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At large scales of space and time, the nonequilibrium dynamics of local observables in extensive many-
body systems is well described by hydrodynamics. At the Euler scale, one assumes that each mesoscopic
region independently reaches a state of maximal entropy under the constraints given by the available
conservation laws. Away from phase transitions, maximal entropy states show exponential correlation
decay, and independence of fluid cells might be assumed to subsist during the course of time evolution. We
show that this picture is incorrect: under ballistic scaling, regions separated by macroscopic distances
“develop long-range correlations as time passes.” These correlations take a universal form that only
depends on the Euler hydrodynamics of the model. They are rooted in the large-scale motion of interacting
fluid modes and are the dominant long-range correlations developing in time from long-wavelength,
entropy-maximized states. They require “the presence of interaction” and “at least two different fluid
modes” and are of a fundamentally different nature from well-known long-range correlations occurring
from diffusive spreading or from quasiparticle excitations produced in far-from-equilibrium quenches. We
provide a universal theoretical framework to exactly evaluate them, an adaptation of the macroscopic
fluctuation theory to the Euler scale. We verify our exact predictions in the hard-rod gas, by comparing with
numerical simulations and finding excellent agreement.
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Introduction.—Finding universal laws that govern many-
body extended systems [1–5] at large scales away from
equilibrium is a fundamental problem in physics.
Hydrodynamics is arguably the most far-reaching and
successful such set of laws [6]. The largest scale of
hydrodynamics, the Euler scale, exists and is nontrivial
as soon as the system admits ballistic transport and
interactions are on short enough distances; in particular,
the system must possess at least a few extensive conserved
quantities, and hydrodynamic modes are in one-to-one
correspondence with these. Euler hydrodynamics applies to
a wide array of many-body systems, including gases and
fluids of interacting particles. A prominent example, which
came to the fore recently, is the theory of generalized
hydrodynamics (GHD) [7–12], which proposes a universal
structure for the Euler hydrodynamics of many-body
integrable systems and which has been shown to correctly

describe cold atomic gases constrained to one dimension
[13–15] and experimentally accessible gases of solitons
[16,17]. The Euler hydrodynamics of a microscopic model
only requires the knowledge of basic aspects of the
emergent degrees of freedom, such as their fluid velocities
and their static correlations in stationary states. From these
data, it makes a range of nontrivial physical predictions,
including the large-scale motion of local observables,
correlations at large separations in space-time [18–20],
and the large-deviation theory for long-time ballistic trans-
port [21–24].
Euler hydrodynamics is based on a simple extension of

equilibrium thermodynamics [6,25]: in every mesoscopic
region, or “fluid cell,” the many-body system is assumed to
maximize its entropy, under the local constraints provided
by the extensive conserved charges Q̂i ¼

R
dx q̂iðx; tÞ.

Here q̂iðx; tÞ’s are the microscopic densities, related to the
currents ĵiðx; tÞ via continuity equations ∂tq̂i þ ∂xĵi ¼ 0; we
concentrate onone-dimensional systems for simplicity. Thus,
in every fluid cell, a different Gibbs state, or generalized
Gibbs ensemble (in integrable models) [26], is reached:
h•iβ ¼ Tr½expð−P

i β
iQ̂iÞ•�=Z characterized by Lagrange

parameters β. “Mesoscopic” refers to a sizeL, which ismuch
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greater than microscopic sizes lmicro—such as interparticle
distances and interaction ranges—but much smaller than the
sizelwhere finitevariations of local observables can be seen,
lmicro ≪ L ≪ l. Perhaps the most natural setup where these
principles apply is when an initial state is prepared in the
presence of external, long-wavelength fields. Maximizing
entropy with fields βiðx=lÞ coupled to the conserved
densities and varying on large scales l, the state is

h•il ¼ Tr

�
exp

�
−
X
i

Z
dx βiiniðx=lÞq̂iðxÞ

�
•

�
=Z: ð1Þ

The emergent, slow dynamics from the initial state (1) is that
induced by the continuity equations for the mesoscopic den-
sities qiðx; tÞ ¼ hq̂iiβðx;tÞ and currents jiðx; tÞ ¼ h|̂iiβðx;tÞ as
measured in the fluid cells,

∂tqiðx; tÞ þ Aj
iðx; tÞ∂xqjðx; tÞ ¼ 0; ð2Þ

with Aj
i ¼ ∂ji=∂qj the flux Jacobian. The mesoscopic den-

sities are related to the generalized inverse temperatures
q ↔ β bijectively thanks to positivity of the static covariance
matrix Cij ¼ −∂qi=∂βj.
Euler hydrodynamics asserts that the slow variation in

space of the state (1) induces a corresponding slow
variation in time, such that the state keeps the local
equilibrium form; one may propose that at all times (1)
correctly describes the states, with βiiniðxÞ → βiðx; tÞ (see,
e.g., [6,25,27]). In (1), correlations vanish exponentially
with the distance, under very broad conditions, including
nonzero temperature (finite βi’s) and the lack of phase
transition [28,29] (which we assume here). Thus, spatial
correlations should vanish exponentially, even during time
evolution; indeed, each fluid cell is at “local equilibrium,”
and entropy maximization should occur independently in
every fluid cell [19,23,30,31].
In fact, certain long-range algebraic correlations are

known to emerge in nonequilibrium situations when con-
servation laws are present. This is well studied for diffusive
systems in nonequilibrium steady states (NESS) [32–34]:
unbalanced thermostats at the system’s boundaries lead to
nonzero gradients, and correlations between conserved den-
sities at macroscopic distances decay as ðsystem sizeÞ−1.
This is due to the breaking of detailed balance at the diffusive
scale and determined by viscous coefficients and may be
quantitatively described by fluctuating hydrodynamics and
macroscopic fluctuation theory (see, e.g., [33–35]). But what
happens at the Euler scale, where viscous effects are scaled
down to zero size?
In NESS emerging from the partitioning protocol in

systems of infinite size [36], gradients vanish and corre-
lations are weaker. The strongest are found in inte-
grable systems, including free particles, where conserved
density correlations decay as ðdistanceÞ−2 because of

discontinuities in the occupation function of hydrodynamic
modes [37,38]. But this decay is too quick to correlate
Euler-scale fluid cells (see below).
We note that a similar situation occurs at zero temper-

ature, under the different physics of quantum fluctuations at
Fermi points, and that a theory for the transport of such
weak algebraic correlations on top of moving fluids is
proposed in [30,39] (in GHD). Very far from equilibrium,
stronger long-range correlations may develop: for instance,
global quantum quenches generate finite densities of
entangled particles that may propagate (diffusively or
ballistically) and carry nontrivial entanglement [40–42]
and correlations [43,44]. However, entangled particle
production is not expected to occur in long-wavelength
states, Eq. (1).
Up to now, there has been no prediction, observation, or

theory for eventual long-range correlations emerging under
ballistic scaling from (1). The assumption of uncorrelated
Euler-scale fluid cells and that the form (1) stays valid in
time has remained and appears to play an important role in
recent studies of the evolution of correlations and fluctua-
tions under inhomogeneous conditions and nonlinear
hydrodynamic response theory [19,23,30,39,45].
In this Letter, we show that the assumption of uncorre-

lated Euler-scale fluid cells is generically incorrect. We
show that correlations of strength ∝ l−1 develop dynami-
cally from (1), at macroscopic (∝ l) times and distances,
under generic conditions for systems exhibiting ballistic
transport. In particular, if QR

i ðltÞ, QR0
j ðltÞ are total charges

lying on finite but macroscopically large regions R, R0 that
are separated by a macroscopic distance, jRj; jR0j ∝ l,
distðR;R0Þ ∝ l, evaluated at macroscopic time lt, then
their covariance is large, hQR

i ðltÞQR0
j ðltÞic ∝ l. This

shows strong correlations between separated cells. The
appearance of ballistically scaled long-range correlations at
all macroscopic times is a general phenomenon which, to
our knowledge, has not been discussed before. It holds no
matter the nature of the system, quantum or classical,
integrable or not, and is solely controlled by its Euler
hydrodynamics.
This phenomenon is not explained by the theories for

diffusive long-range correlations recalled above, as it does
not depend on viscous coefficients or phenomenological
noise, and it occurs in ballistic times t ∝ x. It gives the
dominant correlations on large distances, beyond diffusive
broadening, and of larger strength than the 1=x2 correla-
tions due to occupation discontinuities. It is not due to
quasiparticle excitations, as it is a universal hydrodynamic
effect. By contrast, we show that the phenomenon occurs in
long-wavelength inhomogeneous states [as in (1)], only if
the Euler hydrodynamic theory is interacting and only if it
admits at least two different fluid modes (with different
velocities). Euler-scale long-range correlations invalidate
the assumption that on every time slice a state such as (1) is
found. This thus calls for a new understanding of the
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principles of Euler hydrodynamics and a rethink of recent
studies of hydrodynamic nonlinear response and the
evolution of correlations and fluctuations.
We quantify this phenomenon by proposing that the

principle replacing independent local entropy maximiza-
tion of fluid cells is that of “relaxation of fluctuations”:
local observables relax to fixed, nonfluctuating functions of
conserved densities, which themselves fluctuate. This is
developed into a universal theory, the ballistic macroscopic
fluctuation theory (BMFT). The BMFT is a hydrodynamic
large-deviation theory, solely based on the emergent Euler
hydrodynamic data of the model, which characterizes all
fluctuations and correlations at the ballistic hydrodynamic
scale, including under fluid motion.
For illustration, we study the paradigmatic hard-rod

model of statistical physics, which is simple enough to
be amenable to high-accuracy numerical simulations, yet
truly interacting. We find that the model does indeed
develop long-range correlations, which are quantitatively
in excellent agreement with our theory.
Ballistic long-range correlations.—We show that corre-

lations in the initial state (1), between macroscopically
separated observables ô1ðlx1;ltÞ and ô2ðlx2;ltÞ at mac-
roscopic times, generically has strength l−1. That is, the
connected correlation function hô1ô2ic ≔ hô1ô2i −
hô1ihô2i has a “nonzero Euler-scaling limit” [46]

Sô1;ô2ðx1; t; x2; tÞ ≔ lim
l→∞

lhô1ðlx1;ltÞô2ðlx2;ltÞicl ≠ 0;

ð3Þ

when x1 ≠ x2. If fluid cells were uncorrelated, the result
would be a delta function. We will demonstrate that there is
an additional nonzero contribution if three conditions are
satisfied: (a) the initial state is inhomogeneous (so there is
fluid motion), (b) the system is interacting (its hydro-
dynamic flux Jacobian Aj

i depends on the state), and (c) the
model has at least two hydrodynamic modes with different
fluid velocities (Aj

i ∝ δji ). The latter two conditions are
generic in many-body systems that admit ballistic transport.
This includes translation invariant Hamiltonian systems
such as the anharmonic chain [47], integrable quantum
spin chains [8], and integrable gases such as the one-
dimensional interacting Bose gas [48] and soliton gases
[16]. Taking ô1 ¼ q̂i, ô2 ¼ q̂j and integrating over the
regions R, R0, the result implies that hQR

i ðltÞQR0
j ðltÞic ∝ l

as claimed above.
The result (3) means that strong algebraic correlations

develop at large times and distances. If the initial state has
short-range correlation, which is the case for (1), then as
time passes, correlations grow, and at macroscopic times
(of the order of the variation scale of the initial state), they
are present on linearly growing macroscopic distances (set
by the maximal fluid velocity) and are of strength inversely
proportional to the macroscopic scale. Their shape on the

macroscopic scale and the way they eventually decay in
time, i.e., the precise function Sô1;ô2ðx1; t; x2; tÞ, depends on
the model and the precise shape of the initial condition.
The physics of such correlations comes from nonlinear

hydrodynamic response. “Correlated fluid modes” are
emitted from fluid cells in response, at nonlinear order,
to the change of the cells’ states in time. The long-range
correlations are the product of such coherent fluid modes of
different velocities traveling to macroscopic distances and
scattering among each other. Nonlinear response is possible
only if interaction is present, and long-range correlations
can only occur, after the emission event, if fluid modes
propagate at different velocities; this explains the three
conditions above. This is a new mechanism, inherently
nonlinear and distinct from the well-known mechanism for
time correlations due to hydrodynamic linear response
[19,20,23,45], whereby Euler-scale correlations occur
when a mode emitted by ô1 at time t1 is probed by ô2
at t2 > t1. The emission of coherent fluid modes parallels,
but is different from, the mechanism of entangled particle
production found to give long-range correlations in homo-
geneous quantum quenches, both for diffusive [43] and
ballistic [44] transport. Naturally, the latter is not universal
and does not require inhomogeneity or interaction (in the
above hydrodynamic sense), by contrast to the effect we
have uncovered.
In order to prove and quantify the result, Eq. (3), we

introduce the ballistic macroscopic fluctuation theory. The
BMFT, which applies to the ballistic scale, is similar in
spirit macroscopic fluctuation theory (MFT) [49–56], for
the diffusive scale. Technically, the long-range correlations
that occur at ballistic and diffusive scales have similar
explanations in BMFT and MFT, respectively: the non-
locality of a “free-energy functional” emerging after time
evolution. The physics is nevertheless markedly different;
the former is not an effect of noise and requires the presence
of at least two fluid modes, in contrast to the latter. For the
full development of the BMFT, see our related work in [57].
Example: The hard-rod gas.—Before developing the

BMFT, we illustrate the result on the hard-rod model,
with a well-established Euler hydrodynamics description
[18,58–60]. The rods with unit length lmicro ¼ a ¼ 1 have
ordered positions xiðtÞ ∈ R that move in time t freely at
velocities vi, except at collisions xiþ1ðtÞ − xiðtÞ ¼ 1 where
velocities are exchanged. We consider the rod density
q̂0ðxÞ¼

P
iδðx−xiÞ and evaluate Sq̂0;q̂0ðx; t; 0; tÞ from (3).

We take large but finite values of l; we find that l > 100 is
sufficient for a < 10% relative accuracy. The initial state
h� � �il is a random distribution of nonoverlapping rods,
uniformly with velocities vi ∈ f�1g, and with the “bump”
density profile

hq̂0ðx; 0Þil ¼ 1þ 3e−ðx=lÞ2

3þ 3e−ðx=lÞ2
∈ ½1=3; 2=3�: ð4Þ
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The particle density q0ðx; tÞ is shown in the inset of Fig. 1.
At the macroscopic time t ¼ 0.5 the initial bump splits into
two counterpropagating bumps. We observe that the
correlation hq̂0ðlx;ltÞq̂0ð0;ltÞicl decays as 1=l and find
a finite result as l → ∞ by multiplying by l, in accordance
with the definition in Eq. (3) of the Euler scaling limit. Note
how both positive and negative correlations occur and
how one point, x ¼ 0, is not in the moving bump; these are
not simply correlations between the counterpropagating
bumps. The comparison between the result predicted by
BMFT and the simulation is displayed in Fig. 1. Striking
are both the fact that the result is nonzero, thus long-range
correlations are present, and that the BMFT correctly
predicts it. Correlations develop everywhere on the region
x ∈ ð−2; 2Þ, determined by the maximum fluid velocity,
where the large-scale motion takes place. Outside this
interval, the state at time t ¼ 0.5 still retains its homo-
geneous equilibrium structure and long-range correlations
are zero.
BMFT.—As recalled, Euler-scale hydrodynamics is jus-

tified through local relaxation: local-observable averages
are functions of the densities q only, liml→∞hôðlx;ltÞil ¼
hôiβðx;tÞ ≔ o½qðx; tÞ� [6,25]. Applying this assumption to

the current averages ji½qðx; tÞ�, the Euler equation (2)

follows. The fundamental principle of the BMFT extends
this assumption to fluctuations. We assume that mesoscopic
charge densities can be identified with classical fluctuating
variables q̂ðlx;ltÞ ≔ qðx; tÞ [61]. Local relaxation of
fluctuation then states that mesoscopic fluctuating variables
ôðlx;ltÞ ≔ oðx; tÞ do not fluctuate independently but are
fixed functions of qðx; tÞ. The functional dependence of
oðx; tÞ on qðx; tÞ is shown to be completely determined by
the (generalized) Gibbs state: oðx; tÞ ¼ o½qðx; tÞ� [57].
Applying this to currents jiðx; tÞ ¼ ji½qðx; tÞ� and exploit-
ing the conservation laws, the BMFT probability measure
for the fluctuating charge densities is obtained,

dP½qð·; ·Þ� ¼ dμ½qð·; ·Þ�e−lF ½qð·;0Þ�δ½∂tqþ ∂xj½q��; ð5Þ

where dμ½qð·; ·Þ� is the flat measure for functions on the
space-time region S ≔ R × ½0; T�. This implies that fluc-
tuations of mesoscopic densities stem from those of the
initial state and are deterministically propagated in space-
time according to the Euler equation. Initial fluctuations of
densities qð·; 0Þ are determined by e−lF ½qð·;0Þ�; the large-
deviation function for the state (1) is

F ½qð·;0Þ� ¼
Z
R
dxðβiiniðxÞqiðx;0Þ− f½βiniðxÞ�− s½qðx;0Þ�Þ;

ð6Þ

with s½q� and f½β� the entropy and free-energy density,
respectively. Equation (6) follows from statistical mechan-
ics [56]. It is also used in the MFT (for diffusive systems,
where, however, the measure (5) in space-time is different);
see, e.g., Refs. [52,53]. One may consider a more general
initial state, e.g., itself with long-range correlations [62].
The BMFT average is given by

⟪ • ⟫l ¼ 1
Z

Z
ðSÞ

dμ½qð·; ·Þ�e−lF ½qð·;0Þ�δð∂tqþ ∂xj½q�Þ• ð7Þ

and reproduces the Euler scale of h•il at large l. The delta
function is represented via Laplace transform, leading to
the introduction of an auxiliary field Hðx; tÞ. In the large-l
limit, all results are obtained by saddle point calculations—
thus we have reduced the problem of Euler-scale correla-
tions to a functional minimization problem. From Eq. (5),
all BMFT predictions follow.
Note that both the BMFT and the MFT [50] are large-

deviation theories based on an action formalism describing
space-time configurations of densities and currents. They,
however, pertain to different hydrodynamic scales, ballistic
and diffusive, respectively, and as such they cannot be
derived from one another. In our related work [57], we also
combine these and introduce a multiscale hydrodynamic

FIG. 1. Bump release of the hard-rod gas. Rod density mean
value q0ðx; tÞ (in the inset) and equal-time connected correlation
function Sq̂0;q̂0ðx; t; 0; tÞ from (3) with q̂0ðxÞ ¼

P
i δðx − xiÞ,

evaluated at the macroscopic time t ¼ 0.5 as a function of the
macroscopic space coordinate x. The initial state is the density
bump in Eq. (4) (black solid line in the inset). Three values
l ¼ 250, 500, and 1000 are reported with the associated
uncertainty bars (the data for the scales l ¼ 250 and 1000 are
shifted horizontally by �0.04 to make them clearly visible). The
collapse of the numerical data is evident, numerically confirming
the existence of Euler-scale long-range correlations of order 10−2.
These correlations are captured by the BMFT (red points) with an
excellent agreement. The numerical data are obtained by simu-
lating the deterministic hard-rod dynamics and by averaging over
a large number of independent realizations of the rods’ initial
positions and velocities. In the inset, the numerical data (blue
dotted curve) are obtained with l ¼ 250 and match the solution
of the Euler equation (2) (red solid line).
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fluctuation theory describing both the ballistic and the
diffusive scale.
Long-range correlations from the BMFT.—From the

above, we evaluate (3) for conserved densities using the
BMFT measure (5) as

Sq̂i1 ;q̂i2 ðx1; t1; x2; t2Þ ¼ lim
l→∞

l⟪qi1ðx1; t1Þqi2ðx2; t2Þ⟫c
l: ð8Þ

We introduce a generating function expðlΛÞ with
Λ ¼ λ1qi1ðx1; t1Þ þ λ2qi2ðx2; t2Þ. By saddle point, we
have as l→∞, ⟪expðlΛÞ⟫l→expð−lFΛ½q��Þ, where
FΛ½qð·; ·Þ� ¼ F ½qð·; 0Þ� − Λ½qð·; ·Þ�. One calculates Sq̂i1 ;q̂i2
ðx1; t1; x2; t2Þ by taking derivatives with respect to λ at
λ ¼ 0. Dropping the superscript �, q (no longer fluctuating)
solves the saddle point equations,

Hiðx; 0Þ ¼ βiiniðxÞ − βiðx; 0Þ; ð9aÞ

Hiðx; TÞ ¼ 0; ð9bÞ

∂tβ
i þ Ai

j½β�∂xβj ¼ 0; ð9cÞ

∂tHi þ Ai
j½β�∂xHj ¼ −λδii1δðx − x1Þδðt − t1Þ; ð9dÞ

with the boundary condition βiðx→�∞;tÞ¼βiiniðx→�∞Þ
and Hiðx → �∞; tÞ ¼ 0. Manipulations of these BMFT
equations generically imply long-range correlations, giv-
ing, in particular,

Sq̂i1 ;q̂i2 ðx1;t1;x2;t1Þ¼Ci1i2ðx1;t1Þδðx2−x1Þ
−∂λðUλðt1;0ÞβiniÞiðx2Þjλ¼0

Cii2ðx2;t1Þ;
ð10Þ

where Uλðt; t0Þ is the nonlinear time-evolution operator
associated with Eq. (9c), βðtÞ ¼ Uλðt; t0Þβðt0Þ. The first
term in (10) is the linear response contribution
[19,20,23,45], the correlation within the fluid cell, sup-
ported at x1 ¼ x2. The second term is generically nonzero
for x1 ≠ x2 (the operator Uλ depends on x1) and accounts
for long-range correlations. It vanishes when t1 ¼ 0
[Uλð0; 0Þ ¼ 1], as the initial state (1) has no Euler-scale
correlations, and also when the state is homogeneous
[Uλðt1; 0Þβini ¼ βini] and the model is noninteracting (Uλ

does not depend on λ), giving conditions (a) and (b) [see
after Eq. (3)]. The condition (c) follows from hydro-
dynamic projections [6,18,19,63–66], see Ref. [57].
In general, it is challenging to bring the second term on

the right-hand side of Eq. (10) to a calculable form. Solving
the BMFT equations (9a)–(9d) is generically tricky as
shock solutions, where entropy is not conserved, may
appear [67,68]. In integrable models, this problem does
not arise, as GHD is known to display no shock solutions.
In GHD, Eqs. (9a)–(9d) can be exactly solved using the
method of characteristics [69] leading to an expression for

Sq̂i1 ;q̂i2 ðx1; t1; x2; t1Þ in terms of solutions to certain integral

equations, see Ref. [57]. In the case of the hard-rod model,
this leads to the result reported in Fig. 1.
Conclusions.—We have shown that long-range correla-

tions (3) generically develop under ballistic scaling
over time in many-body systems. Here (and in our related
work [57]), we have provided, to our knowledge, the first
observation and description of this universal phenomenon.
This happens under three generic conditions: inhomoge-
neity in initial conditions, interaction, and the presence of
more than one fluid velocity. It is different from known
long-range effects seen in diffusive NESS and in global
quenches. This result invalidates the fundamental tenet of
Euler hydrodynamics that at each time fluid cells undergo
entropy maximization independent of each other. By
introducing the BMFT, the first hydrodynamic fluctuation
theory describing all correlations and fluctuations at the
Euler scale, we have evaluated the ballistic long-range
correlations in the hard-rod model observing excellent
agreement with numerical simulations. The long-range
correlations we unveil are expected to have significant
impact and open new research directions in the field of
correlations and fluctuations in inhomogeneous fluids,
which is a broad area of current active research. For
example, can we extend quantum GHD [39] to introduce
such stronger correlations from nonlinear effects at zero or
small temperatures? Do they affect nonlinear response
coefficients [45]? We also expect that these long-range
correlations can be experimentally observed using quantum
gas microscopes [70].
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