
Measuring Topological Entanglement Entropy Using Maxwell Relations

Sarath Sankar ,* Eran Sela,† and Cheolhee Han‡

School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel

(Received 31 December 2022; accepted 8 June 2023; published 7 July 2023)

Topological entanglement entropy (TEE) is a key diagnostic of topological order, allowing one to detect
the presence of Abelian or non-Abelian anyons. However, there are currently no experimentally feasible
protocols to measure TEE in condensed matter systems. Here, we propose a scheme to measure the TEE of
chiral topological phases, carrying protected edge states, based on a nontrivial connection with the
thermodynamic entropy change occurring in a quantum point contact (QPC) as it pinches off the
topological liquid into two. We show how this entropy change can be extracted using Maxwell relations
from charge detection of a nearby quantum dot. We demonstrate this explicitly for the Abelian Laughlin
states, using an exact solution of the sine-Gordon model describing the universal crossover in the QPC. Our
approach might open a new thermodynamic detection scheme of topological states also with non-Abelian
statistics.
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Introduction.—Entanglement describes nonlocal corre-
lations between quantum objects and is essential in under-
standing quantummany-body systems. It is also at the heart
of quantum computation and information sciences and
plays a pivotal role in models such as topological quantum
computation [1] and measurement-based quantum compu-
tation [2]. Topological entanglement entropy (TEE) [3–5]
is the ultimate diagnostic of topological order as defined by
fractional quasiparticles carrying anyonic statistics. In a
(2þ 1)-dimensional topological phase where the system
size is larger than the correlation length, the entanglement
entropy in the ground state jΨi between subsystems A and
B, SEE ¼ −Tr½ρA log ρA� where ρA ¼ TrB½jΨihΨj�, takes
the general form [3,4]

SEE ¼ αL − γ þ � � � : ð1Þ

Here L is the length of the entanglement cut, α is a
nonuniversal constant describing short range entanglement,
and the second subleading term is the TEE. The TEE γ ¼
logD is uniquely related to the total quantum dimension of
the topological phase, D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiP
a d

2
a

p
, with da being the

quantum dimensions of each individual anyon type labeled
by a. In the presence of N anyons of type a, the gapped
topological liquid has a degeneracy that scales as dNa , so
that da > 1 (da ¼ 1) refers to a non-Abelian (Abelian)
anyon. For instance, there are m Abelian anyons in the
fractional quantum Hall (FQH) Laughlin state with filling
fraction ν ¼ 1=m, with da ¼ 1 ða ¼ 0; 1;…; m − 1Þ and
D ¼ ffiffiffiffi

m
p

; the Moore-Read state at ν ¼ 5=2 has four
Abelian anyons and two non-Abelian anyons having
da ¼

ffiffiffi
2

p
, with D ¼ 2

ffiffiffi
2

p
.

Measuring entanglement entropy in many-body systems
is a daunting task since it requires full state tomography.
Variants of SEE such as the Rényi entanglement entropy
can be accessed in controllable many-body quantum sim-
ulators, such as cold atoms or trapped ions using many-
copymethods [6–9] or randomizedmeasurement techniques
[10–12]. The latter, remarkably, was employed recently to
measure the Rényi TEE of Kitaev’s toric code [13] prepared
on a quantum processor [14]. Unambiguously extracting the
subleading TEE term γ requires dividing the system into
three subsystems and forming appropriate combinations
of the different partitions such as to cancel the leading
term [3,4]. This was successfully implemented [14] thanks
to the zero correlation length of the toric code eigenstates.
However, measuring TEE in condensed matter systems,
such as in the realm of the FQH effect in two-dimensional
electron systems, remains elusive.
Interestingly, there exists an intimate relation between

TEE and a thermodynamic entropy loss associated with a
quantum point contact (QPC) [15]. The QPC allows
tunneling between two points on the edge (see parameter
λ in Fig. 2 below). For an edge carrying fractional
quasiparticles, this is a relevant perturbation that introduces
an energy scale TB [16]. For T ≫ TB the system is
described by the ultraviolet (UV) fixed point that is
unaffected by tunneling. As temperature decreases below
TB, tunneling processes proliferate and the system flows to
the infrared (IR) fixed point where the droplet is discon-
nected into two droplets A and B. Their anyonic charge a
can no longer fluctuate since each droplet can not support
an overall fractional anyonic charge, leading to an entropy
reduction. Using the bulk-edge correspondence, it was
shown for a general (2þ 1)-dimensional chiral topological
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phase that the thermodynamic entropy change of the
QPC coincides with a bulk property being precisely the
TEE [15],

SUV − SIR ¼ logD: ð2Þ

This fundamental relation, derived 16 years ago, sug-
gests that the TEE can “simply” be read off from the
temperature dependence of the entropy, as shown in Fig. 1.
Indeed, over the past decades there has been a surge of
interest in measuring thermodynamic entropy in the bulk of
mesoscopic systems [17–21], with specific emphasis on the
entropy contribution of non-Abelian anyons [22–24].
However, extracting the TEE fundamentally requires one
to measure an entropy change of order unity associated
with a change of the topology of the surface. Thus, isolating
theOð1Þ entropy change in Eq. (2) from bulk contributions,
including those of the 1D edge states themselves, remained
elusive.
More recently, local measurements of entropy of elec-

tronic states were demonstrated in quantum dot (QD)
systems via transport in specific systems [41,42] and using
a more general framework based on charge detection and
Maxwell relations [43–45]. Some promising applications
of using this general framework were theoretically identi-
fied earlier [22–24,46–51]. In Refs. [43–45] a QPC is used
as a charge detector weakly coupled to a QD. Then,
Maxwell relations are used to infer the entropy change
of the dot.
Here, we propose to strongly couple a FQH QPC to a

trivial QD. EmployingMaxwell relations, we show that one
can infer the change in entropy of the joint system,
including both the QD and, importantly, the QPC, as the
latter switches from being fully transmitting to fully
reflecting. At fixed temperature, such a measurement
allows one to capture the Oð1Þ topological entropy change
in Eq. (2) and thus extract the TEE.

Model.—The chiral edges of a FQH system described by
an Abelian Laughlin state with filling factor ν ¼ 1=m are
described by the bosonized Hamiltonian [25,52],

H0 ¼
1

4πν

Z
dxð∂xφLÞ2 þ ð∂xφRÞ2; ð3Þ

where L=R denotes left and right movers. Here we have set
the edge velocity to unity. The QPC at x ¼ 0 induces
tunneling of quasiparticles between the edge states, which
is described by [16,53]

HB ¼ λ cos½φLðx ¼ 0Þ − φRðx ¼ 0Þ�; ð4Þ

where λ is the tunneling strength. For m > 1, it leads to the
energy scale TB ¼ Cλ½1=ð1−νÞ�, across which the crossover
from UV to IR limits happen, with C being a nonuniversal
constant of appropriate dimensions [16]. The integer
quantum Hall case m ¼ 1 is also described by the same
Hamiltonian, but in this case the tunneling of electrons is
marginal in the renormalization group sense and there is no
crossover. While for experiments in electronic systems only
odd values ofm are relevant, corresponding to fermions, we
also consider theoretically the case of even m, correspond-
ing to a Laughlin state of bosons.
In general, for ν ¼ 1=m, the model can be mapped into

the boundary sine-Gordon model, which is integrable [54].
It can be solved using the thermodynamic Bethe ansatz
(TBA) [25,55–57], which allows one to obtain the free
energy F½T; TB�, and from it, the boundary entropy
S ¼ −∂TF.
Applying the TBA, we compute the entropy along

the full crossover from the UV to IR fixed points (see
Supplemental Material [25] ), see Fig. 1, which gives
SUV − SIR ¼ log

ffiffiffiffi
m

p
. This yields a finite entropy change

only in the fractional case, m > 1. We included also the
case ν ¼ 1=2, which can be solved exactly using refermio-
nization and which corresponds to an effective Majorana

FIG. 1. Exact TBA results for the boundary entropy change in a
QPC at ν ¼ 1; 1=2; 1=3 with a net entropy difference of 0,
log

ffiffiffi
2

p
, and log

ffiffiffi
3

p
, respectively. The results for ν ¼ 1=2 are

also obtained using refermionization [25].

FIG. 2. AQPC in a chiral topological phase facilitates tunneling
between the edge states. The tunneling strength λ is controlled by
the charge on a nearby QD, λ ¼ λðNÞ, that itself depends on the
chemical potential μ of a nearby weakly tunnel-coupled reservoir.
An adjacent charge detector measures the charge of the QD hNi.
Sufficiently charging the QD drives the QPC between UV to IR
limits.
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fermion [16,25,49,58,59]. Similar methods [60,61] can be
applied to extract the entropy of parafermion modes.
Next, we present two schemes to realize the crossover in

the QPC between the UV and IR limits and measure the
resulting thermodynamic entropy change.
Scheme 1: Side-coupled quantum dot.—We now illus-

trate the TEE measurement protocol for the ν ¼ 1=m
Laughlin states using a side-coupled quantum dot follow-
ing the approach of Ref. [50]. As shown in Fig. 2, we attach
to the QPC a QD in the Coulomb blockade regime
described by a classical energy function EðN; μÞ ¼
EcN2 − μN. Here Ec is the charging energy, N is the
number of electrons in the QD, and μ is a local chemical
potential of the QD, controlled by a gate voltage. The QD
interacts electrostatically with the QPC, as described by a
dependence of the tunneling amplitude on the number
operator of the QD, λ ¼ λðNÞ. Thus, the crossover energy
scale TB is controlled by N, TB ¼ TBðNÞ. We now show
how, from such a dependence, one can extract SUV − SIR.
Under these conditions, the partition function of the

combined system is

Ztot ¼
X
N

e−
1
T½FðT;TBðNÞÞþEðN;μÞ�; ð5Þ

where FðT; TBðNÞÞ is the free energy corresponding to the
Hamiltonian in Eqs. (3) and (4) with λ → λðNÞ. By
attaching a charge detector to the QD, using the
Maxwell relation ðdhNi=dTÞ ¼ ðdS=dμÞ, one can extract
the entropy change produced by a change of μ,

ΔSμ1→μ2 ¼
Z

μ2

μ1

dhNi
dT

dμ: ð6Þ

When T ≪ Ec, upon increasing μ, there are several
quantized charge steps in N, see inset of Fig. 3(a), and
the QPC gets closer to pinch-off, corresponding to an
increase in TB. The desired entropy change will occur if, by
charging the QD byΔN electrons, the QPC transitions from
the UV limit (TB ≪ T) to the IR limit (TB ≫ T).
In Fig. 3, we assume an N dependence of TBðNÞ such

that across a charging of ΔN ¼ 3 electrons one achieves
TBðNÞ ≪ T ≪ TBðN þ ΔNÞ. In Fig. 3(b) we compute
ðdhNi=dTÞ, where hNi is extracted from the total free
energy Ftot ¼ −T lnZtot as hNi ¼ −∂Ftot=∂μ. The total
entropy change Sμ1¼0→μ from a selected μ1 until a varying
μ is shown in Fig. 3(c). We can see that this entropy
contains a series of log2 peaks corresponding to charge
degeneracies of the QD, riding on top of the slowly varying
entropy along the crossover for ν ≠ 1. For T ≪ Ec, these
two effects are well separated and we can measure the TEE
by taking the difference between the corresponding entropy
plateaus where hNi weakly fluctuates; see dashed horizon-
tal lines in Fig. 3(c).

Several experiments observed the crossover between UV
and IR limits of a gate-tuned QPC for several FQH states
through the conductance and the shot noise, which crosses
from quasiparticle tunneling to electron tunneling [62–65].
Our method outlined in Fig. 2, however, requires one to
drive this crossover as a function of the chemical potential
of the dot. The conductance for such a crossover is plotted
in Fig. 3(a).

FIG. 3. Illustration of the proposed TEE measurement. (a) The
conductance between the Ohmic contacts for filling factor ν ¼
1=2; 1=3 changes upon charging a nearby QD by varying the
chemical potential μ of the QD. The charging curve is shown in
the inset. Here T=Ec ¼ 0.1, G0 ¼ e2=h, and TBðNÞ=Ec ¼
eN=2 − 1 [50]. (b) Temperature derivative of the QD charge as
a function of μ. For ν ¼ 1 (dashed) the curve is exactly
antisymmetric, while for ν ¼ 1=3 (solid) it is not. (c) The
resulting entropy change (QPCþ QD), obtained by integrating
dhNi=dT using the Maxwell relation (6), for ν ¼ 1 (dashed blue)
and ν ¼ 1=2; 1=3 (solid curves). The peaks are associated with
the log2 entropy of the dot at its charge steps. The plateaus of the
entropy decrease for ν ¼ 1=2; 1=3 as a function of μ, and
converge to the desired TEE once the UV-IR crossover is
accomplished.
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In practice, however, a side-coupled QD as in Fig. 2 may
have a limited electrostatic affect on the QPC. To enhance
the effect, we now discuss a different setup with the QD
embedded in the constriction.
Scheme 2: Coulomb blockade in the FQH regime.—One

can realize a nearly complete change of transmission by
replacing the QPC by a double barrier consisting of two
QPCs, see Fig. 4(a). For noninteracting electrons, it is well
known [66] that the transmission has an abrupt resonance
peak that is maximized for symmetric barriers. Here we
demonstrate that this resonance effect also occurs in a
double barrier system on a fractional edge.
As shown in Fig. 4(a), we consider two QPCs in series

separated by a distance 2l, having backscattering ampli-
tudes λ1;2, and defining a QD characterized by a charging
energy Ec. In this case, the Hamiltonian is

HQD ¼ λ1 cos½φLð−lÞ − φRð−lÞ� þ λ2 cos½φLðlÞ − φRðlÞ�

þ Ec

4π2

�X
i¼L;R

½φið−lÞ − φiðlÞ� − 2πNg

�
2

: ð7Þ

In the limit of a large charging energy Ecl ≫ 1, one obtains
an effective Ng-dependent boundary condition for the
bosonic field [25,67–69]. As a result, the two QPCs behave
as one effective QPC with

H0
B ¼ λeffei½φLð0Þ−φRð0Þ� þ H:c:; ð8Þ

where

λeff ∝ λ1e−iπNg þ λ2eiπNg : ð9Þ

This effective model holds for Ec ≫ TB1;2 ¼ Cλ1=ð1−νÞ1;2 . We
assume a finite reflection at the QPCs such that TB1;2 ≫ T.
However, using Eq. (9), we see that, when the barriers
are symmetric λ1 ¼ λ2 ≡ λ0, we have λeff ∝ λ0 cosðπNgÞ,
or equivalently, TB ¼ T0

Bj cosðπNgÞj1=ð1−νÞ. Hence at
Ng ¼ 1=2, the effective barrier vanishes and TB ¼ 0.
Thus, the TEE can be extracted as the entropy reduction

between the resonance condition Ng ¼ 1=2 and the off-
resonance limit Ng ¼ 0, 1. This entropy difference can be
directly measured by attaching a charge detector to the QD
and using the Maxwell relations. Equation (6) applies
with μ → 2EcNg.
In Figs. 4(b) and 4(c), we plot hNi and the extracted

entropy. Here hNi ¼ −ð1=2EcÞð∂F=∂NgÞ is computed
from the TBA free energy FðT; TBÞ with TB ¼
TB½λeffðNgÞ� carrying the Ng dependence via Eq. (9).
Different than the side-coupled QD, by using the resonance
effect, the crossover is fully accomplished along the way
from a Coulomb peak (Ng ¼ 1=2) and a nearby Coulomb
valley (Ng ¼ 0, 1). Also, different from the side-coupled
QD that was only weakly coupled to the lead, and hence led
to clear log2 entropy peaks at its charge degeneracy points
[Fig. 3(c)], here the strong tunnel-coupled QD has a
negligible contribution to the entropy, which scales as
SQD ∼ ðT2−2ν

B =T2−2νÞðT2=E2
cÞ [25]. However, in order to

explore the full UV-IR crossover, the barriers should be
high enough such that T0

B ≫ T, see Fig. 4(c).
Discussion.—In the above schemes, to isolate the sub-

leading TEE term γ in Eq. (1), we assume that when the
FQH droplet splits into two, the change in the length of the
edge, L → Lþ ΔL, leads only to a negligible entropy
change as compared to the order Oð1Þ TEE. We can now
justify this assumption. The resulting entropy change of the
1D gapless edge modes with velocity vF is

ΔSL ∼
T
ℏvF

ΔL: ð10Þ

Since the TEE part of the entropy change is Oð1Þ, we can
neglect ΔSL if ΔL ≪ ℏvF=T. For T ¼ 100 mK and
vF ¼ 106 m=s, we find that the requirement ΔL ≪ 10−4 m
is easily satisfied.
Whereas our proposed scheme to extract the TEE relies

on bulk-edge correspondence, one could inquire about
nonuniversal effects near the edge. For example, if the QPC
edge modes interact among themselves or with nearby edge
states emerging, e.g., due to edge reconstruction [70], then
there will be a correction to the extracted entropy change.

FIG. 4. (a) Two QPCs in series creating a QD with Coulomb
interaction Ec within the FQH system. By tuning the gate voltage
Ng at fixed λ1;2, this resonant double barrierlike system yields an
effective backscattering strength in Eq. (8) which drops at
resonance and vanishes for symmetric barriers. The charge
detector measures the charge of the QD. (b) The average
occupation of the QD for the case of symmetric barriers at
ν ¼ 1=3. Increasing temperature shifts the curve to right or left
for Ng above or below 1=2. (c) Entropy change inferred from
Maxwell relation for several ratios of T=T0

B. As T → 0, Ng ¼ 0

tends to the IR limit and the entropy difference at Ng ¼ 1=2
(which is always the UV limit) tends to the TEE.
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Similar to a Luttinger liquid [71] whose entropy per length
ΔL is given by Eq. (10) with vF being renormalized by
interactions, we argue that, at low temperatures, the
interaction-induced corrections take the form of Eq. (10),
with ΔL being replaced by the effective interaction length
near the QPC Lint. This scaling can also be obtained
perturbatively in the interactions (see Supplemental
Material [25] ). Thus, nonuniversal corrections are negli-
gible at low temperatures. We also note that backaction
effects from the charge detector [72–74] need to be
considered, but are negligible when the system-detector
coupling is weak.
Summary.—Despite its importance, the measurement of

the topological entanglement entropy is still elusive in
condensed matter systems. Using a relation between TEE
and a thermodynamic entropy change in fractional QPCs,
we proposed realistic approaches to measure the TEE
employing charge measurement and the Maxwell relation.
We illustrated our protocols for the experimentally simplest
and yet nontrivial case of Abelian fractional topologi-
cal order.
Our proposed setups are also applicable to extract the

entropy change between UVand IR fixed points in the more
general boundary sine-Gordon model describing an impu-
rity in a Luttinger liquid with any value of the interaction
parameter, within mesoscopic systems simulating this
model, such as in Ref. [75].
Since the relation we applied is general, our method can

be applied to more exotic systems, such as spin liquid
systems [76] and, most interestingly, FQH states with non-
Abelian quasiparticles. Moreover, we found that the present
method works also for hierarchical FQH states with multi-
edge channels [77,78], and in the limit of spatially
separated edge modes, the entropy curves can even be
obtained using the TBA [79].
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