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Detecting abrupt changes in data streams is crucial because they are often triggered by events that have
important consequences if left unattended. Quickest change-point detection has become a vital sequential
analysis primitive that aims at designing procedures that minimize the expected detection delay of a change
subject to a bounded expected false alarm time. We put forward the quantum counterpart of this
fundamental primitive on streams of quantum data. We give a lower bound on the mean minimum delay
when the expected time of a false alarm is asymptotically large, under the most general quantum detection
strategy, which is given by a sequence of adaptive collective (potentially weak) measurements on the
growing string of quantum data. In addition, we give particular strategies based on repeated measurements
on independent blocks of samples that asymptotically attain the lower bound and thereby establish the
ultimate quantum limit for quickest change-point detection. Finally, we discuss online change-point
detection in quantum channels.
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The detection of sudden changes of a stochastic random
variable is one of the most fundamental problems in
statistical analysis with a wide range of applications. For
instance, in the context of industrial processmonitoring [1,2],
detecting sudden changes in sensor readings can help
identify faults or equipment malfunctions that could lead
to downtime or accidents if not addressed in a timelymanner.
Inmedical sciences [3,4], change-point detection can be used
to detect the onset of an infectious disease outbreak or the
onset of a medical emergency while monitoring the vital
signs of a patient. Similar examples can be found in climate
research [5,6], cybersecurity [7], and robotics [8,9] to name a
few. Change-point detection has become a field of its own in
classical statistical analysis [3,10–12] with large activity on
the fundamental side, establishing optimal estimators and
trade-off regions, in diverse idealized settings, and on the
applied side developing statistical and machine learning
techniques that operate with real life data streams.
Recently, the concept of change-point detection has been

generalized to the quantum world [13–16]. Here, we have a
device outputting quantum states. By default this device
will output a certain state ρ, but from a given (random)
point of time it will start producing the state σ. The goal is
to identify this change point. In [13–15] the problem has
been considered as an instance of hypothesis testing, where
one collects a fixed number of quantum states and then tries
to determine if and where a change point occurred. Since
one requires the full sequence, this is usually considered
offline change-point detection. For the special case of pure
quantum states, solutions where given for the identification

of the position of the change, optimizing the mean
probability of error [14] and the probability of unambigu-
ous identification [15]. For any practical application,
however, one usually cannot wait for the entire sequence
to be collected (it could potentially be infinite). Therefore,
there is a strong motivation to consider online detection or
quickest change-point detection: an algorithm that samples
every copy sequentially and fires an alarm as soon as it
detects the change. In this scenario, the natural quantities to
consider are the time delay in detecting a change point
versus the risk of a false alarm, i.e., falsely detecting a
change when none has happened. In classical statistical
analysis the most studied such algorithm is Page’s cumu-
lative sum (CUSUM) algorithm [17]. Apart from its
computational simplicity, one of its most important features
is its optimality under certain risk criteria, as shown first by
Lorden [18] in the asymptotic setting and in [19,20] in the
finite regime. In [16] online strategies for quantum change-
point detection have been considered in the restricted
scenario of pure states where unambiguous (local) identi-
fication is possible. In this case, the postchange state σ does
not lie in the support of the default state ρ, and one can find
a suitable measurement for which one of the outcomes can
only be triggered by the postchange state, and thereby
guarantees the absence of false alarms while keeping a
finite mean detection delay. However, for realistic (mixed)
states there is a trade-off between the false alarm time and
the detection delay. In order to optimize this trade-off one
needs to consider general sequential quantum strategies.
This class of strategies has been recently studied in the
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context of sequential hypothesis of quantum states [21,22]
and channels [23].
As the main contribution of this Letter we provide the

ultimate quantum limit for quickest change-point detection:
we give a lower bound to the mean detection delay that can
be reached by the class of most general detection strategies
with a given bounded (asymptotically large) expected false
alarm time, and we provide a quantum version of the
CUSUM algorithm, called QUSUM, and show that it
asymptotically attains the aforementioned lower bound.
In particular, this algorithm uses only l-local (projective)
measurements on the incoming quantum states; still,
asymptotically it cannot be outperformed by even a
sequence of possibly weak, collective, and adaptive quan-
tum measurements.
This Letter is structured as follows. We first present the

problem in its simplest form and state the two main results,
which are then proven in dedicated sections. Afterward, we
comment on the implications of our results for the problem
of change-point detection in sequences of quantum chan-
nels. We conclude by mentioning open problems.
Setting and results.—The change-point sequence is a

sequence of d-dimensional states fρðnÞg, n ¼ 1; 2;…, such
that if n ≤ ν, ρðnÞ ¼ ρ and if n > ν, ρðnÞ ¼ σ. At each step
n, the algorithm receives a copy of the state ρðnÞ. The latter
is then measured together with the current state of pre-
viously received copies by a joint quantum measurement,
whose outcome determines whether to continue or to stop
at step n and emit an alarm that signals that the change has
occurred. Let us call T the random variable corresponding
to the alarm time n at which stopping occurs for some given
strategy. Let E∞=ν denote expectation values with respect to
some measurement acting sequentially on a sequence of
copies of ρ (the change point never happens, ν ¼ ∞) or the
change-point sequence for a specific finite ν. Similarly, the
probability of an event E is denoted by P∞=νðEÞ. We leave
the precise algorithm implicit, but it should be clear that it
could be any sequential quantum measurement on the
sequence fρðnÞg, with outcomes described by discrete
random variables fX1;…; Xng, where Xi is the outcome
of the measurement realized after getting ρðiÞ. We also use
Xn to denote the vector of random variables fX1;…; Xng
and xn to refer to the vector of values fx1;…; xng they
assume. We define the mean false alarm time as

T̄FA ¼ E∞½T�: ð1Þ

We will consider families of strategies that have T̄FA larger
than a constant. Having a large expected false alarm time is
desirable to avoid stopping early, i.e., before the change
(T < ν). In addition, in order to quantify the response time
or delay (T − ν > 0), we define the so-called worst-worst
case mean delay as [12]

τ̄⋆ ≔ sup
ν≥0

sup
xν with

P∞ðXν¼xνÞ>0

Eν½T − νjT > ν; Xν ¼ xν�: ð2Þ

This figure of merit considers the worst mean delay over all
possible locations of the change point and over all possible
measurement outcomes before the change [24]

τ̄ ≔ sup
ν≥0

Eν½T − νjT > ν� ≤ τ̄⋆: ð3Þ

In the following we always assume supp σ ⊆ supp ρ.
Otherwise, as in the pure case discussed above, there exists
a projector Π such that tr½Πρ� ¼ 0 and tr½Πσ� ¼ c > 0;
therefore, the change can be detected with high probability
in finite time and no false alarms (infinite T̄FA). This also
implies that the two entropic quantities that will play a
prominent role here, DðσkρÞ ¼ tr½σðlog σ − log ρÞ� and
DmaxðσkρÞ ¼ inffλ ≥ 0∶σ ≤ 2λρg, are bounded. For strat-
egies with fixed false alarm time T̄FA, optimal strategies are
those that minimize τ̄�. We show that the asymptotic
behavior of the optimal τ̄� for large T̄FA is

τ̄� ∼
log T̄FA

DðσkρÞ : ð4Þ

We prove this via two theorems, which respectively
provide an upper bound and a lower bound to τ̄⋆.
Theorem 1: Achievability.—Given a change-point

problem with two finite-dimensional states ρ and σ,
DðσkρÞ < ∞, for any ϵ > 0, and T̄FA large enough, there
is a QUSUM algorithm such that τ̄⋆ ≤ ðlog T̄FAÞ=
½DðσkρÞð1 − ϵÞ� þOð1Þ.
QUSUM is, as the name suggests, a quantum version of

the classical CUSUM algorithm; see also [17]. We show
that the performance of QUSUM is asymptotically optimal.
Theorem 2: Optimality.—Any algorithm for a change-

point problem with two finite-dimensional states ρ and σ,
DðσkρÞ < ∞, with expected false alarm T̄FA must satisfy
τ̄⋆ ≥ τ̄ ≥ ð1 − ϵÞ½log T̄FA=DðσkρÞ�½1þ oð1Þ� for any ϵ>0.
In the following we give the proof of these theorems and

discuss some generalizations thereof.
Achievability.—We will prove the achievability in two

steps. First, we study the detection delay of a simple
algorithm that repeats the same measurement on each
individual incoming state and then extend it to the case
where repeated measurements are performed on blocks of a
fixed number of copies. If a fixed positive operator-valued
measure (POVM) fMxig is applied to the ith state, outcome
xi will appear with probability

pðxiÞ ¼ tr½Mxiρ� or qðxiÞ ¼ tr½Mxiσ�; ð5Þ

depending on the underlying state. We can define the log-
likelihood ratio and their partial sums,

Zi ¼ log
qðxiÞ
pðxiÞ

; Zn
j ¼

Xn
i¼j

Zi: ð6Þ
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It can easily be seen that the mean of the first is given by the
relative entropy

Eq½Zi� ¼
X
i

qi log
pi

qi
≕DðqkpÞ; ð7Þ

where Eq denote expectation values with respect to the
probability distribution q. Note that second quantity in
Eq. (6) with j ¼ νþ 1 gives the log-likelihood ratio of a
sequence of independent identically distributed (IID) out-
comes xn sampled from either a source with change

point at ν or from a source with no change: λðνÞn ≔
log½PνðXk ¼ xkÞ=P∞ðXn ¼ xnÞ� ¼ Zn

νþ1. Following the
CUSUM algorithm we can fix a threshold value h and
consider for each possible change point j a stopping time

Tj ¼ minfn ≥ j∶Zk
j ≥ hg; ð8Þ

where we define Tj ¼ ∞ if fn ≥ j∶Zn
j ≥ hg ¼ ∅, and

given these, we define the CUSUM stopping time

T⋆ ¼ min
j≥1

Tj: ð9Þ

From the above definition of λðνÞn it follows that T⋆ can be
understood as the first time when, given the current
measurement record, the probability of having had a
change in the past is eh times more likely than having
no change—see the Supplemental Material [25] (SM) for a
commented picture of a classical CUSUM test. We can now
use a result by Lorden (Theorem 2 in [18]). In our notation,
we have that if P∞ðT1 < ∞Þ ≤ α,

T̄FA ¼ E∞½T⋆� ≥ 1

α
; and τ̄⋆ ≤ E0½T1�: ð10Þ

The above premise holds since

P∞ðT1 < ∞Þ ¼ E∞½IT1<∞� ¼ E0

�
pðxT1Þ
qðxT1Þ IT1<∞

�

¼ E0½e−Z
T1
1 IT1<∞� ≤ e−h ≕ α; ð11Þ

where in the second equality we have used the change of
measure in order switch the distributions on which the
expectation value is computed: Ep½fðxÞ�¼

P
xpðxÞfðxÞ¼P

x qðxÞ½pðxÞ=qðxÞ�fðxÞ¼Eq½ðpðxÞ=qðxÞÞfðxÞ�, and the

last equality holds because at the stopping time ZT1

1 is
necessarily larger than h. Finally, usingWald’s identity [29]
(see also Chap. 3 of [12] and SM), E0½ZT1

1 � ¼
E0½

PT1

i¼1 Zi� ¼ E0½Z1�E0½T1�:

E0½T1� ¼
E0½ZT1

1 �
E0½Z1�

¼ hþ E½s�
DðqkpÞ →

h
DðqkpÞ ; ð12Þ

when h → ∞, where s ≔ ZT1

1 − h is the “overshoot” and
the limit holds since Zi < ∞. Putting all the results together
we get, using Eq. (12) in Eq. (10),

τ̄⋆ ≤ E0½T1� ¼
h

DðqkpÞ þOð1Þ ≤ log T̄FA

DðqkpÞ þOð1Þ: ð13Þ

Optimizing over all measurements gives us the achievable
trade-off for this particular strategy,

τ̄⋆ ≤
log T̄FA

DMðσkρÞ
þOð1Þ as T̄FA → ∞; ð14Þ

in terms of the measured relative entropy DMðσkρÞ ≔
supfMigPOVMDðqkpÞ [30,31]. Note that already projection-
valued measurements achieve the measured relative
entropy [32].
Now, more generally, instead of measuring each

copy of ρðiÞ separately, the QUSUM algorithm is based
on performing a joint measurement on blocks of l
states that are either ρ⊗l or σ⊗l (assuming the change
point happens at a multiple of l; see the SM for the general
case). The above trade-off is now easily modified to
τ̄⋆ ≤ logðT̄FA=lÞ=½DMðσ⊗ljjρ⊗lÞ=l�.
If ρ and σ are states of a d-dimensional Hilbert space,

Hayashi showed (Theorem 2 of [31]) that for any σ and l

there is a projection-valued measurement fMðlÞ
xi g, depend-

ing only on ρ, such that if pðlÞðiÞ ¼ tr½MðlÞ
xi ρ

⊗l�,
qðlÞðiÞ ¼ tr½MðlÞ

xi σ
⊗l�, ∀ σ

DðσkρÞ − ðd − 1Þ logðlþ 1Þ
l

≤
1

l
DðqðlÞkpðlÞÞ ≤ DðσkρÞ:

ð15Þ

Choosing l such that ð1=lÞDðqðlÞkpðlÞÞ ≥ DðσkρÞð1 − ϵÞ
we obtain the statement of the theorem [33]. Since we are
considering h → ∞ we can choose l arbitrarily large and
consider the limit liml→∞ð1=lÞDMðσ⊗lkρ⊗lÞ ¼ DðσkρÞ.
This implies that in the asymptotic limit of large h and l
we have

τ̄⋆ ≤
log T̄FA½1þ oð1Þ�

DðσkρÞ : ð16Þ

In Fig. 1 we illustrate QUSUM tests for qubit states, where
we use the measurement of [31], but also the enhanced
class of j-angle-optimized measurements, which outper-
form Hayashi’s measurement by construction. These mea-
surements begin with a projection on subspaces with fixed
total angular momentum j, followed by a measurement in a
product basis, which is fixed in [31]. The generalization
consists of optimizing the product basis for each value of j
(see SM). In particular, j-angle-optimized measurements,
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as well as Hayashi’s, are based on Schur sampling [37–39]
and are hence efficiently implementable. The figure also
shows the measured relative entropy for different block
lengths, which determines the performance of block sam-
pling strategies. The enhanced class shows a noticeably
quicker convergence to the relative entropy as the block
size increases. The (optimal) measured relative entropy,
whose approximation is computed by a semidefinite pro-
gram (SDP) [32,40], is shown to be very close to the values
obtained for the j-angle-optimized measurement.
In addition, since the measurement in [31] achieving this

bound does not depend on σ, we can also generalize this
achievability result in the case where the state after the
change point is unknown and belongs to a finite family of
states S. In this case, we get asymptotically

τ̄⋆ ≤
log T̄FA½1þ oð1Þ�
minσ∈SDðσkρÞ : ð17Þ

Guarantees in the case of infinite families can be obtained if
there exists a suitable discretization of S (see SM for
details).
Optimality.—In this section, we prove Theorem 2, which

shows that no strategy can attain a better trade-off between
the detection delay and the false alarm time than that given by
the quantum relative entropy. To that end we first have to
define the considered class of strategies. Since they canmake
use of general adaptive measurements, it is necessary to
specify how the state changes after the measurement, using
quantum instruments. A quantum instrument is described
by a set of completely positive trace-nonincreasing maps
fMxð·Þg, with

P
x Mxð·Þ trace preserving. For a fixed

measurement outcome x the (normalized) postmeasure-
ment state is ρx ¼ MxðρÞ=tr½MxðρÞ�, where tr½MxðρÞ�

corresponds to the probability of obtaining x given the state
ρ. In our setting, at each step i, we get a fresh copy of ρðiÞ,
which is either ρ or σ. Let ρxi−1 be the postmeasurement state
of the (i − 1)th step; then we apply the ith quantum instru-
ment Mi (possibly depending on previous records xi−1) as
MiðρðiÞ ⊗ ρxi−1Þ, receiving a classical output xi and a
new postmeasurement state ρxi ¼ Mi

xiðρðiÞ ⊗ ρxi−1Þ=
tr½Mi

xiðρðiÞ ⊗ ρxi−1Þ�.We denote the postmeasurement states

as ρð∞Þ
xi if they originate from a sequence with no change

point, and ρðνÞxi if they come from a sequence with change
point ν. We denote pðxijxi−1Þ ¼ tr½Mi

xiðρ ⊗ ρ∞xi−1Þ�, and
qðνÞðxijxi−1Þ ¼ tr½Mi

xiðσ ⊗ ρðνÞ
xi−1

Þ�. We now define the local
and cumulative log-likelihood ratios at step i for a candidate
change point ν:

ZðνÞ
i ¼ log

qðνÞðxijxi−1Þ
pðxijxi−1Þ

; λðνÞn ¼
Xn
i¼νþ1

ZðνÞ
i : ð18Þ

Note that for a fixed sequence xi we can always write
pðxiÞ ¼ tr½Mxiρ

⊗i� for a joint measurement fMxig giving a
sequence of outcomes xi.
While we still get a sequence of classical measurement

outcomes as a result, these can now be highly correlated
and the usual techniques for IID distributions do not longer
apply. In the following we will make heavy use of a result
initially stated by Lai [41] and reformulated in [12], which
we adapt in a form that is applicable to our case, and give
the proof in the SM for completeness [42].
Theorem 3.—For a change-point model with log-

likelihoods ZðνÞ
i and ϵ > 0, no strategies can exceed the

trade-off given by τ̄� ≥ ð1 − ϵÞðlog T̄FA=IÞ½1þ oð1Þ�, for
large T̄FA, for any I that satisfies the condition

lim
n→∞

sup
ν≥0

sup
xν with

P∞ðXν¼xνÞ>0

P�
νðxνÞ ¼ 0 where

P�
νðxνÞ ≔ Pν

n
max
i≤n

λðνÞνþi ≥ Ið1þ ϵÞn
���Xν ¼ xν

o
: ð19Þ

In loose terms, the rate I in this theorem has to be such
that for any value I0 > I arbitrarily close to I, the stochastic

trajectories exhibited by λðνÞνþi (equivalent to those in the lhs
of Fig. 1) that exceed the value of I0n between the change
point ν and νþ n occur with a vanishing probability as n
increases.
The challenging art is to determine the smallest I such

that Eq. (19) holds for any ϵ > 0. For IID distributions the
relative entropy I ¼ DðqkpÞ can be seen to satisfy this
criterion. In our case we need to find the rate I considering
that the underlying probability distribution can be produced
by the most general kind of measurement strategy.
We start by getting rid of the supremum over ν. Note that

all states up to position νwill be ρ as in the case that there is

FIG. 1. QUSUM for qubit states with Bloch vector of lengths r0
(ρ) and r1 (σ) and relative angle θ. Left: Log-likelihood stochastic
trajectory for Hayashi’s (dashed) and j-angle-optimized (solid)
block-sampling strategies for block lengths l ¼ 1, 5, 50 (blue,
orange, green). Larger l approach the optimal rate given by the
quantum relative entropy (thick red line). Right: Measured
relative entropy (per copy) for several strategies: Hayashi
(dashed), j-angle-optimized (open markers), optimal from SDP
(dots), and asymptotically attainable upper bound given by
quantum relative entropy.
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no change. At position νþ 1 we will therefore try to
discriminate between two states: σ ⊗ ρxν and ρ ⊗ ρxν . It is
now easy to see that for any ν and any measurement on the
sequence of states, there also exists a measurement in the
case of ν ¼ 0 that results in the same probability distribu-
tion after the change point, consisting of simply preparing
the state ρxν and then applying the original strategy. It
follows that we can without loss of generality set ν ¼ 0 and
therefore also omit the essential supremum.
We will now bound P�

0 based on the strong converse
for quantum Stein’s lemma [43], which states that if a

sequence of binary tests fMðnÞ
0 ;MðnÞ

1 ¼ 1 −MðnÞ
0 g is such

that tr½MðnÞ
1 ρ⊗n� ≤ e−n½DðσkρÞþδÞ� for some δ > 0, then

limn→∞ tr½MðnÞ
1 σ⊗n� ¼ 0. Let us denote the log-likelihood

ratio of the outcome sequence xi for ν ¼ 0 as λxi . Define the
set Si ≔ fxijλxi ≥ nIð1þ ϵÞ; λxj < nIð1þ ϵÞ ∀ j < ig.
We have the following chain of equalities:

Pð0Þ
h
max
1≤i≤n

λxi ≥ nIð1þ ϵÞ
i

¼
X
xn∶

max1≤i≤nλxi
≥nIð1þϵÞ

qð0ÞðxnÞ

¼
X
1≤i≤n

X
xi∈Si

qð0ÞðxiÞ ¼
X
1≤i≤n

X
xi∈Si

tr
h
MðiÞ

xi σ
⊗i
i

¼
X
1≤i≤n

X
xi∈Si

tr
h
MðiÞ

xi ⊗ 1⊗ðn−iÞσ⊗n
i
: ð20Þ

Defining the binary POVM fM̃i
0; M̃

n
1 ¼ 1 − M̃n

0g,
with M̃n

1 ¼
P

1≤i≤n
P

xi∈Si M
ðiÞ
xi ⊗ 1⊗ðn−iÞ, we get

Pð0Þ½max1≤i≤nλxi ≥ nIð1þ ϵÞ� ¼ tr½M̃n
1σ

⊗n�. Also, since
qðxiÞ ¼ eλxi pðxiÞ ≥ enIð1þϵÞpðxiÞ ∀ xi ∈ Si,

tr½M̃n
1ρ

⊗n� ¼
X
1≤i≤n

X
xi∈Si

pðxiÞ

≤ e−nIð1þϵÞ X
1≤i≤n

X
xi∈Si

qðxiÞ

¼ e−nIð1þϵÞtr½M̃n
1σ

⊗n� ≤ e−nIð1þϵÞ: ð21Þ

By the strong converse, this means that if I ≥ DðσkρÞ,
limn→∞P�

ð0Þ ¼ limn→∞tr½M̃n
1σ

⊗n� ¼ 0.
This proves the optimality, τ̄⋆ ≥ τ̄ ≥ ð1 − ϵÞ

½log T̄FA½1þ oð1Þ�=DðσkρÞ�. Even more so, optimality
holds also for a collection S of possible states after the
change, with I ¼ minσ∈SDðσkρÞ.
Change point with channels.—One can define an analo-

gous change-point problem for quantum channels. In this
setting, at step n the algorithm receives a black-box use of a
channelN ðnÞ, which isN if n ≤ ν andM if k > ν, and the
most general quantum strategies are allowed, such as using
quantum memory, adapting operations between each use of

the channel (see SM for a precise definition). In this case,
we can leverage the achievability result for states to obtain
τ̄⋆ ≤ logT̄FA½1þoð1Þ�=D∞ðMkN Þ where D∞ðMkN Þ¼
liml→∞supρð1=lÞDðM⊗lðρÞkN⊗lðρÞÞ (here and in the
following the input state in maximization can be any state
entangled with an arbitrarily large reference system).
On the other hand, we can adapt the lower bound
proof using a known strong converse [44], obtaining
τ̄⋆≥ð1−ϵÞ½logT̄FA½1þoð1Þ�=D̃∞

1 ðMkN Þ�, ∀ ϵ>0, where
D̃∞

α ðMkN Þ ¼ liml→∞supρð1=lÞ D̃αðM⊗lðρÞkN⊗lðρÞÞ ,
D̃αðρkσÞ ¼ ð1=α − 1Þ log tr½σð1−α=2αÞρσð1−α=2αÞ�α, and
D̃∞

1 ðMkN Þ ¼ limα→1 D̃∞
α ðMkN Þ. The quantities in the

two bounds have been conjectured to coincide [45].
Conclusions.—We have showed asymptotic optimality

of the QUSUM algorithm, with a trade-off given by the
relative entropy, solving the quickest change-point detec-
tion problem for quantum states in the asymptotic setting.
Our results apply also to the setting when the state after the
change is not known. We have proposed a measurement
scheme and show numerically that it approaches the
optimal trade-off with finite block lengths. It remains
unclear how to address the optimality of the quickest
detection for finite number of samples. In the asymptotic
setting, it would be interesting to find achievability results
for non-IID states, especially those for which a strong
converse can be found.
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