
Relaxation Shortcuts through Boundary Coupling

Gianluca Teza , Ran Yaacoby , and Oren Raz *

Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel

(Received 23 December 2021; revised 6 July 2022; accepted 17 May 2023; published 6 July 2023)

When a hot system cools down faster than an equivalent cold one, it exhibits the Mpemba effect (ME).
This counterintuitive phenomenon was observed in several systems including water, magnetic alloys, and
polymers. In most experiments the system is coupled to the bath through its boundaries, but all theories so
far assumed bulk coupling. Here we build a general framework to characterize anomalous relaxations
through boundary coupling, and present two emblematic setups: a diffusing particle and an Ising
antiferromagnet. In the latter, we show that the ME can survive even arbitrarily weak couplings.
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When coupled to a thermal bath, most systems relax
toward equilibrium. While the equilibrium distribution is
only a function of the system’s Hamiltonian and temper-
ature, the precise details of the relaxation are determined by
many factors, including the intrinsic properties of the
specific system, its initial condition, the bath’s properties,
and the exact nature of the coupling between the system
and the bath.
In the weak coupling limit, when the rate of heat

exchange with the thermal environment is much slower
than the energy relaxation within the system, it is gen-
erally expected that a macroscopic system initiated at
equilibrium with temperature T0 relaxes quasistatically
toward the bath temperature Tb, such that the system is in
equilibrium for some temperature throughout the relaxa-
tion. This is a consequence of the self-thermalization
generated by the energy diffusion within the system being
much faster than the rate of heat exchange with the
thermal bath. In strong couplings, however, the self-
thermalization process that equilibrates the system is
not fast enough, and the energy exchange with the
environment drives the system into a relaxation trajectory
that can reach far from any equilibrium distributions.
These far from equilibrium relaxation trajectories can be
counterintuitive, and show interesting phenomena unex-
pected near equilibrium [1–5]. An important example is
the Mpemba effect (ME) [6,7], where a hot system cools
faster than an initially cold one when quenching both to an
even colder bath. The ME was observed experimentally
in a variety of setups, including water [8], magnetic
alloys [9], polymers [10], clathrate hydrates [11], and
very recently in small size systems like colloids diffusing
in a potential [12–14]. It was also observed in a variety of
numerical and theoretical models for water molecules
[15–20], driven granular gases [21–26], inertial suspen-
sions [27–29], gas of viscoelastic particles [30], diffusing
in a potential [2,31–34], and classical as well as quantum
spin models [35–42].

The theoretical models proposed so far to explain
anomalous relaxation phenomena as the ME used the
simplifying assumption that all the relevant degrees of
freedom (e.g., all spins or molecules) are directly coupled
to the thermal bath. However, in all relevant experiments so
far, only a small set out of the relevant degrees of freedom
are coupled to the bath. For example, in water, clathrate
hydrates, and polymers, internal collisions between the
molecules conserve energy, and the system exchanges heat
with the bath only through boundary collisions [43,44].
Even in the case of colloidal systems [12,13], the colloid
interacts with the liquid around them, but the liquid
exchanges heat with the bath only through its boundaries.
In this Letter, we construct a general theoretical frame-

work for boundary coupling with the bath, and use it to
demonstrate the existence of the ME even in such systems.
We consider two types of systems: (i) systems where the
relevant degrees of freedom (d.o.f.) interact with a “local
bath” composed of other degrees of freedom, in which case,
the local temperature profile changes with a characteristic
timescale, defining an interplay with the dynamics of the
relevant d.o.f. which will determine the possibility of
observing ME and other anomalous relaxation phenomena,
and (ii) systems where the same d.o.f. both play the role of
the relaxation and serve as a local bath, in which case, the
situation is quite different: in these scenarios the ME is
possible even in the arbitrarily weak coupling limit.
Diffusing particle.—A prominent example for the first

kind of system is a Brownian particle diffusing in a
confining potential. When the system is quenched to some
temperature, the fluid in which the particle is diffusing does
not change its local temperature instantaneously and uni-
formly. Rather, its boundaries are coupled to a thermal bath,
and the temperature profile changes according to some
internal dynamics. If this dynamics is much faster than the
particle diffusion, the liquid reaches its uniform temper-
ature before the distribution of the relevant d.o.f. (i.e., the
position) changes in any way. This case coincides with the
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common assumption of instantaneous uniform quench in
the temperature. In the opposite limit, the equilibration
temperature profile is much slower than the diffusion, and
the position of the particle follows the steady-state dis-
tribution associated with the instantaneous temperature
profile. Anomalous relaxations can therefore exist only
in the local bath temperature profile, which is assumed not
to be the case. This implies that a certain “critical
coupling,” determining the possibility of observing anoma-
lous relaxation phenomena, exists.
To demonstrate this case, we use the Brownian particle in

a potential used to demonstrate experimentally the inverse
[13] and strong [12] Mpemba effects [see Fig. 1(a)].
However, instead of using a uniform instantaneous quench
of the temperature at all position as in Refs. [12,13], here
the system is coupled to the thermal bath only from its
boundaries [Fig. 1(a)]. We assume that the water’s temper-
ature profile follows the heat equation ∂tTðx; tÞ ¼
κ∂2xTðx; tÞ with initial condition given by the spatially
uniform initial temperature Tðx; t ¼ 0Þ ¼ T0 and thermal
diffusivity κ. The probability density pðx; tÞ of finding the
particle in position x at some time t evolves according to the
Fokker-Plank equation [45]:

∂tpðx; tÞ ¼ −μ∂xð½∂xUðxÞ�pðx; tÞÞ þ μ∂2xðTðx; tÞpðx; tÞÞ
≡ LðtÞpðx; tÞ; ð1Þ

where UðxÞ is the potential and μ is the mobility of the
Brownian particle. The Fokker-Plank operator is time
dependent, but in the long time limit TðxÞ → Tb, implying
LðtÞ → LTb

which ensures convergence to the Boltzmann
equilibrium πTb

ðxÞ ∝ e−UðxÞ=Tb (we set kb ¼ 1). The eigen-
functions of LTb

, solving LTb
viðx; TbÞ ¼ λiviðx; TbÞ with

0 ¼ λ1 > λ2 ≥ λ3 ≥ …, form a complete basis; therefore,

pðx; tÞ ¼ πTb
ðxÞ þ

X

i>1

aiðT0; Tb; tÞeλiðTbÞtviðx; TbÞ; ð2Þ

where aiðtÞ is a coefficient retaining information on the
initial conditions of the system, as well as the temperature
profile.
In the limit of an instantaneous quench, ai are time

independent, and a2 encodes the existence of the ME, as
was used in [12,13]: a nonmonotonic dependence in T0

implies the existence of a relaxation shortcut when quench-
ing the system to Tb, which can be exponentially faster if
a2 ¼ 0 for some initial condition (a strong ME). However,
when the timescale of the quench is comparable to that of
the diffusing particle, one cannot rely on the same analysis
as in Refs. [12,13], as a2 has a nonexponential time
dependence due to the time-dependent temperature profile.
In the last stages of the relaxation, one can nevertheless
approximate the difference from equilibrium Δpðx; tÞ ¼
pðx; tÞ − πTb

ðxÞ ≃ aðtÞv2ðxÞ for some aðtÞ decaying expo-
nentially fast. Identifying a sign change in aðtÞ is therefore
enough to ensure the existence of a strong ME. Formally,
this can be done through the Mpemba parity index [40]

I�ðt; TbÞ ¼ sgn
Z

dxΔp�ðx; tÞΔp�δTðx; tÞ; ð3Þ

where the differences Δp� refer to quenches to Tb starting
from initial temperatures T0 ¼ fþ∞; 0g, while Δp�δT to
quenches starting from T0 ¼ Tb � δT, for some δT > 0. A
negative sign of Iþ (I−) in the long time limit implies that
for some T > Tb (T < Tb) the coefficient a2 ≡ 0, ensuring
the existence of a strong direct (inverse) ME. For the given
potential UðxÞ [Fig. 1(a)], and for each set of Tb and κ, it is
possible to evaluate numerically I� as demonstrated in
Fig. 1(c). As expected, for a given value of Tb, there exists a
critical value of κ below which the ME cannot be observed.
Boundary d.o.f. coupling.—Let us next discuss a differ-

ent type of system, in which all the d.o.f. are modeled, but
only the boundary d.o.f. can exchange heat with the
environment. For simplicity, we use a discrete state system
with probability distribution p⃗ðtÞ where the component
piðtÞ is the probability to be in a microstate i at a given time
t. p⃗ðtÞ evolves in time according to a Markovian master
equation

∂tp⃗ðtÞ ¼ WðTbÞp⃗ðtÞ; ð4Þ

where the rate matrix W generalizes the Fokker-Plank
operator L and encodes the specific model. The off
diagonal terms Wij are the transition rates from state j
to state i, while the diagonal term Wii ¼ −

P
j≠i Wji

represents the escape rate from the state i. We assume
that detailed balance and ergodicity hold, so that regardless
of the initial condition the system relaxes toward the
Boltzmann distribution πiðTbÞ ∝ e−Ei=Tb where Ei is the
energy of the microstate i. In this case, the relaxation
process from equilibrium with an initial temperature T0 is a
discrete analog of Eq. (2), allowing us to straightforwardly

(a) (c)

(b)

FIG. 1. (a) Double-well potential UðxÞ similar to that used in
colloidal experimental setups (see Refs. [12,13]). (b) Examples of
Boltzmann distributions at cold and hot bath temperatures for
which the direct (cooling) and inverse (heating) ME exist.
(c) Mpemba phase diagram as a function of the bath temperature
Tb and thermal diffusivity κ.
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characterize the ME through the coefficient a2 [1]. For
simplicity, in what follows, we do not distinguish between
different types of the ME.
To model the common scenario where heat can be

transferred only through d.o.f. sitting on the boundaries,
we first distinguish between “boundary transitions” of
boundary d.o.f. that can exchange heat with the bath,
and “bulk transitions” in which no energy is exchanged
with the bath and they can only happen between same-
energy states. Bulk transitions serve as a self-thermalization
(ST) mechanism, whereas the boundary transitions gen-
erate bath coupling (BC) and enable transitions between
different energy shells. This structure can be modeled by

WðΓST;ΓBCÞ ¼ ΓSTWST þ ΓBCWBC: ð5Þ

Here WST and WBC are normalized rate matrices corre-
sponding to the self-thermalization and boundary coupling
transitions respectively, and ΓfST;BCg are coupling constants
modulating the rates amplitude. Their ratio, C ¼ ΓBC=ΓST,
dictates the coupling strength [46]: in the limit C ≪ 1
boundary flips occur rarely compared with thermalization
flips; hence the system thermalizes quickly after each heat
exchange with the bath. In the C ≫ 1 limit, the boundaries
exchange heat much faster than the thermalization, and the
diffusion of energy within the system sets the timescale for
the relaxation. We refer to the former limit as weak
coupling and to the latter as strong coupling. By con-
struction, WBC is generally sparse, and WST contains only
transitions between same-energy states, implying a degen-
eracy of its zeroth eigenvalue equivalent to the number of
energy shells.
In the weak coupling limit, a naive perturbation scheme

with C ≪ 1 would not prove useful: for C ¼ 0 the matrix
W is reducible, and its zero eigenvalue is highly degen-
erate, so one cannot apply the standard analysis. Instead, it
is constructive in this case to aggregate all the microstates
that share the same energy into a single macrostate and
construct the effective dynamics by summing all the
microscopic transitions between them [47,48]. The dynam-
ics is then dictated only by the boundary flips, and the
diffusion within each energy shell is assumed to
happen instantaneously. Similarly, in the strong coupling
limit, microstates can be aggregated into macrostates by
combining all the microstates connected by boundary
flips. Mathematically, the two aggregation procedures
can be done by arranging the states such that WBC or
WST is block diagonal where each block corresponds to
transitions within a macrostate, and coarsening over these
blocks.
Ising antiferromagnet.—Let us demonstrate the above

construction with a specific example of N Ising spins on a
ring, with nearest neighbor antiferromagnet interactions
[Fig. 2(a)]. Each spin fσsgs¼1…N can either be in a þ1 or
−1 state, giving a total of M ¼ 2N different microstates,

identified by σ⃗ ¼ ðσ1;…; σNÞ. The Hamiltonian of the
system is

Hðσ⃗Þ ¼ −J
X

s

σsσsþ1 −H
XN

s¼1

σs; ð6Þ

where J < 0 is the coupling constant, H is an external
magnetic field, and σNþ1 ≡ σ1. For simplicity, we
set J ¼ −1.
As a boundary, we choose a specific spin (say σ1) to be

coupled to the bath. This implies that a general microstate σ⃗
is connected through thermal flips only with a single state
σ⃗0 in which the first spin is flipped, σ1 → −σ1, while the
remaining spins are unaltered. The transition between two
general microstates σ⃗fi;jg is therefore

WBC
ij ¼

δσi
1
;−σj

1

Q
s>1δσis;σjs

1þ eðHðσ⃗iÞ−Hðσ⃗jÞÞ=Tb
ð7Þ

where δij is the Kronecker delta, σis is the s spin in the
microstate σ⃗i, and we used standard Glauber dynamics as
the transition weight [49,50], ensuring equilibration to a
Boltzmann distribution.
To model bulk transitions we use rates that decay

exponentially as 2−dij , where dij ¼
P

s δσis;−σjs is the
Hamming distance [51] that counts the number of spins
that has to be flipped between the two configurations.
Alternative metrics that keep into account space locality
(e.g., the generalized Hamming distance [52]) could be
implemented. While for weak couplings the specific details
of dij become irrelevant, for strong couplings locality
constraints limit the connectivity within an energy shell,
effectively enhancing the out-of-equilibrium character of
the relaxation process (see the Supplemental Material [53]).
We therefore formalize bulk transitions between two states
i ≠ j as

(a) (b)

FIG. 2. (a) An antiferromagnet Ising chain, with a single spin
coupled to the thermal bath. Transitions are allowed only if
energy is conserved, except for flipping the spin coupled to the
bath. (b) Minimal coupling strength C (colorbar) for which there
exists some type of a ME at the corresponding bath temperature
Tb (x axis) andH (y axis). In the white areas there is no ME at any
coupling strength. Inset: the ME exists if a2ðT0; TbÞ is non-
monotonic in T0.
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WST
ij ¼ δHðσ⃗iÞ;Hðσ⃗jÞ2−dij : ð8Þ

The full transition matrix for the model is built as a linear
combination of the two rate matrices as in Eq. (5).
Let us consider the persistence of the ME in this setup. In

Fig. 2(b) we plot for each T and H the minimal coupling
constant C for which some type of a ME exists in the
system, for N ¼ 10. The strength of the coupling affects
only quantitatively the regions where the ME can be
observed (the larger C, the larger the area). In particular,
for any jHj ≤ 2 the effect exists for any T > T�

b, high-
lighted in Fig. 2(b) with a red arrow.
In the weak coupling case (C ≪ 1), the coarse-grained

rate matrix is given by

Wweak
ij ¼ Gij

Ωj

1

1þ eðEi−EjÞ=Tb
; ð9Þ

where the indices i, j now refer to the energies Ei and Ej,
the (symmetric) matrixGij counts the number of transitions
connecting microstates in the two energy shells, and Ωi is
the number of microstates with energy Ei. This coarsening
considerably reduces the size of the matrix, allowing one to
numerically analyze longer chains assessing the stability of
the phase diagram in the thermodynamic limit. The total
number of energy shells in this case grows only quadrati-
cally as 2þ ðN=2Þ2, as opposed to the exponential growth
of the number of microstates. As an example, at N ¼ 50

[Figs. 3(c) and 3(d)] there are ∼1015 microstates, but only
627 macrostates in the coarse-grained representation. A
specific example exhibiting a strong ME in this setup is
presented in the Supplemental Material [53].
Extremely strong couplings (C ≫ 1) can be similarly

analyzed. In our model only a single spin is coupled to the
bath; therefore the clustering of a N spin chain model
results in an effective N − 1 long chain with an additional
“superposed” spin oscillating infinitely fast between the
two �1 states. Indicating with i one of the possible 2N−1

configurations of the bulk chain, we set H�1
i to be the

Hamiltonians of each of the two possible states in the ith
cluster. The two states composing a cluster are not
equivalent as in the weak coupling case. To correctly
define the transition rates in the coarse-grained model

we therefore need to introduce a Glauber weight: wσ
j ¼

e−H
σ
j =Tb=ðe−H−1

j =Tb þ e−H
þ1
j =TbÞ with σ ¼ �1 depending on

the microstate from which the original transition occurred.
This provides us with

Wstrong
ij ¼

X

σ;σ0
wσ
jδHσ

j ;H
σ0
i
2−ðdijþδσ;−σ0 Þ ð10Þ

where the Kroneker delta corrects the Hamming distance
for the coupled spin. The area in which an effect can be

observed is wider [Fig. 3(a)]: a stronger coupling should
indeed ease the undertake of anomalous relaxation paths.
In Fig. 3(a) we plot the regions in which someME can be

observed in the limiting coupling setups discussed above,
and compare them with the intermediate C ¼ 1 case.
Surprisingly, the ME can be observed even for C ≪ 1,
demonstrating that the effect survives the limit of arbitrarily
weak coupling. This counterintuitive result is related to the
discrete nature of the d.o.f. of the system [54]. Indeed,
Glauber dynamics [Eq. (7)] allows transitions only among
configurations that differ by a single spin flip. This implies
that energy shells with a microscopic energy difference
(namely ΔE ∼ 1 even though E ∼ N) might still be very far
in terms of transitions. As a result, the self-thermalization
process has the same characteristic timescale as that of the
boundary transitions. Therefore for arbitrarily weak cou-
plings, even in the thermodynamic limit the system is
forced to explore out-of-equilibrium configurations that
allow the existence of anomalous relaxation effects (i.e., the
ME). The colloidal particle setup (Fig. 1) provides a
counterexample in which the continuous d.o.f. break such
mechanisms, setting a minimal value of the coupling
strength below which no ME can be observed.
The boundary coupling setup we introduced offers a

straightforward implementation for multiple baths cou-
pling. If the baths are set at different temperatures, the
rate matrix no longer abides by detailed balance, driving
the system toward a nonequilibrium steady-state (NESS)
that does not correspond to any Boltzmann distribution
[48,55,56]. Nondominant eigenvalues can be complex

(a) (c)

(b) (d)

(e)

FIG. 3. (a) Comparison of the ME for different coupling
strengths (N ¼ 10). The strong coupling limit (C ≫ 1) includes
all colored areas, while the intermediate coupling (C ¼ 1) is
limited to the green and blue ones. Surprisingly, the effect
survives the arbitrarily weak coupling limit (C ≪ 1, blue area).
(b) Distance between the second and third eigenvalues δλ23 as a
function of Tb for H ¼ 0. A crossing of the eigenvalues clearly
marks the beginning of the Mpemba region at T�

b for the weakly
coupled model. (c),(d) Phase diagram in the weak coupling limit
for N ¼ 50. (e) Collapse of δλ23 for different sizes shows a
dependence on the rescaled temperature ∝ jtj1. In the inset, the
distance from the asymptotic T�

b ∼ 2.91 scales superlinearly.
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valued, determining the onset of oscillating relaxations [53]
where an analogous ME analysis allows one to determine
which initial equilibrium conditions relax the fastest (or
slowest) to the NESS.
Finally, our analysis highlights a strong connection

between the ME and the phenomenon of eigenvalue
crossing of the transition matrix W with respect to the
bath temperature Tb [57], which was recently connected to
a new kind of dynamical phase transitions that further
consolidates the parallel between singularities in the
dynamics and equilibrium phase transitions [58–60]. In
weakly coupled systems, an analysis of δλ23 ¼
ðλ3 − λ2Þ=λ2 at H ¼ 0 shows how the bath temperature
above which the ME can be observed is determined by a
crossing at a certain “critical” temperature T�

b. This
corresponds to a singularity in the eigenvector regulating
the direction of the slowest relaxation, determining the
conditions that allow the existence of the ME [Figs. 3(b)
and 3(d)]. Analyses at different sizes show an excellent
multiscale collapse [61] on the rescaled temperature t ¼
ðTb − T�

bÞ=T�
b around zero, with a dependence δλ23 ∝ jtj1

[Fig. 3(e)]. The critical temperature at finite sizes
approaches the asymptotic value T�

b ∼ 2.91 with a super-
linear decay (inset), ensuring that the analysis at N ¼ 50 is
consistent with the thermodynamic limit. With respect to
setups in higher dimensions, a 2D squared lattice with a
side of N spins has a surface to volume ratio
4N=N2 ¼ 4=N, while for a 3D cubic lattice the ratio is
6N2=N3 ¼ 6=N. Therefore, the 1D case we addressed with
a ratio 1=N represents the most pronounced scenario. The
ratio is of the same order independently of the dimension
(∼N−1), suggesting that the same phenomenology should
be observed in higher-dimensional setups.
Remarks.—We constructed a theoretical framework to

characterize the evolution of a system coupled to the
thermal bath only through its boundaries, presenting two
complementary emblematic models with continuous and
discrete d.o.f., respectively. While in the former a minimal
intensity for the coupling is required, in the latter we proved
how anomalous relaxation effects can survive arbitrary
weak couplings. The proposed framework is general and
applicable to any memoryless system exchanging heath
with the thermal bath through limited d.o.f., including
relaxations toward NESS [53]. Our results corroborate the
validity of the ME as a nonequilibrium phenomenon,
proving it is not an artifact due to full couplings. The
existence of far from equilibrium relaxations in the weak
coupling limit are yet another counterintuitive result related
to the discreteness of the d.o.f. [54].
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