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The production of jets should allow testing the real-time response of the QCD vacuum disturbed by the
propagation of high-momentum color charges. Addressing this problem theoretically requires a real-time,
nonperturbative method. It is well known that the Schwinger model [QED in (1þ 1) dimensions] shares
many common properties with QCD, including confinement, chiral symmetry breaking, and the existence
of vacuum fermion condensate. As a step in developing such an approach, we report here on fully quantum
simulations of a massive Schwinger model coupled to external sources representing quark and antiquark
jets as produced in eþe− annihilation. We study, for the first time, the modification of the vacuum chiral
condensate by the propagating jets and the quantum entanglement between the fragmenting jets. Our
results indicate strong entanglement between the fragmentation products of the two jets at rapidity
separations Δη ≤ 2, which can potentially exist also in QCD and can be studied in experiments.
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Introduction.—The discovery of jets played a crucial role
in establishing quantum chromodynamics (QCD) as the
theory of strong interactions, see [1,2] for reviews. The
production of the initial high momentum partons is a short-
distance process that can be described in perturbative QCD
due to asymptotic freedom. However, as the initial partons
keep radiating gluons and quark-antiquark pairs as
described by QCD evolution equations, the characteristic
virtuality decreases, and nonperturbative phenomena
should come into play.
In particular, one expects that the propagating color

charges will disturb the nonperturbative QCD vacuum, and
the corresponding real-time response should contain valu-
able information about the vacuum structure. Moreover, the
initial partons should be entangled by the production
process, but whether any trace of this entanglement can
be found in fragmenting jets is not clear. The answers to
these questions lie outside of the realm of perturbative
QCD, and finding them requires a real-time, nonperturba-
tive method.

Such an approach is enabled by the advent of quantum
simulations. Unfortunately, the case of real (3þ 1) dimen-
sional QCD is still out of reach for the existing quantum
hardware, as well as for real-time simulations on classical
computers. However, one can start developing real-time
nonperturbative methods using simpler models in a lower
number of space-time dimensions.
In this respect QED in (1þ 1) dimensions (the

Schwinger model [3]) holds a special place: just like
QCD, it possesses confinement, chiral symmetry breaking,
and fermion condensate [4]. In the massless fermion limit,
the theory is exactly solvable by bosonization, and admits a
dual description in terms of a free massive scalar theory. In
1974, Casher, Kogut, and Susskind [5] proposed to model
quark-antiquark production in eþe− annihilation by cou-
pling the Schwinger model to external sources propagating
along the light cone.
An explicit analytical solution of this model has been

found in [6,7], where this setup was also used to describe
jet quenching in heavy ion collisions by introducing in-
medium scattering of the sources, and the anomalous
enhancement of soft photon production in jet fragmentation
[8] observed by the DELPHI Collaboration [9].
A more realistic extension of this approach is based on a

massive Schwinger model, which in the bosonized descrip-
tion is dual to an interacting meson theory. In this case, the
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model is no longer analytically solvable, and so a numerical
approach is necessary. The first study of this setup was
carried out in [10] using a numerical classical-statistical
approach. Coupling the Schwinger model to an external
Yukawa theory has also been used to mimic the propaga-
tion of jets through a thermal environment [11]. Various
other aspects of the Schwinger model have also been
addressed using quantum simulations, see [12–20] for
examples and [21] for a recent review of quantum
simulations.
In this work, using the massive Schwinger model

coupled to external sources, we perform the first fully
quantum simulation of jet production. In particular, we
focus on real-time, nonperturbative effects that have not
been studied before: the modification of the vacuum
structure and the entanglement between the produced jets.
The model.—We use the massive Schwinger model

Hamiltonian in temporal gauge A0 ¼ 0 in the presence
of an external current jμext describing the produced jets:

HC ¼ HC
S þHC

ext; ð1Þ

HC
S ¼

Z
dx

�
1

2
E2 þ ψ̄ð−iγ1∂1 þ gγ1A1 þmÞψ

�
; ð2Þ

HC
ext ¼

Z
dxj1extA1; ð3Þ

where Aμ is the U(1) gauge potential, E ¼ − _A1 is the
corresponding electric field, ψ is a two-component fer-
mionic field, m is the fermion mass, and γμ are two-
dimensional γ matrices satisfying Clifford algebra; we use
ημν ¼ diagð1;−1Þ as our metric. The superscript C stands
for “continuum”.
The effect on the theory of the interaction with the

external source Hext is to modify Gauss’s law to

∂1E − j0 ¼ j0ext; ð4Þ

with j0 ¼ gψγ0ψ . In other words, the theory is gauge
invariant up to the presence of the external charge j0ext;
the external current is a “defect” of the U(1) gauge
transformation.
To mimic production of a pair of jets in eþe− annihi-

lation, we choose the external current to represent charges
of opposite sign flying apart along the light cone:

j0extðx; tÞ ¼ g½δðΔx − ΔtÞ − δðΔxþ ΔtÞ�θðΔtÞ;
j1extðx; tÞ ¼ g½δðΔx − ΔtÞ þ δðΔxþ ΔtÞ�θðΔtÞ; ð5Þ

where ðt0; x0Þ is the time and position of a point where the
jet pair is produced, and Δx≡ x − x0 and Δt≡ t − t0 are
the space and time distance from this position.

Note that in principle one could replace the external
probe charges by “hard” dynamical fermions, which can,
for instance, be produced by short lived pulses of electric
fields. This has been done in [10], where it was found that,
at least within the semiclassics, the use of external charges
is a very good approximation to a pair of dynamical
relativistic “hard” fermions. This motivates us to restrict
ourselves to the simpler case of external currents.
Our goal is to study the modification of the vacuum due

to the presence of the external sources (5). To this end, we
evolve the ground state of the massive Schwinger model
with the time-dependent Hamiltonian (1). In order to solve
this problem, we need to discretize space-time and approxi-
mate the theory by a finite-dimensional Hilbert space.
Lattice model.—We begin by discretizing space in a

lattice of N points with lattice spacing a. We choose to
work with staggered fermions χn [22,23]. We use a non-
compact formulation for the U(1) gauge fields, and
introduce a lattice electric field operator Ln ¼ EðanÞ=g,
a lattice vector potential ϕn ¼ agA1ðanÞ, and a link
operator Un ¼ e−iagA1ðanÞ. We further impose open-
boundary conditions χNþ1 ¼ LN ¼ 0 on the fermion and
gauge fields. Using the Dirac matrices γ0 ¼ σz ≡ Z,
γ1 ¼ iσy ≡ iY, the Hamiltonian is

HLðtÞ ¼ HL
S þHL

extðtÞ; ð6Þ

HL
S ¼ −

i
2a

XN−1

n¼1

½U†
nχ

†
nχnþ1 −Unχ

†
nþ1χn�

þ ag2

2

XN−1

n¼1

L2
n þm

XN
n¼1

ð−1Þnχ†nχn; ð7Þ

HL
extðtÞ ¼

1

g

XN−1

n¼1

j1extðan; tÞϕn; ð8Þ

where the superscript L stands for “lattice.” Even in the
presence of point charges, Gauss law is well defined when
integrated over a lattice spacing and reads

Ln − Ln−1 −Qn ¼
1

g

Z ðnþ1=2Þa

ðn−1=2Þa
dx j0extðx; tÞ; ð9Þ

with Qn ¼ χ†nχn½1 − ð−1Þn� the lattice charge density oper-
ator. For the rest of this work, we insert the sources at
the center of our lattice, x0 ¼ a½ðN þ 1Þ=2�, at time
ðt0=aÞ ¼ 1.
Before proceeding with the time evolution, we take

advantage of the fact that the gauge fields are nondynamical
in (1þ 1) dimensions to express them in terms of fermionic
operators through Gauss law. This has the advantage of
drastically reducing the size of the discrete Hilbert space
needed down to 2N , at the cost of introducing nonlocalities.
The former turns out to outweigh the latter for the method
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we use (direct diagonalization, or “exact diagonalization”
of the Hamiltonian), see also Supplemental Material [24].
We then use the remaining freedom to perform a space-

only dependent gauge transformation to set all gauge links
to unity. The explicit gauge transformation which achieves
this result is Ω1 ¼ 1, Ωn ¼

Q
n−1
i¼1 U

†
i [17]. Note that the

existence of such a transformation is a peculiarity of (1þ 1)
dimensions and is related to the fact that the gauge field is
not dynamical. We then rewrite Ln ¼ Ldyn;n þ Lext;n and
solve Gauss’s law (9) as follows:

Ldyn;n ¼
Xn
i¼1

Qi; ð10Þ

Lext;nðtÞ ¼ −θ
�
t − t0 −

����x − x0 þ
a
2

����
�
: ð11Þ

The nonlocality is contained in the dynamical gauge field
and the external sources create a chain of electric fluxes
between them.
The Hamiltonian (6) is now directly suitable for diag-

onalization. However, having in mind future quantum
computing applications, we have used an equivalent form
in terms of Pauli matrices X, Y, Z, or “spin” degrees of free-
dom. We employ the Jordan-Wigner transformation [25]

χn ¼
Xn − iYn

2

Yn−1
j¼1

ð−iZjÞ;

χ†n ¼ Xn þ iYn

2

Yn−1
j¼1

ðiZjÞ; ð12Þ

to obtain

HLðtÞ ¼ 1

4a

XN−1

n¼1

ðXnXnþ1 þ YnYnþ1Þ þ
m
2

XN
n¼1

ð−1ÞnZn

þ ag2

2

XN−1

n¼1

½Ldyn;n þ Lext;nðtÞ�2: ð13Þ

Our simulations then proceed as follows. We start by
finding the ground state jΨ0i of the usual massive

Schwinger modelHLð0Þ. We then compute the state jΨti ¼
T e−i

R
t

0
HLðt0Þdt0 jΨ0i corresponding to the evolution under

the time-dependent Hamiltonian HLðtÞ, with T being
the time-ordering operator. The system is effectively
“quenched” at ðt=aÞ ¼ ðt0=aÞ ¼ 1, when the external
sources are introduced. We then compute different time-
dependent expectation values hOit ≡ hΨtjOjΨti where O
are the operators corresponding to observables of interest.
Vacuum modification and quantum entanglement

between the jets.—We measure the local electric charge
density, the total electric charge, the scalar fermion density

hψ̄ψi, the local electric field strength, and the electric field
energy, that are given, respectively, by

qn;t ≡ hψ†ða nÞψða nÞit ¼
hZnit þ ð−1Þn

2a
; ð14Þ

Qt ≡
Z

hψ†ðxÞψðxÞitdx ¼ a
XN
n¼1

qn;t; ð15Þ

νn;t≡hψ̄ða nÞψðanÞit ¼
ð−1ÞnhZnit

2a
; ð16Þ

νt ≡
Z

hψ̄ðxÞψðxÞitdx ¼ a
XN
n¼1

νn;t; ð17Þ

Πn;t≡hEða nÞit ¼ ghLnit; ð18Þ

Eele;t ≡ 1

2

Z
hE2ðxÞitdx ¼ ag2

2

XN−1

n¼1

hL2
nit: ð19Þ

The expressions in terms of spin variables are obtained by
first staggering the spinors and then using the transforma-
tion (12); see, e.g., appendices of [16,26] for more details.
We also compute the entanglement entropy between the
left- and the right-hand sides of the chain

SEEðtÞ ¼ −TrAðρt;A log ρt;AÞ; ð20Þ

with A ¼ f1;…; N=2g and B ¼ fN=2þ 1;…; Ng. The
operator ρt;A ¼ TrBρt is the partial trace of the time
dependent density matrix ρt ≡ jΨtihΨtj over B [see illus-
tration in Fig. 1 (left)].
In Fig. 1, we show the time evolution of local and global

observables, respectively, for parameters N ¼ 20,
m ¼ 0.25=a, and g ¼ 0.5=a. In the left panel, we show
the full-time evolution of our quantum state. We observe
that both the gauge fields and the fermion fields are excited
by external sources, and their effects are constrained within
the light cone spanned by them. We observe a steplike
increase in electric field energy in the right panel. The
growth of νt − ν0 shown in Fig. 1 indicates the destruction
of the (negative) vacuum chiral condensate ν0 by the
propagating jets [27,28]. This destruction is due to the
pair production from the vacuum that also results in
the screening of the electric energy which appears smaller
than the contribution from external sources. We have also
performed a comparison to analytical results in the mass-
less fermion case. The results are reported in Supplemental
Material [24].
Since we can access the entire quantum state, we are able

to compute also for the first time the entanglement entropy
between the jets. The growth of this entanglement entropy
(third panel) results from the pair creation. Last, as a
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consistency check, we also show in the lower panel the total
electric charge, which remains zero, as expected.
Observing quantum entanglement between the jets.—

With an eye toward possible experimental studies of
quantum entanglement between the produced jets, we
measure the two-point correlation of scalar fermion density
operators with the vacuum expectation value subtracted,

hΔνN=2þlΔνN=2þ1−li; ð21Þ

where Δνn ≡ νn − hνnivac.
The motivation behind this study is the following. In the

bosonization dictionary of the massive Schwinger model,
the correlation between the scalar fermion densities trans-
lates into the correlation among the boson pairs (and higher
order correlations). Therefore, we hope that this correlation
function may be used to infer information about quantum
entanglement between the pion pairs produced in jet
fragmentation. A concrete proposal of an observable
correlation between pion pairs produced in jet fragmenta-
tion has been put forward in [29].
To isolate the effect of entanglement between the jets, we

measure the correlation function for the cases of correlated
and uncorrelated sources of fermion-antifermion pairs.
Because the entanglement should stem from the correlation
between the sources, the case of uncorrelated sources
provides the classical baseline for the correlation functions.
Our method of preparation of two uncorrelated quantum

systems is illustrated in Figs. 2(b) and 2(c). In one of these
systems, there is only an antifermion source moving to the
left while the fermion source sits still at the origin. We
denote the quantum state of such a system as jψLi. We then
define its counterpart, jψRi, corresponding to the setup of
Fig. 2(c), with fermion source moving to the right and the
antifermion source fixed at the origin. The uncorrelated
state is defined as the superposition of left and right
state with a random phase, jψuncorri ¼ ð1= ffiffiffi

2
p ÞjψLiþ

ðeiφ= ffiffiffi
2

p ÞjψRi, and the expectation value of any observ-
able is obtained by averaging over this random pha-
se, ⟪ψuncorrjOjψuncorr⟫≡ R hψuncorrjOjψuncorriðdφ=2πÞ ¼
ðhψLjOjψLi=2Þ þ ðhψRjOjψRi=2Þ. The effect of the uncor-
related sources on local charge density and electric field can
be found in Supplemental Material [24].

FIG. 1. Left: Time evolution of the local charge density (vertical bars) and of the electric field (arrows), with vacuum expectation
values subtracted. Black (white) even (odd) sites correspond to (anti)fermions. The position of the external sources is shown above each
configuration. From top to bottom, the rows are for time values (in units of lattice spacing a) t=a ¼ 2− to 10−, where n− ≡ n − ε with ε
being an arbitrarily small positive number. Right: From top to bottom, time evolution of electric energy, scalar fermion density,
entanglement entropy, and electric charge. Dotted lines in the first panel show the electric energy generated by the external sources. The
value of the vacuum fermion condensate integrated over the lattice length is ν0 ¼ −5.16.

FIG. 2. Illustration of correlated and uncorrelated measure-
ments of two point correlation functions. The uncorrelated setup
is obtained as an uncorrelated linear superposition of jets created
by a single (anti)fermion source moving to the (left) right.
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The correlation function (21) is designed to measure the
points that are symmetric with respect to the jet production
vertex. We measure the two-point correlation function with
different separation distances as functions of time, and the
results are presented in Fig. 3. We find that the correlation
functions measured for the correlated state are an order of
magnitude greater than those for the uncorrelated state.
Note that it is nonzero in the latter case because of the
classical correlation between the particle production in left-
and right-moving jets which is similar to the correlation that
would be induced by the propagation of sound along the
jets’ axes.
Meanwhile, for the quantum correlated state, we observe

the propagation of a similar pattern for odd l’s and
similarly for even l’s, which is driven by the correlated
moving sources. After a sufficiently long time, we take
a snapshot and present the space dependence of the
correlation functions in Fig. 3 (inset), where we have
converted the site separation to spatial rapidity separation,
ηs ≡ arctanhðx=tÞ ¼ arctanh½ðl − 1=2Þa=t�.
One can clearly see a big difference between the strong

quantum correlation for the quantum state and the near
absence of correlations for the uncorrelated baseline. This
difference is especially pronounced for moderate rapidity
separations Δηs ¼ 2ηs ≤ 2.
Extrapolating our findings to QCD, we propose to look

for quantum entanglement among the pions produced in the
fragmentation of the two jets at moderate rapidity separa-
tion. An observation of correlations among these pion pairs

would constitute a direct signature of entanglement
between the jets. Specifically, it would be interesting to
study the quantum correlations between the “handedness”
of the pion pairs produced in the fragmentation of the quark
and antiquark jets [29]. Some hints of such correlations had
been reported in the data from DELPHI Collaboration [30].
To summarize, we have performed a real-time, non-

perturbative study of jet fragmentation using a massive
Schwinger model with external sources. Strong distortion
of the vacuum chiral condensate by the propagating
jets has been observed. We have also found strong
quantum entanglement between the fragmenting jets for
rapidity separation Δη ≤ 2. Our work paves the way for
quantum simulations of jet fragmentation using quantum
hardware; we plan to address this problem in the near
future.
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