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We systematically study emergent Kondo lattice models from magic-angle twisted bilayer graphene
using the topological heavy fermion representation. At the commensurate fillings, we demonstrate a series
of symmetric strongly correlated metallic states driven by the hybridization between a triangular lattice of
SUð8Þ local moments and delocalized fermions. In particular, a (fragile) topological Dirac Kondo
semimetal can be realized, providing a potential explanation for the symmetry-preserving correlated state at
ν ¼ 0. We further investigate the stability of the Dirac Kondo semimetal by constructing a quantum phase
diagram showing the interplay between Kondo hybridization and magnetic correlation. The destruction of
Kondo hybridization suggests that the magic-angle twisted bilayer graphene may be on the verge of a solid-
state quantum simulator for novel magnetic orders on a triangular lattice. Experimental implications are
also discussed.
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Introduction.—Magic-angle twisted bilayer graphene
(MATBG) [1,2] has been a promising platform to study
strongly correlated phases because the nearly flat band-
width [3] effectively enhances many-body interactions.
Recent experiments [1,2,4–17] have shown abundant
phenomena such as correlated insulators, superconductiv-
ity, quantum anomalous Hall effect, and flavor polarization.
One of the unsettled experimental issues is the seeming
contradiction between transport and STM measurements at
the charge neutrality point (ν ¼ 0). Several transport
experiments [1,2,4,15] found semimetallic behavior at
ν ¼ 0, which can be described by the noninteracting
Bistritzer-MacDonald (BM) model [3]. However, STM
measurements [9,10,14,17] observed strong local correla-
tions at ν ¼ 0, indicating significant interactions. Thus, it is
natural to ask if a potential mechanism exists explaining
both transport and STM experiments.
Studying interaction-driven phenomena in MATBG is

technically challenging because the two flat bands belong to
the fragile topological states protected by a C2zT symmetry
[18–20], implying the absence of a lattice model description
for the flat bands. Recently, Song and Bernevig proposed a
novel topological heavy fermion (THF) representation [21],
reconstructing the MATBG flat bands by coupling localized
orbitals (f fermions) and delocalized topological conduc-
tion bands (c fermions). Notably, the localized f fermions
can be viewed as the zeroth pseudo-Landau levels located at
the AA stacking registries [22,23]. Song and Bernevig
further demonstrated that this THF representation is advan-
tageous for studying interaction-driven phases because the
one-shot Hartree-Fock results qualitatively capture the

essence of self-consistent Hartree-Fock calculations [21],
suggesting a good starting point for exploring strongly
correlated physics in MATBG.
In this Letter, we construct and study Kondo lattice

models for MATBG using the newly developed THF model
[21,23]. The f orbitals can be viewed as SU(8) local
moments when the onsite Hubbard interaction is suffi-
ciently large. We show that a series of symmetry-preserving
correlated metallic states arise naturally from the hybridi-
zation between the SU(8) local moments (spin, valley, and
orbital) and the delocalized c fermion. In particular, a
fragile topological Dirac Kondo semimetal is realized at
ν ¼ 0, providing a potential resolution for both the trans-
port and STM measurements at ν ¼ 0. This prediction is
distinct from the existing Hartree-Fock studies [21,23–31].
To examine the stability of the Dirac Kondo semimetal
state, we consider Heisenberg interaction among the
nearest-neighbor local moments and construct a quantum
phase diagram. One interesting implication is that MATBG
might be on the verge of a SU(8) Heisenberg model on a
triangular lattice, paving an unprecedented way for study-
ing exotic magnetic phases in solid-state systems.
Model.—We are interested in the MATBG low-energy

bands with strong correlations. The single-particle
dispersion is well described by the BM model [3]. Here,
we adopt a new alternative strategy using the THF
representation [21,23]. The main idea is that the low-
energy MATBG bands can be reconstructed by coupling
localized orbitals (at zero energy) and delocalized topo-
logical bands. The localized orbitals (f fermions) live on a
triangular lattice with the lattice constant aM being the
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moiré period as shown in Fig. 1(a); the delocalized bands
(c fermions) travel in continuous space, described by [21]

Ĥ0;c ¼
X

η;s;a;a0

X
q

hðηÞaa0 ðqÞc†q;a;η;scq;a0;η;s; ð1Þ

where ĥðηÞðqÞ is a 4 × 4 matrix dictating the delocalized
bands [32], cq;a;η;s is the annihilation operator for the
delocalized bands with valley η, spin s, orbital a (a ¼ 1, 2,
3, 4), and is a wave vector q. Since c fermions can travel in
the continuous space freely (i.e., not trapped by the
triangular lattice points), they can carry wave vectors
outside of the first moiré Brillouin zone (mBZ) defined
by the triangular superlattice. The hybridization between c
and f fermions is described by [21]

Ĥ0;cf¼
X
η;s;α;a

X
G

X
k∈mBZ

h
VðηÞ
αa ðkþGÞf†k;α;η;sckþG;a;η;sþH:c:

i
;

ð2Þ
where VðηÞ

αa ðqÞ is a 2 × 4 matrix [32], fk;α;η;s is the
annihilation operator for the localized orbital with orbital
α (α ¼ 1, 2), valley η, spin s, and wave vector k defined in
the first mBZ, and G is the reciprocal lattice vector of the
triangular superlattice. The characteristic single-particle
hybridization is γ ¼ −24.75 meV, and jγj controls the
distance between the low-energy and remote bands [21].
Equation (2) conserves only the crystal momentum. Thus,
the f fermion with wave vector k couples to all the c
fermions with wave vectors kþG for all the allowedG. In
our calculations, we consider a finite number (NG) of

reciprocal lattice vectors. NG ¼ 37 is used for all the
results.
In addition to the single-particle part, the Coulomb

interaction can be projected into the THF basis [33], and
the interacting part of the Hamiltonian is given by ĤI ¼
ĤU þ ĤV þ ĤW þ ĤJ [21], where

ĤU ¼ U
2

X
R

ðρ̂fR − 4Þ2 ð3Þ

describes the on-site repulsive interactions (U > 0) among
the f fermions [34], ĤV denotes the Coulomb interaction
between c fermions. ĤW is the density-density interaction
between f and c fermions (similar to the interaction in the
Falicov-Kimball model), and ĤJ is a U(4) Hund’s rule
coupling. In Eq. (3), the subtraction of 4 incorporates the
effect of the ionic charge background.
To study the interacting MATBG, we make a few

simplifications [33]. We ignore the ĤV term because it
mostly renormalizes the c fermion dispersion (e.g., band
velocity and chemical potential) but unlikely induces any
qualitatively change in the results. We also neglect the ĤW
term as it primarily gives shifts of chemical potentials.
While ĤJ is crucial for stabilizing correlated insulating
states in Hartree-Fock calculations [21], it is irrelevant to
the symmetric Kondo correlated metals within the mean-
field treatment as we discussed in the Supplemental
Material [32]. Since we focus only on the Kondo-driven
phases, the minimal interacting model for MATBG is
described by Ĥ0;c þ Ĥ0;cf þ ĤU [Eqs. (1)–(3)].
Kondo lattice and heavy fermion phase.—The

Hamiltonian Ĥ0;c þ Ĥ0;cf þ ĤU can beviewed as a periodic
Anderson model [35,36] for MATBG. When U is suffi-
ciently strong (i.e.,U ≫ jγj), the local occupation number of
f fermions (Nf) is frozen at each site. In such a situation, the
cf hybridization (Ĥ0;cf) is inert, and a Kondo coupling
emerges at the second order of Ĥ0;cf [35,36] (see
Supplemental Material [32]),

ĤK

¼ JK
N kγ

2

X
α;η;a;s

α0;η0;a0;s0

X
G;G0

X
k;k0

X
R

h
Vðη0Þ
α0a0 ðk0 þG0Þ

i�
VðηÞ
αa ðkþGÞ

×eiðk−k0Þ·R∶f†R;α;η;sfR;α0;η0;s0∶∶c
†
k0þG0;a0;η0;s0ckþG;a;η;s∶P̂Nf

;

ð4Þ
where∶A∶ denotes the normal order ofA [37], and P̂Nf

is the
projection operator onto the subspace with exactly Nf

localized f fermions per site. In the above expression, the
Kondo coupling has a nontrivial momentum dependence. In

a limit that kþG → 0 and k0 þG0 → 0, ½Vðη0Þ
α0a0 ð0Þ�

�VðηÞ
αa ð0Þ

is reduced to γ2δa0;α0δa;α, and Eq. (4) becomes to a SU(8)
Coqblin-Schrieffer coupling [35,36,38] with a coupling

FIG. 1. Kondo lattice model for MATBG. (a) The real-space
structure. Local moments (red arrows) are located at the AA
stacking registries and form a triangular lattice with a lattice
constant aM. The delocalized c fermions (blue dots) interact with
these local moments. (b) The Kondo hybridization amplitude as a
function of JK with different values of Nf. The results are
obtained by solving Eqs. (6)–(8) with a 30 × 30momentum mesh
in each mBZ. (c)–(f) Quasiparticle dispersion of η ¼ þ1 for JK ¼
0.03 eV with different Nf . ðνf; νcÞ ¼ ðNf − 4; 0Þ in these plots.
The mini bands are highlighted with green.
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constant JK . UsingU ¼ 57.95 meV (the same value used in
Ref. [21]), we obtain JK ≈ 42.28 meV, indicating that JK
cannot be ignored. In addition, the value of JK is insensitive
to Nf [32]. We emphasize that ĤK and ĤJ act on different
orbital subspaces of c fermions, so they should be treated
separately.
To study the Kondo lattice model Ĥ0;c þ ĤK, we

employ the Read-Newns decoupling [35,36,39] (i.e.,
hybridization decoupling). The main results are summa-
rized in the main text, and the derivations can be found in
Supplemental Material [32]. In the mean-field theory, the
ĤK is replaced by

ĤK →
X
η;s
α;a

X
G

X
k∈mBZ

�
B
γ
VðηÞ
αa ðkþGÞf†k;α;η;sckþG;a;η;sþH:c:

�

þ
X

k∈mBZ

jBj2
JK

; ð5Þ

where the Kondo hybridization

B ¼ −
JK
N k

X
G

X
k∈mBZ

X
α;η;s

VðηÞ
αa ðkþGÞ

γ

D
f†k;α;η;sckþG;a;η;s

E
;

ð6Þ

and N k is the number of k’s in the first mBZ (equivalent
to the number of lattice points). This mean-field decou-
pling is asymptotically valid for a SU(N) system with
N ≫ 1 [35,36]. We use the same mean-field decoupling
for ĤJ and find that ĤJ vanishes exactly as long as the
states are symmetric in valleys and orbitals [32]. This
technical observation indicates that ĤJ is not essential for
the Kondo lattice problems without valley or orbital
symmetry breaking.
Finally, we need to impose a local constraint such that

each site contains exactly Nf f fermions. In the mean-field
treatment,

1

N k

X
k∈mBZ

X
α;η;s

D
f†k;α;η;sfk;α;η;s

E
¼ Nf: ð7Þ

Similarly, we can compute the number of c fermions per
site with a finite NG (the number of mBZs included),

1

N k

X
G

X
k∈mBZ

X
a;η;s

D
c†kþG;a;η;sckþG;a;η;s

E
¼ Nc: ð8Þ

The total filling is determined by ν ¼ νf þ νc, where νf ¼
Nf − 4 and νc ¼ Nc − 8NG. Assuming that the interaction
effect is dominated by the f fermions [21,23], we treat the
integer fillings as ν ¼ νf and νc ¼ 0. For a noninteger
filling, one needs to compute the zero-point energy

(i.e., contributions from ĤV and ĤW [21], which we
ignore) to determine the precise νf and νc.
The mean-field action in the imaginary-time path inte-

gral is given by [32]

SMF ¼ 1

β

X
ωn

X
η;s

X
k∈mBZ

ˆ̄Ψη;s
ωn;k

h
−iωn

þ Ĥη;sðk;B; μc; μfÞ
i
Ψ̂η;s

ωn;k

þ βN k

�
B2

JK
þ μfNf þ μcNc

�
; ð9Þ

where Ĥη;s is a ð2þ 4NGÞ × ð2þ 4NGÞ matrix, Ψ̂η;s
ωn;k

is a
(2þ 4NG)-component field made of fk;α;η;s as well as
ckþG;a;η;s, and μf (μc) is the chemical potential for f (c)
fermions. We can straightforwardly show that the self-
consistent equations given by Eqs. (6)–(8) are equivalent
to the saddle-point equations. Within the saddle-point
approximation [35], the mean-field energy per site can
be derived by integrating out the fermionic fields and taking
the zero-temperature limit:

EMF

N k
¼ 1

N k

X
k∈mBZ

X
η;s

X2þ4NG

b¼1

Eη;s
b ðkÞΘ½−Eη;s

b ðkÞ�

þ
�jBj2
JK

þ μfNf þ μcNc

�
; ð10Þ

where Eη;s
b ðkÞ is the eigenvalue of Ĥη;sðk;B; μc; μfÞ and

ΘðxÞ is the Heaviside function.
To obtain the mean-field ground state, we numerically

solve the self-consistent equations givenbyEqs. (6)–(8) [32].
Then,we compute theEMF [Eq. (10)] of all the solutions. The
ground state is the solution with the minimal EMF. For
νf ¼ νc ¼ 0, μc and μf are exactly zero, so the self-
consistent procedure can be greatly simplified. For general
cases, one has to choose the correct values ofμf andμc so that
Eqs. (7) and (8) are satisfied. Remarkably, for Nf ≠ 4, μf
obtained from solving self-consistent equations can be
significantly different from the local chemical potential for
deriving ĤK [Eq. (4)], suggesting that the local chemical
potential is strongly renormalized. We choose a gauge
corresponding to B < 0, and the results are not affected
by such a choice [35]. The detailed numerical procedures are
discussed in Supplemental Material [32].
Now, we construct a phase diagram for the Kondo

hybridization formation. In Fig. 1(b), we plot jBj as a func-
tion of JK for different Nf with νc ¼ 0. The results suggest
a threshold around JK ¼ 0.01 eV, above which jBj be-
comes finite. For JK < 0.01 eV, we conclude that jBj → 0
based on finite-size analysis [32]. The filling factor ν can
also modify jBj. For JK > 0.01 eV, we find that ν ¼ 0
(Nf ¼ 4) yields the largest jBj, and ν ¼ −3 (Nf ¼ 1) gives
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the smallest jBj as plotted in Fig. 1(b). Meanwhile,
the quasiparticle dispersions along several line cuts
(KM − ΓM −MM − KM) in Figs. 1(c)–1(f) show that the
mini bandwidth becomes wider for a larger jνj, and no
spectral gap in the low-energy bands for all the cases,
suggesting symmetry-preserving correlated metallic states
at all the integer fillings. The broadening of quasiparticle
low-energy bands for the nonzero integer fillings is a
manifestation of strong correlation [32]. We also find
interaction-driven phase transitions in the quasiparticle
bands of ν¼−3 and ν¼−2 [32]. Intriguingly, the ν ¼ 0
case with jBj > 3.7 meV gives low-energy bands very
similar to the single-particle bands of MATBG [40], i.e.,
nearly flat isolated Dirac bands with the same bandwidth;
the crucial differences are in the remote bands, particularly,
the gaps between low-energy and the remote bands are
proportional to jBj. We also point out that such low-energy
bands also belong to the fragile topological bands [18–20]
because of the topological equivalence to the single-particle
bands. However, the physical origin here is due to strong
correlations. Thus, we conclude that the Kondo lattice
model realizes a fragile topological Dirac Kondo semimetal
at ν ¼ 0.
So far, we have discussed the results based on the Kondo

lattice model, where U is treated nonperturbatively. It is
interesting to inspect the results in the perturbative regime.
Following the ideas in Refs. [36,41,42], we treat the effect
of ĤU as a k-independent self-energy correction on the f
fermion sector. Then, we show that the quasiparticle
dispersion is essentially the same as the noninteracting
limit except that the cf hybridization amplitude is renor-
malized [32]. Therefore, the low-energy bands are also
fragile topological in this perturbative analysis. We suspect
the interacting MATBG generally realizes a fragile topo-
logical Dirac semimetal at ν ¼ 0.
Kondo-Heisenberg model.—One interesting question is

if the Kondo semimetal (ν ¼ 0) survives perturbations.
Particularly, we are interested in the competition between
Kondo hybridization and magnetic correlations [43]. To
this end, we consider SU(8) Heisenberg interaction among
the nearest-neighbor sites given by [35]

ĤH ¼ JH
X
hR;R0i

X
α;η;s
α0;η0;s0

∶f†R;α;η;sfR;α0;η0;s0∶∶f
†
R0;α0;η0;s0fR0;α;η;s∶;

ð11Þ

where JH denotes the exchange coupling and hR;R0i
indicates the nearest-neighbor pairs. Microscopically, the
Heisenberg interaction may arise from RKKY and super-
exchange mechanisms [35]. JH < 0 corresponds to a
ferromagnetic interaction, and we expect that the
Heisenberg ineraction with JH < 0 drives the system to
ground states qualitatively similar to the Hartree-Fock
predictions. We thus study on the antiferromagnetic case

(JH > 0) and focus on the stability of the Kondo semimetal
state (ν ¼ 0) in the presence of a symmetric magnetic
correlation. The simplest model is a Kondo-Heisenberg
Hamiltonian for MATBG, described by Ĥ0;c þ ĤK þ ĤH

with JH > 0. To study the antiferromagnetic interaction, we
consider a “bond” decoupling [44] as follows:

JH
X
α;η;s
α0;η0;s0

∶f†R;α;η;sfR;α0;η0;s0∶∶f†R0;α0;η0;s0fR0;α;η;s∶

→
X
α;η;s

h
χR;R0f†R0;α;η;sfR;α;η;s þ H:c:

i
þ jχR;R0 j2

JH
; ð12Þ

where the bond variable

χR;R0 ¼ −JH
X
α;η;s

D
f†R;α;η;sfR0;α;η;s

E
: ð13Þ

Our goal is to explore the interplay between Kondo
hybridization and magnetic correlation. In particular, we
focus only on the situation without symmetry breaking as
there is no clear evidence of symmetry breaking at ν ¼ 0 of
MATBG. As such, we assume uniform and real-valued
bond variables [35,45,46], specifically, χR;R0 ¼ χ > 0,
corresponding to a formation of a spin liquid with a spinon
Fermi surface [35,47]. We note that the Kondo-Heisenberg
model may give rise to a ground state different from the
ansatz used here. However, our goal is to explore the
interplay between symmetric Kondo hybridization and
symmetric magnetic correlation, mainly, how a symmetric
magnetic correlation destroys the Kondo semimetal state.
We numerically solve the Kondo-Heisenberg model with

the mean-field saddle-point approximation [32] and com-
pute the hybridization amplitude jBj as well χ. In Fig. 2(a),
jBj as a function of JH=JK is plotted for a few represen-
tative values of JK , showing the breakdown of Kondo
hybridization (i.e., jBj ¼ 0) for a sufficiently large JH. In
Fig. 2(b), both jBj and χ are continuously varying for
JH ≤ 0.07 eV. For JH > 0.07 eV, χ continuously grows as
JH increases, while jBj vanishes to zero. It is also
interesting to study how quasiparticle dispersion evolves.
In Fig. 3, we show the quasiparticle dispersion along

FIG. 2. Hybridization amplitude and magnetic correlation in
Kondo-Heisenberg model with Nf ¼ 4. (a) jBj as a function of
JH=JK for different values of JK . (b) jBj and χ as functions of JH
for JK ¼ 0.03 eV.
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several line cuts (KM − ΓM −MM − KM) and use the color
to indicate the composition of the f fermion (Φf). First, we
find that a small JH [Fig. 3(a)] makes the low-energy bands
wider, and the Dirac point is away from the zero energy,
suggesting finite Fermi pockets around KM and K0

M points.
As JH increases, the gaps between low-energy minibands
and the remote bands decrease (as jBj decreases), and the
low-energy bandwidth continuously increases (as χ gives a
finite dispersion). In Fig. 3(d), the quasiparticle excitations
can be separated by primarily f fermions (Φf ≈ 1, red dots)
and primarily c fermions (Φf ≈ 0, blue dots), indicative
of a negligible jBj. Thus, the Fermi surface of the c
fermions is reduced to a point at the Γ point for a
sufficiently large JH.
Discussion.—We establish a systematic theory for

Kondo lattice models in MATBG, showing a novel route
to understand the interaction-driven phenomena in
MATBG. Unlike the symmetry-breaking correlated insula-
tors predicted by Hartree-Fock calculations [21,23–31],
we find symmetry-preserving correlated metals due to the
Kondo coupling between a lattice of SU(8) local moments
and delocalized electrons. The Kondo lattice description in
this Letter may be relevant to the MATBG experiments at
ν ¼ 0. In particular, the STM measurements concluded the
existence of strong correlations at ν ¼ 0 [9,10,14,17],
while several transport measurements [1,2,4,15] did not
find a clear sign of symmetry breaking or correlated
insulating behavior. Our predicted Dirac Kondo semimetal
state potentially explains the dichotomy [48] of strong

correlation and the symmetry-preserving Dirac point.
Our theory also complements the existing list of Kondo
lattice systems in the moiré materials [49–52] and extends
the number of topological phases driven by Kondo
correlation [43,53–59].
One interesting consequence of our results is that the

local moments (i.e., f fermions) can be decoupled entirely
from the c fermions by a sufficiently strong magnetic
correlation, paving the way for realizing a quantum
simulator for a SU(8) triangular Heisenberg model in
MATBG. The SU(N) magnetic systems with N > 2 can
realize exotic phases, such as spin liquids and valence bond
solids [60–65]. The ground states of SU(8) triangular
Heisenberg model have not been systematically explored
(except for Nf ¼ 1 [65]), and our work provides a strong
incentive for future studies along this direction.
An outstanding question is whether the Kondo lattice

model and Kondo-driven correlated states are relevant to
the realistic MATBG. Using the parameters in Ref. [21], we
obtain U=jγj ≈ 2.34, indicating that the system is in the
intermediate coupling regime. Thus, the Kondo lattice
models based on the strong-coupling analysis (i.e.,
U=jγj ≫ 1) might not explain all the experimental results.
Our predicted Dirac Kondo semimetal is consistent with
several existing experiments at ν ¼ 0, introducing a new
perspective to study MATBG [66]. On the contrary, at
nonzero integer fillings, the Kondo-driven correlated met-
als cannot explain various symmetry-broken states from
experiments. It is possible that other types of interaction-
driven states (e.g., correlated insulators) are more energeti-
cally favored. Further investigations are required to
determine if Kondo-driven correlated states can be realized
in the MATBG experiments. Regardless of these compli-
cations, our predicted Kondo-driven semimetal provides a
plausible novel explanation for semimetallic transport of
MATBG at ν ¼ 0.
Finally, we discuss a few open questions. In the Kondo-

Heisenberg model, we consider a specific magnetic corre-
lation and JH > 0. The actual ground state with a finite JK
and JH should be examined systematically. In particular,
for JH < 0, we anticipate that the ground states are
qualitatively similar to the Hartree-Fock predictions
(e.g., valley-polarized states) [21,23–31]. It might be
interesting to study our Kondo-Heisenberg model with
JH < 0 for nonzero integer fillings, where symmetry-
broken states are reported experimentally. An important
task is to compute observables that can reveal the finite-
temperature crossover between the coherent Kondo lattice
and the decoupled Kondo impurities, such as temperature-
dependent tunneling spectroscopy and finite-temperature
resistivity.
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FIG. 3. Quasiparticle dispersion of the Kondo-Heisenberg
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(a) JH ¼ 0.02 eV; (b) JH ¼ 0.04 eV; (c) JH ¼ 0.06 eV;
(d) JH ¼ 0.07 eV. Φf is the composition of f fermion. Φf ¼1

(red) means the wave functions are made of f fermions only;
Φf ¼ 0 (blue) indicates the wave functions are made of c
fermions only.
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