several different nutrient conditions, and vice versa. The
predictions do not require detailed information regarding
the concerned intracellular reaction networks, and they are
valid even when the precise estimation of effective changes
in the stoichiometric coefficients is difficult, at least
qualitatively (Supplemental Material [25], Fig. S3).
Therefore, they will be useful as quantitative and qualitative
guidelines to operate the metabolic states toward the
desirable directions in various fields such as microbiology,
metabolic engineering, and medicine.

The supporting data for this Letter, including the
associated PYTHON code and data to reproduce figures in
this work, are openly available from Ref. [51].
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