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The temperature dependence of the phase space for electron-electron (e-e) collisions leads to a T-square
contribution to electrical resistivity of metals. Umklapp scattering is identified as the origin of momentum
loss due to e-e scattering in dense metals. However, in dilute metals like lightly doped strontium titanate,
the origin of T-square electrical resistivity in the absence of umklapp events is yet to be pinned down. Here,
by separating electron and phonon contributions to heat transport, we extract the electronic thermal
resistivity in niobium-doped strontium titanate and show that it also displays a T-square temperature
dependence. Its amplitude correlates with the T-square electrical resistivity. The Wiedemann-Franz law
strictly holds in the zero-temperature limit, but not at finite temperature, because the two T-square
prefactors are different by a factor of ≈3, like in other Fermi liquids. Recalling the case of 3He, we argue
that T-square thermal resistivity does not require umklapp events. The approximate recovery of the
Wiedemann-Franz law in the presence of disorder would account for a T-square electrical resistivity
without umklapp.
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Landau and Pomeranchuk [1], and contemporaneously
Baber [2], postulated that electron-electron collisions cause
a quadratic temperature dependence in electrical resistivity
of metals. Subsequent experiments found that this is
prominent in metals hosting strongly correlated electrons
[such as UPt3 [3] or strontium titanate (STO) [4] ], and also
thosewith a small carrier concentration (like bismuth [5] and
graphite [6]). In these cases, at sufficiently low temperature,
resistivity ρ can be expressed as ρ ¼ ρ0 þ AT2. ρ0 depends
on disorder, but A is intrinsic to each metal. Its ubiquitous
relevance across families of Fermi liquids raises two ques-
tions. (1) What makes the exchange of momentum between
two colliding electrons detrimental to the electrical con-
duction? (2) What sets the amplitude of A?
Two identified answers to the first question are umklapp

and the Baber mechanism. An umklapp event occurs when
the momentum vector sum of the colliding electrons gets
out of the Brillouin zone, leading to a loss of momentum
equivalent to one reciprocal unit vector [7,8]. The Baber
mechanism [2] refers to the existence of two distinct
electron reservoirs whose momentum exchange is a bottle-
neck in the path of momentum leak from the electron bath
to the phonon bath. The second question was addressed
first by Rice [9] and then by Kadowaki andWoods [10] (see
also Refs. [11,12]), who argued that A scales with the
square of the T-linear specific heat γ2 because both depend
on the density of states.
The persistence of T-square electric resistivity in metallic

strontium titanate [13,14] to the extreme dilute limit [15]

raised new questions about both answers. The Fermi surface
in this dilute metal is too small to allow umklapp scattering
and consists of a single pocket in the extreme dilute limit
[16–18]. Thus, none of the two mechanisms can generate
T-square resistivity. Moreover, the proper scaling relation
was found to be between A and the Fermi energy, A ∝ E−2

F ,
instead of the standard Kadowaki-Woods scaling, A ∝ γ2,
which fails in STO [19].
Following this observation, transport properties of dilute

metallic STO were studied up to temperatures well above
room temperature [20] and the effective mass was found to
increase with warming. Two theoretical studies [21,22]
showed that the temperature dependence of electrical
resistivity in STO can be explained with a scenario based
on the scattering of electrons by two soft transverse optical
(TO) phonons. This would account for the persistence of
T-square resistivity above the degeneracy temperature. On
the other hand, low-temperature T-square resistivity (well
below the minimum energy of TO phonons) remained a
mystery. Another development was the discovery of
T-square resistivity in dilute metallic Bi2O2Se [23], another
solid with a small Fermi surface, and without any soft
phonon mode. The T-square prefactor was found to scale
with the Fermi energy. This demonstrated that STO is not
an isolated case and called for an e-e scattering scenario in
the absence of umklapp.
The T-square thermal resistivity of electrons in Fermi

liquids is less known and even much less explored.
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Defining the electronic thermal resistivity as WT ¼ T=κe,
one expects

WT ¼ ðWTÞ0 þ BT2: ð1Þ
Here, ðWTÞ0 is the residual thermal resistivity, expected

to obey the Wiedemann-Franz (WF) law: L0ðWTÞ0 ¼ ρ0
with L0 ¼ ðπ2=3Þðk2B=e2Þ ¼ 2.44 × 10−8 V2 K−2. On the
other hand, L0B > A, because, compared to energy flow,
momentum flow is less affected by small-angle scattering
[24,25]. Experiments on various metals, including Ni [26],
Al [27], W [28], Sb [29], CeRhIn5 [30], WP2 [31], and
UPt3 [32], have confirmed both these expectations.
A quantitative connection between this physics and

normal liquid 3He was recently highlighted [33]. In 3He,
thermal conductivity becomes proportional to the inverse of
temperature [34] at very low temperatures. Thus, thermal
resistivity (WT ¼ T=κ) is proportional to T2. The evolution
of this T-square resistivity with pressure follows the scaling
seen for A and B with EF in metals [33]. There is no
umklapp in normal liquid 3He and the Fermi surface is a
single sphere. Thus, T-square thermal resistivity can occur
in a Fermi liquid without umklapp and the amplitude of B is
directly linked to its Landau parameters, which set the
Fermi temperature.
Here, we present a study of electric and thermal conduc-

tivity in SrTi1−xNbxO3 at two different carrier concen-
trations (n ¼ 3.1 × 1020 cm−3 and n ¼ 1.8 × 1020 cm−3).
Despite the dominance of the lattice contribution [35–37],
we succeeded in extracting the electronic contribution by
exploiting the differentiating effect of the magnetic field on
phonons and electrons, a method previously employed in
the case of semimetals [29,38–40]. We found that WT

follows Eq. (1) and L0B > A. Thus, T-square resistivity in
SrTi1−xNbxO3 is similar to metals in which the e-e origin of
the T-square resistivity is uncontested. This leads us to
conclude that T-square (electric and thermal) resistivity
can be caused without umklapp as a consequence of the
T-square decrease in the amplitude of the (momentum and
energy) diffusivity in a Fermi liquid. A comprehensive
theory of this phenomenon is yet to be elaborated.
Figure 1 shows the temperature dependence of thermal

conductivity in two samples of SrTi1−xNbxO3. The rela-
tively low value residual resistivity of our samples is
discussed in the Supplemental Material [41]. In order to
see the relative share of the electronic and the phononic
contributions to the total heat transport, κxx=T is compared
with L0σxx, which represents the upper boundary of
electronic thermal conductivity according to the WF law.
With decreasing temperature, κxx=T approaches L0σxx.
As the temperature tends to zero (see inset), they tend to
join each other. κxx=T and L0σxx are both reduced by the
presence of a perpendicular 12 T magnetic field. To
quantify longitudinal conductivity in the presence of
magnetic field, we measured both the electrical and the
thermal Hall resistivities and inverted the resistivity tensor.
The field-induced decrease in electrical conductivity σxx

(i.e., the magnetoresistance) was the subject matter of a
previous study [44], which found that both longitudinal and
transverse conductivity follow the behavior expected in the
semiclassical picture:

σxx ¼
neμ

1þ μ2ðμ0HÞ2 ; ð2Þ

σxy ¼
neμ

1þ μ2ðμ0HÞ2 μðμ0HÞ: ð3Þ

FIG. 1. Thermal conductivity in Nb-doped SrTiO3. Thermal conductivity divided by temperature (κxx=T) at μ0H ¼ 0 and μ0H ¼ 12 T
compared with the electrical conductivity multiplied by the Sommerfeld value (L0σxx) in sample no. 1 (a) and in sample no. 2 (b). κxx=T
increases with warming, because of the phonon contribution, which rises faster than T. L0σxx, which is a rough estimate of electronic
contribution to κxx=T decreases with warming due to the reduction of electrical conductivity by inelastic scattering. Note the reduction
induced by magnetic field in both. The inset is an enlargement of the low-temperature data, showing that they tend to join in the zero-
temperature limit.
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Here, n is the carrier density and e is the electron charge.
Mobility μðT; μ0HÞ is the only adjustable parameter
depending on temperature and magnetic field. It monoton-
ically decreases with increasing magnetic field and/or
temperature. A remarkable (and poorly understood) fact
about metallic STO is that the field dependence of mobility
shows little dependence on the orientation of the magnetic
field [44].
The thermal conductivity tensor κ̄, on the other hand, has

an electronic κe and a lattice κph component in longi-
tudinal: κxxðμ0HÞ ¼ κexxðμ0HÞ þ κphxx.
As in previous studies on semimetals [29,38,39], we

separated the two components by assuming that the field
dependence is negligibly small for the lattice component in
comparison to the electronic component. In insulating
strontium titanate, where thermal conductivity is purely
phononic, a magnetic field of 12 T reduces the peak κxx at
most by 7 × 10−3 [45] and generates a finite thermal Hall

conductivity of κphxy ≈ 0.09 W=Km. In our metallic samples,
the effect of magnetic field on κexx and the amplitude of κexy
(see below) are orders of magnitude larger.
Figure 2 shows the temperature dependence of the

transverse thermal conductivity divided by temperature
(−κxy=T). In the whole temperature range, it remains close
(but smaller than L0σxy), which is what is expected. The

measured signal is much larger than κphxy=T measured in
insulating STO [45,46].

Thus, we can safely identify the field-induced change in
thermal conductivity Δκxx with the thermal magnetoresist-
ance of electrons:

Δκxx ¼ κexxðμ0H ¼ 0Þ − κexxðμ0HÞ: ð4Þ
Figures 2(a) and 2(c) compare Δκxx=T with L0Δσxx.

In both samples, these two quantities converge at low
temperature and their difference grows with increasing
temperature. This implies the validation of the WF law at
zero temperature, a departure from it at finite tempe-
rature. The finite-temperature departure from the WF
law is more significant in the sample with lower carrier
density.
In order to extract the longitudinal electronic thermal

conductivity at zero magnetic field [κexxðμ0H ¼ 0Þ] from
thermal magnetoconductivity (Δκxx), we need an additional
assumption: At any given temperature, the field depend-
ence of κexx is similar to the field dependence of the
electrical conductivity [expressed by Eq. (2)]. Since the
field-induced reduction in conductivity, in both thermal and
electrical channels, is due to the same Lorentz force, this is
reasonable. It implies that the Lorenz ratio ½L ¼
ðκexx=σxxTÞ� has a negligible field dependence, consistent
with our field-dependent data (see Fig. S2 in the
Supplemental Material [41]). Thus, magnetoresistance is
set by the field dependence of residual resistivity and there
is no detectable field-induced change in inelastic scattering.

FIG. 2. Longitudinal and Hall conductivity. (a) The difference in longitudinal thermal conductivity divided by temperature between
zero field and 12 T. [Δκxx ¼ κxxð0 TÞ − κxxð12 TÞ] in sample no. 1. Also shown is the difference in the longitudinal electric conductivity
multiplied by the Sommerfeld value [Δσxx ¼ σxxð0 TÞ − σxxð12 TÞ]. (c) Same for sample no. 2. (b) The transverse thermal conductivity
κxy divided by temperature, compared with the transverse electric conductivity σxy multiplied by L0. (d) Same for sample no. 2. Also
shown in (b) and (d) is the κxy=T caused by phonons in undoped pure STO [37,45].
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This approach leads us to [41]

κexxðμ0H ¼ 0Þ ¼ Δκxx
σxxðμ0H ¼ 0Þ

Δσxx
: ð5Þ

Subtracting κexx from the total conductivity leads us to
κphxx. Figure 3 shows the results. One can see that, above
20 K, κphxx becomes an order of magnitude larger than κe.
However, since κphxx decreases faster than κexx with cooling,
the electron contribution becomes prominent below 10 K.
Almost equal to L0σ0T at low temperature, it significantly
deviates downward at higher temperatures.
The extracted κphxx, shown in Fig. 3(c), is significantly

lower than κphxx in undoped STO [36]. As one can see in the
figure, κph of our metallic samples, with about 1% of Ti
atoms replaced by Nb, is similar to the total κ of insulating
samples of Sr1−xCaxTiO3, with about 1% of Sr atoms
replaced by Ca. In both cases, κph is reduced in comparison
to pristine STO, because the substituting atoms are ran-
domly distributed and their average distance is comparable
to the wavelength of thermally excited phonons. The rough
similarity between Nb doping (which brings mobile elec-
trons) and Ca substitution (which does not) indicates that
scattering by mobile electrons plays a minor role.
Let us now turn our attention to WT, the inverse of

κexx=T. Figure 4 shows ρ and L0WT as a function of T2.
One can see that in both samples ρ0 and L0WT0 are
identical at low temperature, confirming the validity of the
WF law in the zero-temperature limit. In both samples, the
slope of L0WTðT2Þ [that is, B] is larger than the slope of
ρðT2Þ [that is, A]. This behavior is similar to what has been
observed in semimetals (like W, WP2, and Sb) and heavy
fermions (like UPt3 and CeRhIn5) (see Table S1 in the
Supplemental Material [41]) and corresponds to what is
theoretically expected in the e-e scattering picture [25].
The fermiology of doped strontium titanate is known

[14,17,18,48,49]. Experiments have confirmed that, as

expected by band calculations [14], three bands associated
with Ti orbitals are successively filled, as the doping
increases. In the two samples studied here, the carrier
density is such that the Fermi surface consists of three
concentric pockets, all three centered at the Γ point. The
average radius of the outer pocket is bounded by the carrier

FIG. 3. Electron and phonon contributions to the thermal conductivity. (a) The total thermal conductivity (κtotalxx ) and its electronic (κexx)
and phononic (κphxx) components as a function of temperature in sample no. 1. Also shown is the electrical conductivity multiplied by L0.
(b) Same for sample no. 2. (c) Comparison of the phonon thermal conductivity in the two samples with total thermal conductivity of
undoped STO [36,47] with κphxx in SrTi1−xNbxO3, n ¼ 2.6 × 1020 cm−3, just above the superconducting transition [18] and with
Sr0.991Ca0.009TiO3 [37].

FIG. 4. Electronic thermal resistivity. (a) Electric and thermal
resistivity as a function of the square of the temperature for
sample no. 1. (b) Same as in (a) for sample no. 2. In both cases, ρ
and WT have the same intercept but different slopes. The two
black solid lines show the lower and the upper limit to the slope of
thermal resistivity in the two samples.
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density: kmax
F < ð3π2nÞ1=3. This yields 2.1 ð1.7Þ nm−1 in

sample no. 1 (no. 2). The width of the Brillouin zone is
G ¼ ð2π=aÞ ¼ 16.1 nm−1, where a ¼ 0.3905 nm is the
lattice parameter. Since kmax

F < ðG=4Þ, umklapp events
cannot occur. This distinguishes metallic strontium titanate
from other metals displaying T-square ρ and WT with
linked amplitudes.
The other Fermi liquid with a T-square thermal resis-

tivity in the absence of umklapp is normal liquid 3He
[50,51]. The dominant contribution to thermal conductivity
(in the zero-temperature limit) is proportional to the inverse
of temperature. This κT term is strictly equivalent to the
inverse of B, the slope ofWT as a function T2, and, as first
calculated by Abrikosov and Khalatnikov [52], is propor-
tional to the fermion-fermion scattering time, which quad-
ratically decreases with temperature. Extracted from
thermal conductivity, this scattering time was dubbed τκ,
and τκT2 was extensively measured by Greywall [34].
Theoretically, this quantity was computed by quantifying
the Landau parameters of the Fermi liquid [53–55]. The
agreement between the theoretically computed and the
experimentally measured κT and τκT2 is within experi-
mental uncertainty at saturating vapor pressure and less
than a factor of 2 near the melting pressure.
Let us now see how metallic strontium titanate fits in this

picture. τκ is given by [34]

κ ¼ 1

3

CV

Vm
v2Fτκ: ð6Þ

Here, CV is the molar specific heat, Vm is the molar volume,
and vF the Fermi velocity. This means that, in analogy with
the case of normal liquid 3He [34], B, the prefactor of
T-square thermal resistivity, is inversely proportional
to τκT2:

1

τκT2
¼ v2F

3

γ

Vm
B: ð7Þ

Using the reported values of γ (ranging from 1.55 to
1.9 mJ=molK2 [19,35,56] at this doping level) and
extracting the average Fermi wave vector from carrier
density, one can quantify the Fermi velocity and find τκT2.
The results are listed in Table I. Unsurprisingly, τκT2 is
orders of magnitude larger in STO than in 3He, which has a

lower Fermi temperature and higher fermion-fermion
collision cross section.
A more instructive basis for comparison is a dimension-

less collision cross section defined as [55,57–59]

ζ ¼ ℏEF

τκT2k2B
: ð8Þ

The amplitude of this quantity in a Fermi liquid is set by
a combination of its Landau parameters [57,60,61]. As seen
in Table I, ζ in 3He, strongly correlated and close to both
localization and a magnetic instability [62], varies from 35
to 60. In contrast, ζ in STO, at this doping level (where the
effective mass is close to 4 times the bare electron mass
[16,35]), is ≈3.
Thus, not only the existence of the T-square thermal

resistivity in metallic strontium titanate but also its ampli-
tude can be accounted for by considering it as a Fermi
liquid with moderate correlations. As for T-square elec-
trical resistivity (at low temperatures, that is below the
degeneracy temperature of electrons and the minimum
energy of the soft TO phonons), it could be accounted for,
assuming a rough recovery of the Wiedemann-Franz law in
the presence of disorder. However, the theory for such a
scenario is yet to be elaborated. It may require including the
gradient of momentum flow caused by disorder and phonon
scattering.
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[15] X. Lin, B. Fauqué, and K. Behnia, Science 349, 945 (2015).
[16] C. Collignon, X. Lin, C. W. Rischau, B. Fauqué, and K.
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Rev. X 10, 031025 (2020).

[21] A. Kumar, V. I. Yudson, and D. L. Maslov, Phys. Rev. Lett.
126, 076601 (2021).

[22] K. G. Nazaryan and M. V. Feigel’man, Phys. Rev. B 104,
115201 (2021).

[23] J. Wang, J. Wu, T. Wang, Z. Xu, J. Wu, W. Hu, Z. Ren, S.
Liu, K. Behnia, and X. Lin, Nat. Commun. 11, 3846 (2020).

[24] J. Ziman, Principles of the Theory of Solids (Cambridge
University Press, Cambridge, England, 1972).

[25] S. Li and D. L. Maslov, Phys. Rev. B 98, 245134 (2018).
[26] G. White and R. Tainsh, Phys. Rev. Lett. 19, 165 (1967).
[27] J. Garland and D. Van Harlingen, J. Phys. F 8, 117 (1978).
[28] D. Wagner, J. Garland, and R. Bowers, Phys. Rev. B 3, 3141

(1971).
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