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A band-projection formalism is developed for calculating the superfluid weight in two-dimensional
multiorbital superconductors with an orbital-dependent pairing. It is discovered that, in this case, the band
geometric superfluid stiffness tensor can be locally nonpositive definite in some regions of the Brillouin
zone. When these regions are large enough or include nodal singularities, the total superfluid weight
becomes nonpositive definite due to pairing fluctuations, resulting in the transition of a BCS state to a
pair density wave (PDW). This geometric BCS-PDW transition is studied in the context of two-orbital
superconductors, and proof of the existence of a geometric BCS-PDW transition in a generic topological
flat band is established.
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Introduction.—The superfluid weight of a superconduc-
tor is proportional to the density and inversely proportional
to the effective mass [1]. Since it is the second-order
expansion of the superconducting free energy in the center-
of-mass momenta (CMM) of Cooper pairs, a positive
definite superfluid weight ensures that zero CMM, the
BCS state, minimizes the superconducting free energy.
This stability criterion is also satisfied by the recently
discovered geometric superfluid weight in multiorbital
superconductors, which is proportional to the quantum
metric of the band [2–17]. It is positive semidefinite for an
orbital-independent order parameter [18], and dominates in
flat band superconductors like twisted or strained two-
dimensional (2D) crystals [19–32]. These rigid stability
criteria seemingly preclude the existence of a pair density
wave (PDW) state, which is an exotic superconductor whose
electron pairs condense with a nonzero CMM [33–40].
In this Letter, we show that the band geometric effect can

stabilize a PDW state in flat bands with orbital-dependent
pairing. Our analysis is based on the understanding of
pairing instabilities that result from a negative definite
superfluid weight Ds;μν in multiorbital superconductors.
This criterion has recently been used to study the Fulde-
Ferrell-Larkin-Ovchinnikov state in magnetic fields [41]
and PDW states [42]. However, the transition mechanism
and its nature remain shrouded in mystery. Our theory,
aided by developing a band-projection formalism for the
superfluid weight, allows us to identify a unique nodal
mechanism that drives a BCS-PDW transition in the
presence of orbital-dependent pairing. In the process, we
establish an intimate connection between band topology
and the BCS-PDW transition in superconductors.
The nodal mechanism requires the presence of zeros in

the quasiparticle spectrum. When these zeros coincide with
the negative contributions to the superfluid weight (Ds;μν),

they dominate over the positive contributions. We show that
a topological two-orbital band always exhibits at least one
nodal zero in the quasiparticle spectrum. Above a critical
coupling, Ds;μν becomes negative definite in the neighbor-
hood of this nodal zero, driving a second-order BCS-PDW
transition [43]. To justify our claims with an explicit
example, we study the BCS-PDW transitions in the
flattened Bernevig-Hughes-Zhang (BHZ) model [44,45].
The PDW phase corresponds to the simultaneous presence
of an attractive and repulsive channel, with the transition
initiated by one channel turning repulsive. Below we sketch
the analysis that leads to these results.
Projected superfluid weight.—We begin by describing

our formalism for calculating the projected superfluid
weight of multiorbital superconductors with orbital-
dependent pairing. Consider the 2D lattice Hamiltonian

Ĥ ¼
X
ij;αβ;σ

hσij;αβc
†
iασcjβσ −

X
i;αβ

Uαβc
†
iα↑c

†
iβ↓ciβ↓ciα↑; ð1Þ

where i, j denote the Bravais lattice site, σ ¼ ↑;↓ the spin,
and α, β orbitals or internal degrees of freedom other than
spin. The generic single-particle Hamiltonian hσij;αβ cap-
tures the hoppings between orbital ði; αÞ and ðj; βÞ, where
the spin-orbit coupling is ignored. The on-site pairing
interaction Uαβ is orbital-dependent and limited to singlet
pairing. We assume that the Fermi energy μ lies within the
mth band with spin-↑ Bloch function um;k and energy εm;k.
Furthermore, to justify band projection, we assume that the
interaction strength is of the order of bandwidth and much
smaller than the band gap, δεm;k ≲ jUαβj ≪ Egap.
The superfluid weight tensor encodes the stability to the

pairing fluctuation of kþ q;↑ and −kþ q;↓ electrons [46].
For stability, it must be positive definite (PD). We
perform the usual mean-field decoupling to arrive at the
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Bogoliubov–de Genne Hamiltonian ĤMFðΔ̂Þ − μN̂e, where
N̂e is the total electron number operator. The mean-field
order parameter Δ̂αβ ¼ −Uαβhciβ↓ciα↑i must be attained
self-consistently (see Supplemental Material [47]). The
projected grand potential for the mth band, ΩmðqÞ, can
be expressed as

ΩmðqÞ ¼ −
1

β
ln tr

n
e−βP̂mðqÞ½ĤMFðΔ̂qÞ−μqN̂e�P̂mðqÞ

o
; ð2Þ

where P̂mðqÞ is a q-dependent band-projection operator,
and μq, Δ̂q are self-consistency functions coming from
particle number constraint and the gap equation [2,48] (see
Supplemental Material [47]).
To calculate the mth-band projected superfluid weight,

Dm
s;μν, we assume that the translationally invariant BCS

state is an extremum of the free energy. This is guaranteed
when Δ̂ is Hermitian [49], giving e∂qμ jΔm;kðqÞj2jq¼0 ¼ 0,
where

Δm;kðqÞ ¼ hum;kþqjΔ̂qjum;k−qi ð3Þ

is the band-projected gap function and symbol e∂qμ means

the derivative does not act on μq or Δ̂q, with μ ¼ x, y.
Here, we focus on 2D systems at zero temperature;
the finite-temperature case will be discussed elsewhere.
The superfluid weight is computed from Dm

s;μν ¼
ð1=NÞe∂qμe∂qνΩmðqÞjq¼0, where ℏ and the unit cell area have
been set to 1, and N is the number of unit cells. At T ¼ 0, it
can be expressed as Dm

s;μν ¼ Dm;conv
s;μν þDm;geo

s;μν ,

Dm;conv
s;μν ¼ 1

N

X
k

�
1 −

ξm;k

Em;k

�
∂μ∂νξm;k; ð4Þ

Dm;geo
s;μν ¼ 1

N

X
k

Gm
μνðkÞ

2Em;k
; ð5Þ

where Gm
μνðkÞ≡ −e∂qμe∂qν jΔm;kðqÞj2jq¼0 is a gauge-invariant

quantity that depends on both the Bloch function um;k

and pairing matrix Δ̂, ξm;k ¼ εm;k − μ, and Em;k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2m;k þ jΔm;kð0Þj2

q
. The conventional superfluid weight,

Dm;conv
s;μν , is proportional to the band curvature and vanishes

in the flat band limit. The generalized geometric superfluid
weight,Dm;geo

s;μν , depends on the Bloch function um;k through
Gm

μν, which captures the band geometry.
When Δ̂ ¼ Δ0Î , we find Gm

μνðkÞ ¼ 8jΔ0j2gmμνðkÞ, where
gmμνðkÞ is the quantum metric of the mth band, defined
as the real part of quantum geometric tensor Rm

μνðkÞ ¼
h∂μum;kjð1 − jum;kihum;kjÞj∂νum;ki [50]. This quantum-
metric contribution was previously reported [2,4] and is

always PD. However, for a general pairing matrix Δ̂, tensor
Gm

μνðkÞ may be locally nonpositive definite (NPD).
It is important to note that while Gm

μνðkÞ is determined by
the local band geometry and pairing matrix Δ̂, Dm;geo

s;μν ,
which determines the stability criteria, depends on both
the band geometry and the quasiparticle spectrum Em;k.
This gives an intriguing admixture of band geometry and
energetics. We find that the NPD behavior of Gm

μνðkÞ, even
in part of the Brillouin zone (BZ), can make Dm

s;μν NPD,
resulting in the pairing instability.
Instability toward a PDW state.—To understand the

physics associated with Dm;geo
s;μν , we analyze Gm

μνðkÞ for a
two-band system. We assume the order parameter matrix
Δ̂ ¼ Δ0Î þ Δzσ̂z, where Δ0, Δz are real and σ̂z is the Pauli
matrix on orbitals. This is equivalent to setting Uαβ ¼
diagðU11; U22Þ in the self-consistency equations. For a
two-band Bloch Hamiltonian, h↑ðkÞ ¼ hðkÞ · σ with
hðkÞ ¼ ½hxðkÞ; hyðkÞ; hzðkÞ�,

GvðcÞ
μν ðkÞ ¼ 2Δ2

0∂μĥ · ∂νĥ ∓ 2Δ0Δz∂μ∂νĥz

− 2Δ2
zð∂μĥx∂νĥx þ ∂μĥy∂νĥy þ ĥz∂μ∂νĥzÞ; ð6Þ

where ĥ ¼ h=jhj and vðcÞ denotes the valance (conduction)
band. As noted above, the Δ2

0 term contains the quantum-
metric contribution, gμνðkÞ ¼ ð1=4Þ∂μĥ · ∂νĥ. This PD term
competes with the NPD contributions associated withΔ0Δz

andΔ2
z terms. It is easy to generalize Eq. (6) for a Hermitian

Δ̂ (see Supplemental Material [47]).
When the k-space integral of the NPD contributions in

Eq. (5) dominates, Dm;geo
s;μν becomes NPD (see Fig. 1) and

the BCS state no longer minimizes the free energy. Since

FIG. 1. (a),(b) Schematic representations of two mechanisms
leading to a NPD Dm;geo

s;μν . In (a), the Gm
μν NPD region dominates

over the PD region in the BZ, and in (b), the NPD Gm
μν region

encloses nodal points or circles. These singularities dominate
even when the NPD area is small. (c)–(e) NPD Dm;geo

s;μν driven by
nodal circles for a generic topological flat band with
(c) Δz=Δ0 ≲ 1, (d) Δz=Δ0 ¼ 1, (e) Δz=Δ0 ≳ 1. Only the neigh-
borhood of a nodal point is shown explicitly, while the rest of BZ
is shaded.
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the free energy is defined over a compact domain of q, it
must attain an energy minimum at some Q ≠ 0, resulting in
transitions to a PDW state. To estimate the transition point,
consider a general class of two-band Hamiltonians:
hzðkÞ → M, with M ≫ jhxj; jhyj. In a “quasiflat” band
limit, defined by condition j∂μ∂νðh2x þ h2yÞj ≪ j∂μhx∂νhxj;
j∂μhy∂νhyj, GμνðkÞ becomes

GμνðkÞ ≈
2ðΔ2

0 − Δ2
zÞ

M2
ð∂μhx∂νhx þ ∂μhy∂νhyÞ; ð7Þ

which is negative semidefinite for jΔz=Δ0j ≥ 1, giving a
NPD Dm;geo

s;μν . Therefore, jΔz=Δ0j ≥ 1 indicates the transi-
tion to PDW state. As shown in Fig. 1(a), when the
integrand of Eq. (5) is a regular function over the BZ,
this transition occurs when the NPD contributions (blue
regions) dominate the PD contributions (red regions).
PDW driven by nodal singularities.—A more interesting

scenario occurs in the presence of nodal zeroes (points or
arcs) in the quasiparticle spectrum Em;k. When these nodal
zeroes are contained in the nonvanishing NPD regions of
Gm

μν in the BZ, as shown in Fig. 1(b), Dm;geo
μν becomes

singular and NPD. Analysis of nodal singularities shows
that such a divergence requires Em;k ∝ kα with α ≥ 2 near
nodal points and α ≥ 1 near nodal arcs, where k is the
distance from k to the nodal point or arc. In this case, the
conventional superfluid weight, which is always regular,
can be ignored, indicating that the BCS-PDW transition
will occur as long as the NPD regions of Gm

μν enclose these
nodal zeroes.
The valence-band-projected order parameter for Δ̂ ¼

Δ0Î þ Δiσ̂i can be calculated from Eq. (3), giving
Δv;k ¼ Δ0 − ΔiĥiðkÞ, where i ¼ x, y, z. In a flat band,
when Δi ¼ Δ0, an isolated nodal point appears at k0 if
ĥiðk0Þ ¼ 1. If the band is also topological, the map of k ↦
ĥðkÞ wraps the entire Bloch sphere; hence a nodal point
singularity is always present at Δi ¼ �Δ0, for any
hybridization direction i. Near the nodal point k0,
Gv

xxðkÞ for the case i ¼ z can be expanded as

Gv
xxðkÞ≈−v2Δ2

0fv2ðp2
y −p2

xÞþ 2η½1þ v2ðp2
yþp2

xÞ�g ð8Þ

to the leading order in η, where p ¼ k − k0, η ¼ g − 1 with
g ¼ Δz=Δ0, and v > 0 is an expansion coefficient (see
Supplemental Material [47]). At g ¼ 1, the nodal point is
regular since Gv

μνðkÞ → 0 [Fig. 1(d)]. However, when
g≳ 1, the nodal point expands to a circle, which is
contained in the NPD Gv

μν regions [Fig. 1(e)]. This negative
singular contribution dominates in the k-space integral of
Eq. (5), resulting in a negative divergent Dv

s for g > 1.
Since this behavior is determined from topological con-
siderations, it applies to a generic topological two-band
model with a Hermitian pairing matrix Δ̂.

BCS-PDW transition in the BHZ model.—To explore the
BCS-PDW transitions in detail, we study the BCS insta-
bility in the flattened BHZ model, for a Δ̂ ¼ Δ0Î þ Δzσ̂z.
To keep the focus on the geometric term, we flatten the
model by taking h↑ðkÞ ¼ ϵ0ĥ · σ, where ĥ is the unit vector
proportional to ðsin kx; sin ky; m0 þ cos kx þ cos kyÞ. The
band gap 2ϵ0 is assumed to be larger than the interaction
energy Uαβ, and m0 is the scaled BHZ mass. Spin-orbit
coupling is ignored, so the two spin components are
decoupled and related by time-reversal symmetry. The
BHZ model has a rich phase diagram with four phases:
two topological phases jm0j < 2 with Chern number
C ¼ −sgnðm0Þ, and two trivial phases jm0j > 2. This
flattened Hamiltonian is invalid at the “gapless” phase
boundary m0 ¼ 0;�2, where the model undergoes a
topological phase transition. For our calculations, we
project to the valence band and take μ to be around −ϵ0.
In the flattened BHZ model, nodal zeroes occur when

the projected band gap vanishes. When Δz=Δ0 > 0, this
happens for m0 > −2 phases, where the BCS theory
predicts nodal superconductors; for m0 < −2, the super-
conductor is fully gapped. The three phases—m0 > 2,
0 < m0 < 2, and −2 < m0 < 0—have 4, 3, and 1 nodal
zeroes, respectively. To cure the divergence, we calculate
Dv

s;μν with a small broadening ξv;k ¼ ϵ or weak dispersion
ξv;k ¼ δξk in the quasiparticle energy (see Supplementary
Material [47]), hereafter, referred to as ϵ-broadened and
dispersion-broadened.
Figures 2(a) and 2(b) show the superfluid weight as a

function of g ¼ Δz=Δ0 in various BHZ phases for the
ϵ-broadened and dispersion-broadened cases, respectively.
Since σz pairing term preserves the C4 rotation symmetry,
Dv

s;xx ¼ Dv
s;yy ¼ Dv

s . At some critical point g ¼ gc, Dv
s

FIG. 2. Superfluid weight Dv
s vs Δz=Δ0ð>0Þ for Δ0Î þ Δzσ̂z

type pairing. Four distinct BHZ phases m0 ¼ �1;�3 are shown,
with their number of nodal circles indicated by the numerical
values. The horizontal lines indicate the topological lower bound
for the two topological and trivial phases. (a) With broadening

ϵ ¼ 0.01Δ0, Ev;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ jΔv;kð0Þj2

q
. (b) With weak dispersion

of bandwidth δξk ∼ 0.01Δ0, Ev;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δξ2k þ jΔv;kð0Þj2

q
. In this

case, the conventional superfluid weight [Eq. (4)] is also
included.
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becomes negative, indicating a transition to the PDW state.
The four values ofm0 ¼ �1;�3 represent the distinct BHZ
phases. The horizontal black lines indicate the lower bound
for Dv

s at Δz ¼ 0, where the quantum metric is lower-
bounded by the absolute value of Berry curvature [2]. For
this reason, the topological phasesm0 ¼ �1 have largerDv

s
than the trivial phases m0 ¼ �3 at small g values.
In Figs. 2(a) and 2(b), the superfluid weight for the

m0 ¼ 3;�1 phases is marked by a sharp downturn of Dv
s

near g ¼ 1. This behavior can be attributed to nodal circles
of quasiparticle energy Ev;k [Figs. 1(c)–1(e)]. We find
no qualitative differences between the curves of the
ϵ-broadened and dispersion-broadened cases. More nodal
circles results in a steeper slope of Dv

s at g > 1. In contrast,
the m0 ¼ −3 phase has no nodal zeros for g ≥ 1. Hence Dv

s
decreases steadily.
Figure 3 shows the BCS-PDW phase boundary deter-

mined from the instability condition Dv
s ¼ 0 as a function

of m0. Dv
s becomes negative at gc ≳ 1, for all m0 values,

especially gc → 1 as m0 → �∞. This asymptotic behavior
can be confirmed by an analysis similar to the previous
discussion of a “quasiflat” band. Figure 3 also shows the
dependence of the phase boundary on ϵ. ϵ-broadening
smears the nodal singularities of all three BHZ phases at
m0 > −2, requiring a larger g value for the PDW transition.
The m0 < −2 phase has no nodal zeroes, so the phase
boundary is unaffected. A careful examination of the free

energy as a function of CMM q shows that the Dv
s

instability curves coincide with the BCS-PDW phase
boundary only when the transition is second-order.
There are also two types of weak first-order transitions
located at m0 < −2 and m0 > 2.85, which are slightly
below the instability curve. These findings are summarized
in Figs. 3(b) and 3(c).
Pair density wave.—To understand the nature of the

BCS-PDW phase transition and the properties of the PDW
state, we calculate the free energy per unit cell, FvðqÞ=N
as a function of the CMM q. The free energy is
FvðqÞ ¼ ΩvðqÞ þ μqNe;v, with Ne;v the total electron
number in the valence band and ΩvðqÞ evaluated from
Eq. (2) at T ¼ 0 (see Supplemental Material [47] for
details). FvðqÞ has the periodicity of time-reversal-invariant
momentum (TRIM), which time-reversal symmetry
imposes. Therefore we only need to focus on the region
enclosed by Γ (0,0), X ðπ; 0Þ, M ðπ; πÞ, and X0 ð0; πÞ in q
space. As Dv

s turns negative, these four high symmetry
points are no longer local minima of FvðqÞ, and a new
minimum at Q corresponding to the CMM of PDW state
emerges in the BZ.
In general, the CMMQ is a function of model parameters

and depends on the transition type. In continuous models,
the transition type may depend on the higher-order deriv-
atives of free energy [41,51]; here in a lattice, it has to be
determined from the calculation of FvðqÞ in all of q space.
For our model, C4 symmetry gives that Q modulo TRIM
can be one of the four vectors Qi ¼ fð�Q; 0Þ; ð0;�QÞg,
giving a set of biaxial PDW orders fΔQ1

;ΔQ2
;ΔQ3

;ΔQ4
g.

In Fig. 4, we show three prototypes of BCS-PDW tran-
sitions, at parameter m0 ¼ 2.5, 3, and −3, respectively
(c.f. Fig. 3). The PDW phase corresponds to U11U22 < 0,
and the BCS-PDW transition coincides with one channel
turning repulsive. The full phase diagram in the ðU11; U22Þ
parameter space is provided in the Supplemental
Material [47].

FIG. 3. Phase diagram of the flattened BHZ model with Δ0Î þ
Δzσ̂z pairing. (a)Dv

s instability curves for broadening ϵ ¼ 0, 0.01,
and 0.1 are shown in red, green, and blue, respectively; they
coincide in the m0 < −2 phase so are shown in brown. The ϵ ¼ 0
data for m0 > −2 phases come from nodal singularity analysis.
For second-order transitions, these curves are identical to the
BCS-PDW phase boundary. The BCS region 0 < Δz=Δ0 < 0.9 is
snipped. (b),(c) Magnified plots showing the first-order phase
transition details with the same axis labels as (a). ϵ ¼ 0.01 is
similar to ϵ ¼ 0.1, so only ϵ ¼ 0.1 data is shown. (b) Two types
of first-order transitions, at −∞ < m0 < −2, are separated at
m0 ∼ −3.1. (c) The first type of first-order transition at
2.85 < m0 < þ∞.

FIG. 4. FvðqÞ=N (in units of Δ0) along ΓX in q space, for three
types of BCS-PDW transitions. (a) The second-order transition at
ϵ ¼ 0.1, m0 ¼ 2.5, Q ≠ π=2; (b) first-order transition (first type)
at ϵ ¼ 0.1, m0 ¼ 3, Q ¼ π=2; (c) first-order transition (second
type) at ϵ ¼ 0.1, m0 ¼ −3, Q ≠ π=2.
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Second-order transitions [Fig. 4(a)] are found in the
middle region −2 < m0 < 2.85 of the phase diagram, with
a maximum of free energy appearing at (π=2, 0). The
transition occurs precisely when Dv

s becomes negative,
creating two minima ðQ; 0Þ; ðπ −Q; 0Þ on ΓX, resulting in
an incommensurate PDW. Notice ðπ −Q; 0Þ is equivalent
to ð−Q; 0Þ by shifting a TRIM. AsΔz=Δ0 becomes large,Q
tends to π=2, and the two minima merge into one, possibly
converging to a commensurate PDW.
As shown in Figs. 3(b) and 3(c), the BCS-PDW

transitions for the flattened BHZ model can also be first
order. There are two types of first-order transitions, depend-
ing on the presence of minima or maxima at ðπ=2; 0Þ. If it is
a minimum [Fig. 4(b)], then Q ¼ π=2 is a constant and
competes with the q ¼ 0 BCS state. This first type of first-
order transitions is found in the phase diagram’s atomic
regions m0 < −3.1 or > 2.85, and results in a commensu-
rate PDW. Otherwise, if it is a maximum [Fig. 4(c)], then
there are two minima ðQ; 0Þ; ðπ −Q; 0Þ competing with the
q ¼ 0 state, resulting in an incommensurate PDW. This
second type can be viewed as a hybrid of the previous two
types of transitions and is located in the intermediate region
−3.1 < m0 < −2. As Δz=Δ0 becomes large, Q → π=2 is
also observed.
Discussion.—The geometric instabilities discussed here

are relevant to various weakly dispersive or flat band
multiorbital superconductors—for example, alternating
twisted-graphene-based superconductors—that exhibit
superconducting diode effect [52,53]. In these twisted 2D
crystals, spin fluctuations of the interaction-induced Chern
bands result in orbital-dependent pairing interactions [54]
with a simultaneous attraction and repulsion channel, along
with a significant geometric superfluid weight [12–14].
Additionally, twisted transition metal dichalcogenides
exhibit topological flat bands on bipartite honeycomb
and Kagome Hubbard models [55], where antiferromag-
netic spin fluctuations can result in orbital-dependent
pairing. On the other hand, the nodal geometric BCS-
PDW transition mechanism should apply to dispersive
bands. In fact, PDWs have been observed in Kagome [56]
and Lieb lattice superconductors [57–59], where the band-
width is comparable to interactions. The possibility of band
geometric instabilities in these multiorbital superconductors
is left to future studies.
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