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We identify a new scenario for dynamical phase transitions associated with time-integrated observables
occurring in diffusive systems described by the macroscopic fluctuation theory. It is characterized by the
pairwise meeting of first- and second-order bias-induced phase transition curves at two tricritical points. We
formulate a simple, general criterion for its appearance and derive an exact Landau theory for the tricritical
behavior. The scenario is demonstrated in three examples: the simple symmetric exclusion process biased
by an activity-related structural observable; the Katz-Lebowitz-Spohn lattice gas model biased by its
current; and in an active lattice gas biased by its entropy production.
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Introduction.—In nonequilibrium statistical mechanics,
theoretical results for simple lattice models have guided
the understanding of dynamical processes and fluctuations
[1–10]. For interacting particle systems, macroscopic
fluctuation theory (MFT) [4,11–15] enables the analysis
of hydrodynamic scales, exposing behavior independent of
microscopic details. Alongside models’ typical behavior,
MFT predicts rare fluctuations. For example, it identifies
the fluctuation mechanism for time-integrated quantities
whereby atypical values of the current [16–24] or dynami-
cal activity [25–28] are sustained over long times. These
are examples of large deviations, which have also been
analyzed numerically [29], and by other theoretical meth-
ods [30]. A rich behavior emerges [31–33], including
dynamical phase transitions (DPTs), often involving spon-
taneous symmetry breaking by these (macroscopically
atypical) system trajectories [5,18–20,22–29,34].
DPTs are conceptually intriguing, and also provide

practical insight, in part because large deviation analyses
relate directly to optimal control theory [15,33,35–39].
Here rare events are characterized via extra control forces,
added to the system dynamics, to make them become
typical. This approach has applications in numerical experi-
ments and for material design [5,33,37,40–44]. In this
setting, DPTs signify qualitative changes in the types of
control force required.
Several well-studied DPTs occur in the simple symmet-

ric exclusion process (SSEP), with periodic boundary
conditions. Its steady states are homogeneous (H), but

large deviations toward low activity occur through spatially
inhomogeneous (IH) states, while those with large activity
exhibit hyperuniformity [26,27]. The transition from H to
IH spontaneously breaks translational symmetry and is
continuous. In contrast, discontinuous DPTs also arise, in
exclusion processes [24] and other models [5].
In this work, we explore a new type of dynamical phase

behavior for fluctuations of time-integrated quantities,
which manifests as a pair of tricritical points. These live
on H-IH phase boundaries and signal a change in character
of the H-IH transition, from continuous to discontinuous.
We analyze this scenario using MFT, showing it has a
universal status—occurring generically when simple cri-
teria are met. We exemplify this with three large-deviation
calculations: fluctuations of a structural observable akin to
the activity in SSEP, fluctuations of the current in a Katz-
Lebowitz-Spohn (KLS) type lattice gas, and fluctuations of
the entropy production in an active lattice gas model.
Note that current fluctuations in 1D have been exten-

sively studied [16,18–24], including recent exact solutions
via MFT [45–47], for cases where the mobility depends
quadratically on density. We show below that tricriticality
generically arises when the mobility has an inflection point,
absent in those studies, creating a much richer picture for
DPTs than previously identified. (The possibility of dis-
continuous transitions was noted in Ref. [20], but tricritical
points have not been explored, to our knowledge.)
Large deviations in SSEP.—We first address fluctuations

of time-integrated structural quantities in the SSEP.
Consider a one-dimensional periodic lattice with L sites
and N particles; each site contains at most one particle, and
particles hop to vacant neighbors with rate D0. To analyze
the hydrodynamic scale, let the position of site i be
x ¼ i=L, and write ρðx; tÞ for the hydrodynamic density,
with time t measured on the hydrodynamic scale. (The
microscopic time is then t̂ ¼ L2t.) Also write Jðx; tÞ for the
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hydrodynamic current, and denote by X ¼ fρðx; tÞ;
Jðx; tÞgx∈½0;1Þ;t∈½0;T� a dynamical trajectory of duration T.
Such trajectories respect the continuity equation ∂tρ ¼
−∇ · J, so the total density of the system, ρ0 ¼ N=L, is
conserved.
Within MFT, the probability of a trajectory is PðXÞ ≃

e−LSðXÞ [2,4,11–15], with action

STðXÞ ¼
Z

T

0

dt
Z

1

0

dx
jJ þDðρÞ∇ρj2

2σðρÞ ð1Þ

whereDðρÞ¼D0 and σðρÞ¼2D0ρð1−ρÞ. Below we retain
D and σ as general functions, specializing to SSEP where
appropriate. We consider large deviations of time-
integrated structural quantities of the form

KTðXÞ ¼ L
Z

T

0

dt
Z

1

0

dxκðρÞ; ð2Þ

with two exemplar choices for κðρÞ:

κ1ðρÞ ¼ ρð1 − ρÞ; κ2ðρÞ ¼ ρð1 − ρÞ2: ð3Þ

For κ ¼ κ1, KT measures the dynamical activity [26,27]: it
counts the number of possible particle hops (i.e., particles
with a vacant neighbor). Meanwhile, κ2 counts particles
with two vacant neighbors [48]. Despite their physically
similar definitions, these quantities have contrasting large
deviation behaviors.
To analyze this, we define the scaled cumulant generat-

ing function (CGF) ΨðΛÞ ¼ limL;T→∞ð1=LTÞ logheΛKT i,
where angle brackets indicate a steady-state average.
Analogous to a thermodynamic potential, the CGF is a
“dynamical free energy” for an ensemble of trajectories
biased by the field Λ conjugate to KT [31–33,37]. For large
L, the average is dominated by the most likely trajectory
and for large T this is homogeneous in time, so that [48]

−ΨðΛÞ ¼ inf
ρ∶

R
1

0
dxρ¼ρ0

Z
1

0

dx½MðρÞj∇ρj2 − ΛκðρÞ� ð4Þ

where MðρÞ ¼ DðρÞ2=2σðρÞ.
An alternative characterization of large deviations

involves the rate function I . The probability density for
KT obeys for large L, T

log Prob½KT=ðLTÞ ≈ k� ≃ −LTIðkÞ: ð5Þ

I corresponds to a thermodynamic potential dual to Ψ,
governing an ensemble of trajectories where KT is fixed.
It can be computed in terms of a dominant path which
minimizes the action at constrained KT :

IðkÞ ¼ inf
X∶ KTðXÞ¼kLT

STðXÞ=T: ð6Þ

As in thermodynamics, enforcing the constraint by
Lagrange multiplier shows that I and Ψ are related by
Legendre transform.
Dynamical phase transitions in SSEP.—Figure 1 shows

dynamical phase diagrams for large deviations of KT in
ensembles biased via κ1 and κ2. Both cases support H-IH
phase transitions, but biasing by κ2 introduces tricritical
points, absent for κ1. To explain this, we first establish a
simple condition for discontinuous transitions, related to
previous arguments at the microscopic level [5,48,52]. This
sufficient condition only involves κðρÞ, although discon-
tinuous transitions could also arise for sufficiently elaborate
choices of MðρÞ [48].
IH states occur when the minimizer of Eq. (4) has

ρðxÞ ≠ ρ0. The H state is optimal for Λ ¼ 0, whereas for
Λ → −∞ the gradient term is negligible, and we minimizeR
κðρÞdx. The outcome depends on the convexity of κ: IH

profiles are optimal whenever κðρÞ differs from its lower
convex envelope, which is the lower boundary of the
convex hull. (This condition is analogous to the double
tangent construction for thermodynamic phase separation.)
The resulting minimizer has two spatial regions, separated
by an interface of width OðjΛj−1=2Þ. For both κ1 and κ2
these have bulk densities ρ ¼ 0, 1.
In such cases, the system is IH for Λ → −∞ but H for

Λ ¼ 0: clearly there must be an intervening DPT where
translational symmetry is broken. The same argument
applies for Λ → þ∞, on replacing κ by −κ. The arrows
in Fig. 1(b) show the regions of IH for large jΛj. Only if κ
has an inflection point (so that neither of �κ is convex) do
IH states exist for both signs of Λ.
We next establish conditions governing the order of these

DPTs. At a continuous transition ρðxÞ deviates smoothly
from ρ0 as bias is increased. Using Eq. (4) with Λ < 0, this
requires a small perturbation to reduce

R
κðρÞdx, implying

κ00ðρ0Þ < 0. Conversely, if κ00ðρ0Þ > 0 any transition must
be discontinuous. To summarize, for any ρ0 at which κ

(a) (b)

FIG. 1. (a),(b) SSEP dynamical phase diagrams for (a) κ ¼ κ1;
(b) κ ¼ κ2, showing H and IH states. Arrows demarcate the range
of densities ρ0 for which IH states appear as jΛcj → ∞. The thick
(orange) lines indicate continuous transitions at Λ ¼ Λc;2

[Eq. (7)], and the dashed continuations indicate discontinuous
transitions. These meet at tricritical points (black dots).
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differs from its lower convex envelope then a H-IH
transition must occur for some Λ < 0. If κ00ðρ0Þ > 0, then
it must be first-order; otherwise it may be continuous or
discontinuous. (Analogous results again hold for Λ > 0,
on replacing κ → −κ.)
Since κ002ðρ0Þ changes sign at ρ0 ¼ 2=3, any H-IH

transitions at Λ > 0 are discontinuous for ρ0 < 2=3, and
likewise for ρ0 > 2=3 when Λ < 0. (In fact, the transitions
are discontinuous over broader ranges; see below.) In
contrast, κ001ðρ0Þ < 0 for all ρ0: the H-IH transition is
always continuous in that case.
To analyze these DPTs quantitatively, we develop a

Landau theory [20,24,26,34], valid close to tricriticality.
We expand the density as ρðxÞ¼ρ0þAcos2πxþBcos4πx,
where A is a small amplitude and B ¼ OðA2Þ [48].
Substituting into Eq. (4) yields

−ΨðΛÞ ≈ −Λκðρ0Þ þ inf
A

�
Λc;2 − Λ

4
κ00ðρ0ÞA2 þ βðρ0ÞA4

�

ð7Þ

where ≈ means terms of OðA6Þ are omitted; here

Λc;2 ¼
8π2Mðρ0Þ
κ00ðρ0Þ

; β ¼ π2Mðρ0Þ
24

½3aðρ0Þ − b2ðρ0Þ�; ð8Þ

with a ¼ 2M00=M − κ0000=κ00 and b ¼ 3M0=M − κ000=κ00.
The behavior of the Landau theory [Eq. (7)] is familiar: if

β > 0 there is a continuous transition at Λc ¼ Λc;2 beyond
which A ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijΛ − Λc;2j
p

. This happens for the SSEP with
κ ¼ κ1 [26]. From Eq. (8), the sign of Λc;2 matches that of
κ00, as argued previously.
In contrast, if β < 0, symmetry breaking can only

happen discontinuously, as already noted in Ref. [20].
Points with Λ ¼ Λc;2 and βðρ0Þ ¼ 0 are tricritical [53–55]:
here the transition changes character from continuous to
discontinuous [48]. Note also that wherever κ00ðρ0Þ → 0,
b2ðρ0Þ → ∞. Hence from Eq. (8), β is negative in a range of
ρ around any inflection point in κ, such as the one for κ2 at
ρ0 ¼ 2=3 (while generically, as in our examples, staying
positive elsewhere). The two tricritical points that limit this
range are easily identified since Λc;2 and β are explicit
functions [48]; see Fig. 1(b).
The full tricritical scenario is illustrated in Fig. 2 and

discussed in the Supplemental Material [48]. If β < 0, and
assuming the expansion [Eq. (7)] is stabilized by a term γA6

with γ > 0, then precisely at the tricritical point, β ¼ 0, one
finds A ∝ jΛ − Λc;2j1=4. For β < 0 the transition is discon-
tinuous; it takes place at Λ ¼ Λc;1 with jΛc;1 − Λc;2j ∝
ðρ0 − ρcÞ2. The discontinuity in A grows as ΔAjΛ¼Λc;1

∝
jΛc;2 − Λc;1j1=4. These universal, tricritical exponents are
exemplified by the theoretical curves in Fig. 2(b) which
depend on γ, which we extracted from numerical solutions
of Eq. (4) [48].

Constrained ensemble.—The variational problem
[Eq. (4)] is computationally convenient, but additional
physical insight is gained via the rate function. Figs. 3(a)
and 3(b) show dynamical phase diagrams for the con-
strained ensemble, indicating the fluctuation mechanism,
for different values of KT , corresponding to optimal paths
in Eq. (6). These can be obtained from Ψ by Legendre-
Fenchel transform, noting that in the presence of first-order
DPTs, such optimal paths are inhomogeneous in time
[31,33,48]. The corresponding regions of “timelike phase
separation” (analogous to miscibility gaps in thermody-
namics [48]) are indicated in Fig. 3(b), further highlighting
the presence of discontinuous transitions and tricritical
points.
When constructing these phase diagrams, it is important

that all homogeneous states are identical in MFT, so the
entire H phases in Figs. 1(a) and 1(b) collapse onto the lines
k ¼ κðρ0Þ in Figs. 3(a) and 3(b); see also plots in the
Supplemental Material [48] showing Ψ0ðΛÞ ¼ κðρ0Þ
throughout the H phase. Physically, this reflects that
fluctuations of KT occur by hydrodynamic mechanisms:
the slow relaxation of long-wavelength density modes
makes their persistent fluctuations much less rare than
fluctuations in microscopic structure. However, some
values of k are not reached by any hydrodynamic mecha-
nism; in this case the constrained minimization [Eq. (6)]
has no solution. Characterization of such fluctuations lies
beyond MFT (although some aspects of the inaccessible
regime can nonetheless be determined [25,27,28]).
To conclude our study of DPTs in SSEP note that,

alongside the emergence of tricritical points, biasing with
κ2 differs from κ1 in that IH states occur for atypical
fluctuations at both high and low κ. At the densities
concerned, H states are restricted to a narrow “tightrope”

(a) (b)

FIG. 2. Tricriticality in SSEP for κ ¼ κ2. (a) Minimizers of
Eq. (4), for ρ0 ¼ 0.54 and Λ ¼ ð0.9; 1; 1.11; 1.12Þ × Λc;1, close
to the discontinuous transition at Λc;1. (b) Amplitude A for
various ρ0, near the tricritical point at ðρ0;ΛÞ ¼ ðρc;Λc;2Þ. For
ρ0 < ρc, a continuous transition occurs at Λ ¼ Λc;2 where
A ∝ jΛc;2 − Λj1=2 (dashed red line) as predicted by Eq. (7). At
ρc ≃ 0.515 the growth follows A ∝ jΛ − Λc;2j1=4 (dashed purple).
For ρ0 > ρc, a discontinuous transition occurs at Λ ¼ Λc;1. The
discontinuity grows as ΔAjΛ¼Λc;1

∝ jΛc;2 − Λc;1j1=4 (dotted green
line). Solid lines are numerical solutions of Eq. (4).
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of unbiased dynamics, k ¼ κðρ0Þ. [In contrast, for κ1, IH
states arise only for low k fluctuations; states at k > κðρ0Þ
remain homogeneous [27].] We emphasize that this phe-
nomenology should be generic in variational problems like
Eq. (4), whenever κ has a point of inflection. To illustrate
this, we now present two further, very different systems
where a similar tricritical scenario arises.
Current fluctuations.—We consider large deviations

of the integrated current QT ¼ L
R
T
0 dt

R
1
0 dxJðx; tÞ within

MFT. For L; T → ∞, the probability that QT ≈ qLT, as a
function of q, takes a large deviation form, similar to
Eq. (5). Here though, H-IH transitions involve the for-
mation of traveling waves with velocity V, so that ρ ¼
ρðx − VtÞ and J ¼ Jðx − VtÞ [17–20,23]. The rate function
for current then satisfies [48]

IðqÞ ¼ inf
ρðxÞ;α

Z
1

0

dx½MðρÞj∇ρj2 þ q2κJðρ; ρ0; αÞ�; ð9Þ

with κJ ¼ ½1þ αðρ − ρ0Þ�2=½2σðρÞ�, where α ¼ V=q is a
variational parameter. This problem is symmetric in q,
so we now restrict to q ≥ 0.
The minimization problem [Eq. (9)] for IðqÞ is similar to

the problem in Eq. (4), which previously gave the CGF.

Repeating the previous analyses of convexity and the
Landau theory yields two analogous results, detailed in
the Supplemental Material [48]. First, as q → ∞, a trav-
eling wave state is found whenever −σðρ0Þ differs from its
lower convex envelope. Second, the quartic term βA4 in
the corresponding Landau theory has β → −∞ whenever
the mobility σ has an inflection point, giving tricritical
points (β ¼ 0).
The mobility σ in this problem plays the same role as κ

did in large deviations of KT for SSEP. This correspon-
dence is further exemplified by a model of Katz-Lebowitz-
Spohn type [24,56–58], for a kinetically constrained lattice
gas [59]. This is a 1D simple exclusion process where the
hop rates depend on the occupancies of neighboring sites as

0100↔
D0

0010; 1100 ↔
D0=2

1010; 0101 ↔
D0=2

0011:

The transition 1101 ↔ 1011 is kinetically forbidden [60],
but the hydrodynamic behavior still obeys diffusive MFT
with DðρÞ ¼ D0ð1 − ρÞ and σ ¼ 2D0ρð1 − ρÞ2 [24].
The resulting phase diagram shows a tricritical point

at q > 0 [Fig. 3(d)] whose partner lies at negative q (not
shown). Since σðρÞ ∝ κ2ðρÞ, this phase diagram resembles
the upper half of Fig. 1(b). Its form is robust to variations in
hop rates [48].
Active lattice gas.—Our final example considers a 1d

active lattice gas (ALG) model [61], first introduced to
study motility-induced phase separation [62]. It comprises
two species of diffusing particles, whose hops are biased in
opposite directions, with an additional “tumbling” process
where particles change species. Its hydrodynamic behavior
can be analyzed within MFT [63,64]; the resulting action
Sact is analogous to Eq. (1).
We discuss here the emergence of tricritical DPTs in

large deviations of the informatic entropy production rate
(IEPR), which were previously analyzed in Ref. [65]. Write
X for a hydrodynamic trajectory, and let XR be the
corresponding time-reversed trajectory. Then the IEPR,
ST ≡ ½SactðXÞ − SactðXRÞ�=T [66,67], quantifies time-
reversal symmetry breaking at hydrodynamic scales. Its
average is hSTi ¼ Ls0āðρ0Þ where āðρÞ ¼ ρð1 − ρÞ2 and
s0 is a constant [65]. The IEPR obeys a large deviation
principle resembling Eq. (5),

log Prob½ST=ðLs0Þ ≈ a� ≃ −LTIðaÞ ð10Þ

where the rate function IðaÞ can be characterized varia-
tionally, similarly to Eq. (6). The resulting phase diagram,
fully derived in Ref. [65], is shown in Fig. 3(c). It is more
complex than for the SSEP. As well as the smoothly
modulated state (SM) which is analogous to the IH states
discussed above, it supports collective motion (CM) and
traveling band (TB) states which break the symmetry
between species, and a sharply phase-separated (PS) state.
Nonetheless, the small-a behavior resembles Fig. 3(b).

(a) (b)

(c) (d)

FIG. 3. Dynamical phase diagrams for (a) SSEP conditioned on
κ1, (b) SSEP conditioned on κ2, (c) active lattice gas conditioned
on IEPR, (d) KLS model conditioned on current. Miscibility gaps
are denoted by magenta shading [see inset in (d)]. Black dots are
tricritical points. Orange tick marks indicate inflection points
where κ00 ¼ 0 [or σ00 ¼ 0 in (d)]. Blue tick marks indicate the
boundaries of regions where −κ [or −σ in (d)] differs from its
lower convex envelope. Gray regions in (a),(b) are not accessible
by hydrodynamic fluctuations.
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In the ALG, the dominant fluctuations involve local
particle motions that remain typical for the given local
density which becomes nontypical. This results in [65]

IðaÞ ∝ inf
ρðxÞ∶ a¼

R
1

0
dxāðρÞ

Z
dxMðρÞj∇ρj2 ð11Þ

whereM encodes all the cost arising from inhomogeneities
of the density [65]. Observing that āðρ0Þ ¼ κ2ðρ0Þ, this
variational problem is again similar to Eq. (6) with κ ¼ κ2.
As a result, the behavior in the SM state in Fig. 3(c) is
analogous to the inhomogeneous state in Fig. 3(b), includ-
ing the tricritical points and the timelike phase separation.
A central result of this Letter is that the tricritical phenom-
ena unexpectedly encountered in Ref. [65] are not specific
to the ALG, instead exemplifying a quite general scenario
as explored above.
Outlook.—We demonstrated a new class of tricritical

behavior that occurs in fluctuations of time-integrated
observables when the dynamical action has the general
structure of Eq. (4). We gave three examples from the
hydrodynamic analysis of large deviations. In all cases,
pairs of tricritical points occur on homogeneous-inhomo-
geneous phase boundaries, separating continuous from
discontinuous transitions. Our results significantly enrich
the theory of dynamical phase transitions and add to
the classes of systems showing tricriticality in nonequili-
brium [68–71], for example in fluctuations of instantaneous
rather than time-integrated quantities [72].
The discontinuous transitions in Fig. 3 show that even if

k is close to its mean value, the large-deviation mechanism
may differ strongly from the typical (homogeneous) state:
for suitable ρ0, timelike phase separation can appear once k
deviates from κ2ðρ0Þ, in either direction. Alongside the
aforementioned relevance to optimal control and design
[5,33,37,40–44], such transitions should be directly real-
izable in several experimental settings [24]. These include
wave transmission in disordered media [73,74] and meso-
scopic electronic transport [75,76] where, intriguingly,
the relevant mobility can show inflection points [77], as
required for tricriticality to emerge.
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