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Recently, the discovery of optical spatiotemporal (ST) vortex beams with transverse orbital angular
momentum (OAM) has attracted increasing attention and is expected to extend the research scope and open
new opportunities for practical applications of OAM states. The ST vortex beams are also applicable to
other physical fields that involve wave phenomena, and here we develop the ST vortex concept in the field
of acoustics and report the generation of Bessel-type ST acoustic vortex beams. The ST vortex beams are
fully characterized using the scalar approach for the pressure field and the vector approach for the velocity
field. We further investigate the transverse spreading effect and construct ST vortex beams with an ellipse-
shaped spectrum to reduce the spreading effect. We also experimentally demonstrated the orthogonality
relations between ST vortex beams with different charges. Our study successfully demonstrates the
versatility of the acoustic system for exploring and discovering spatiotemporally structured waves,
inspiring further investigation of exotic wave physics.
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Introduction.—Exploiting the spin and orbital angular
momentum (AM) opens up new dimensions for manipulat-
ing waves [1–8] and their interaction with matters [9]. It has
enabled unique applications in areas such as communica-
tions, metrology, tweezers, and nanophotonics. Generally,
the spin and orbital AM carried by waves are longitudinal
and along thewave propagation direction. However, in some
exceptional cases that involve strong focusing or structured
fields, the AM can be transverse [10]. The electromagnetic
fields in spatially confined evanescent fields can carry a
transverse spin angular momentum (SAM) [11,12]. Very
recently, a new exotic class of spatiotemporal (ST) vortex
beams has been discovered in optics [13–27], which carries
an intrinsic orbital angular momentum (OAM) transverse to
the beam propagation direction.
The vortex beams are widely studied in various fields,

resulting in many important applications [8]. The conven-
tional vortex beams carrying longitudinal OAM have a
three-dimensional helical wavefront arising from the spiral
phase profile in the spatial domain. The helical wavefront
can produce a measurable torque on the object. The vortex
beams are characterized by the integer topological charge,
which indicates the number of wavefront twists in one
wavelength along the propagation direction. The vortex
beams with different topological charges provide theoreti-
cally infinite orthogonal channels, enabling high-capacity
information transmission. This unique wave field was
recently discovered in the spatial-temporal domain and

categorized as ST vortex beams. Unlike the conventional
vortex beams, the ST vortex beams can exist in the
two-dimensional (2D) space (x − z plane, or the x − t
plane considering z direction wave propagation), as shown
in Fig. 1(a). The vortex structure carries an OAM
perpendicular to the propagation direction, i.e., y direction
in the figure, resulting from the spiral phase profile in the
spatial-temporal domain. The ST vortex beams with trans-
verse OAM were recently generated experimentally in
optics, and the diffraction properties and second-harmonic
generation process have also been studied [15–27]. The
transverse OAM could provide additional degrees of free-
dom and extend the research and application scopes of
OAM states.
Acoustics is an utterly important and popular platform

for researching cutting-edge wave physics and its imme-
diate applications. For instance, acoustic vortex beams can
be readily generated by active phased arrays or passive
acoustic metasurfaces [28–34]. They can find applications
in particle manipulation [35,36], asymmetric propagation
[37], and high-speed acoustic communication [38].
The instantaneous spatial and temporal acoustic field
profiles can be directly characterized via acoustic sensors.
However, the OAM carried by conventional acoustic vortex
beams are restricted to be longitudinal, and the acoustic
vortex beams are also monochromatic in most cases. Here,
we develop the ST vortex concept in the field of acoustics
and report a comprehensive investigation of Bessel-type ST
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acoustic vortex beams. The polychromatic ST acoustic
vortex beams are fully characterized with a complete
description of acoustic waves involving the four-
component vector ðp; vÞ, conveying the importance of
the vectorial velocity nature of acoustic waves [39–43].
The transverse spreading effect of the ST vortex beams is
further investigated, and the construction of ST vortex
beams with an ellipse shape is then proposed to reduce the
spreading effect. In addition, the orthogonality relations
between ST vortex beams with different charges are
demonstrated. The realization of the acoustic ST vortex
beams will open new opportunities for practical applica-
tions of acoustic OAM. Our work also paves the promising
way for further studies, such as generating arbitrarily
oriented acoustic OAM states [44] and fractional OAM
states [45]. ST vortex beams also represent a compelling
example of space-time wave packets, which have yet to be
extensively explored in the realm of acoustics due to the
predominantly monochromatic nature of acoustic waves.
Bessel-type spatiotemporal acoustic vortex beams.—We

consider acoustic waves in a 2D acoustic waveguide, and
the acoustic pressure field p is governed by the equation

∇2p − 1

c2
∂
2p
∂t2

¼ 0; ð1Þ

where c is the speed of the acoustic wave. The acoustic
plane wave mode is described as p ¼ p0eiðkr−ωtÞ, and the

wave vector jkj ¼ ω=c. The Bessel-type ST vortex beams
are polychromatic waves constructed by a superposition of
plane waves with wave vectors distributed on a circle in the
angular spatial frequency domain [Fig. 1(b)] and a spiral
phase eilθ for that circle of wave vectors. The resulting real-
space acoustic pressure wave function can then be
expressed as the sum of these plane waves [18]:

pðx; z; tÞ ∝
Z

2π

0

ei½k0zþΔk cos θzþΔk sin θxþlθ−ωðθÞt�dθ; ð2Þ

where Δk is the circle radius, θ is the azimuthal angle, l is
the topological charge, ðk0; 0Þ is the location of the circle
center in the angular spatial frequency space, and
ωðθÞ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ Δk2 þ 2k0Δk cos θ

p
. For Δk ≪ k0, the

ST vortex beams can be considered near-paraxial and
ωðθÞ ≃ cðk0 þ Δk cos θÞ: Under this approximation,
Eq. (1) can be simplified as follows:

pðx; z; tÞ ∝ JlðΔkrÞeiðk0ζþlφÞ; ð3Þ

where Jl is the l th order of the Bessel function of the first
kind, ζ ¼ z − ct ¼ r cosφ, ðr;φÞ is the polar coordinate in
the ðζ; xÞ plane. The term eilφ corresponds to the spiral
phase structure in the spatial-temporal domain with topo-
logical charge number l. The distributions of jpj and the
corresponding phase angle ArgðpÞ with l ¼ 1 are shown in
Figs. 1(c) and 1(d), respectively. There is a singularity of
zero intensity at the center, and the phase distribution shows
an edge dislocation, which is produced by the spiral phase
structure. The edge phase dislocation has also been
observed in water waves, which is an analog of
Aharonov-Bohm effect [46,47]. The surface water waves
are scattered by an irrotational vortex, and a geometric
phase shift is picked up in the scattering process, which
leads to the nontrivial phase structure.
The schematic of our experimental setup is shown in

Fig. 2(a). The experiment is conducted in a 2D acoustic
waveguide with a height of 2 cm (see details in
Supplemental Material [48]). Sound-absorbing foams are
placed at the boundaries of the waveguide to avoid
reflections. We choose 10 modes with their spatial frequen-
cies distributed equally on the circle in Fig. 1(b), with k0 ¼
119 ðrad=mÞ and Δk ¼ 0.15k0, and the corresponding
acoustic frequency range is 5525–7475 Hz. According to
Eq. (2), Δk determines the size of the ST vortex; in this
case, it is ∼50 cm in the spatial domain and ∼2 ms in the
time domain. These 10 modes with equal intensities but
different frequencies, phases, and propagation directions
are generated by an acoustic phased array controlled by a
multichannel sound card. The acoustic phased array con-
sists of 20 speakers with a spacing of 3.3 cm. The ST
acoustic vortex beams can be characterized either in the
x − z plane by a time snapshot or the x − t spatial-temporal
domain at a fixed z position. Here, we employ the later

FIG. 1. (a) Schematic of a representative ST vortex beam. The
ST vortex beam can exist in the 2D plane and carry a transverse
OAM. (b) The plane-wave angular spatial frequency spectrum for
the Bessel-type ST vortex beam. A spiral phase is applied over
the circle. The Bessel-type ST vortex beam is constructed by a
superposition of the plane waves with their corresponding
angular spatial frequency and initial phase on the circle. (c),
(d) Theoretically calculated amplitude (c) and phase (d) distribu-
tion of the ST vortex beam with l ¼ 1.
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characterization method by recording a time sequence of
acoustic signals at each point along a scan line (here,
z ¼ 0), as shown in Fig. 2(a). A separate pulse signal from
the sound card synchronously triggers each recording. The
inset shows the recorded acoustic signals at one point.
Figure 2(b) presents the theoretically calculated [via

Eq. (1)] and experimentally measured acoustic ST vortex
beam with two topological charges, l ¼ 1 and l ¼ 2,
respectively. The time t ¼ 0 corresponds to the moment
when the center location of the vortex beam reaches z ¼ 0.
The measured normalized pressure fields, pðx; z ¼ 0; tÞ,
agree remarkably well with the theoretical results. In both
cases, there is clear evidence of the signature edge phase
dislocation, which is tied to the topological charge of the
vortex beam. The vortex beams with charge l have an
azimuthal phase dependence eilφ in the spatial-temporal
domain. The transverse OAM carried by the vortex is
determined by the azimuthal phase gradient of the field, and
is linearly proportional to the topological charge l. It has
been reported that the transverse OAM also depends on the
eccentricity of the intensity distribution and dispersion of
the medium [18,19]. This study demonstrates that different
ST vortex beams can be readily generated in acoustics,
allowing for rapid deployment of a study platform for the
rich physics of these exotic beams.
Vector velocity field.—Prior studies on acoustic OAM

mainly focus on the pressure field p, which is a scalar
representation. However, acoustic waves can have a full
vectorial representation, characterized by the vector veloc-
ity field v that is related to the pressure field as iωρv ¼ ∇p
for monochromatic waves. This vectorial field leads to
much more abundant physics of the acoustic waves beyond

their scalar representation. The canonical momentum
density p, determining the OAM of acoustic fields, is
given by p ¼ ð1=4ωÞIm½βp�∇pþ ρv� · ð∇Þv� [40], where
β is the compressibility of the medium and ρ is the mass
density. This relationship suggests that the velocity field is a
fundamental physic parameter contributing to the OAM of
acoustic fields.
The distribution of the vector velocity field of the ST

vortex beam could be different from the scalar pressure
field. As shown in Fig. 3(a), the green arrows denote the
direction of the velocity vector of each plane wave
component, which is parallel to the plane wave’s wave
vector. ForΔk ≪ k0, the z component of the velocity vector
vz ≃ jvj, and the x component vx ≃ jvjðΔk sin θ=k0Þ.
The velocity field of the ST vortex beam can be expressed
as [18]

vz ∝ JlðΔkrÞeiðk0ζþlφÞ

vx ∝
iΔk
2k0

eik0ζ½eiðl−1ÞφJl−1ðΔkrÞ þ eiðlþ1ÞφJlþ1ðΔkrÞ�: ð4Þ

In our experiment, the velocity field is directly measured
via a 2D acoustic vector sensor, and the two components
vx and vz are acquired simultaneously (see details in
Supplemental Material [48]). As an illustration, we set k0 ¼
59.5 ðrad=mÞ and Δk ¼ 0.25k0, corresponding to a fre-
quency range of 2437–4062 Hz. The theoretical and
experimental results of the velocity field are shown in
Figs. 3(b), 3(c). The result of the vz component is similar to
the pressure field discussed above. The vx component is
described by Bessel functions of the first kind of orders

FIG. 2. (a) Schematic of our experimental setup. The ST vortex beam is generated by an acoustic phased array and measured along a
scan line. A separate pulse signal from the sound card synchronously triggers each recording. The inset shows a time sequence of
acoustic signals acquired at one point. Theoretically calculated and experimentally measured pressure fields are shown in (b) for the
l ¼ 1 vortex and the l ¼ 2 vortex, respectively, which show clear evidence of the signature edge phase dislocation.
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l� 1, and multiple dislocations exist in the field distribu-
tion. When l ¼ 1, the velocity field exhibits a nonzero field
intensity at the center, which is the signature of the spin-
orbit interaction effect [18]. The vortex beam is constructed
by a superposition of plane waves, and the interference of
plane waves with different propagation directions can
generate a nonzero transverse acoustic SAM density.
The acoustic SAM is associated with the elliptically
polarized profile of acoustic velocity fields, while the
acoustic OAM depends on the azimuthal phase gradient
of fields. The spin-orbit interaction occurs between the
transverse OAM and SAM of the ST vortex beam [18,40].
Transverse spreading effect.—The propagation of acous-

tic ST vortex beams can lead to shape distortions, owning
to the transverse spatial spreading effect along the x
direction. This is a fundamental attribute of spatiotemporal
vortex beams [19]. In order to mitigate the shape dis-
tortions, we demonstrate that compressing the circular
spectrum along the kx axis helps to suppress the transverse
spreading effect. For example, as shown in Fig. 4(a), the
above circular spectrum transforms into an elliptical spec-
trum with the ratio of semiaxes g ¼ 2. The corresponding
vortex beam in real space is stretched along the x direction
[Fig. 4(b)]. The manipulation of the spectrum increases the

acoustic equivalent Rayleigh range and reduces the spread-
ing of the acoustic structure along the x direction.
Using a similar experimental technique described in the

previous section, we generate the ST vortex beam with the
compressed spectrum and measure its pressure field along
the z ¼ 0 scan line. Meanwhile, Eq. (1) is modified to study
the transverse spreading effect by replacing z with
zþ 5ctR, with ctR ¼ k0=Δk2, where tR is the correspond-
ing characteristic timescale. As a result, in Eq. (2), ζ is
replaced with ζ ¼ zþ 5ctR − ct, and the time t ¼ 5tR
corresponds to the moment when the center of the ST
vortex beam reaches z ¼ 0. Figure 4(c) present the theo-
retical and experimental results of the transverse spreading
effect for the ST vortex beam with l ¼ 1, which show that
the vortex beam splits into offset lobes at t ¼ 5tR. In
comparison, the shape of the stretched vortex beam remains
almost undistorted at t ¼ 5tR [Fig. 4(d)], which demon-
strates that the transverse spreading effect is greatly
suppressed.
Orthogonality relations between ST vortex beams.—A

critical application of OAM modes is high-capacity com-
munication that exploits mode multiplexing enabled by the
orthogonality between OAM modes. The conventional
OAM multiplexing technique is based on the orthogonality

FIG. 3. (a) The plane-wave spectrum for the Bessel-type ST vortex beams. The green arrows denote the direction of the velocity
vector, which is parallel to the wave vector of the plane wave component. Theoretically calculated and experimentally measured velocity
fields are shown in (b) for the l ¼ 1 vortex and (c) for the l ¼ 2 vortex.

PHYSICAL REVIEW LETTERS 131, 014001 (2023)

014001-4



FIG. 4. (a) The plane-wave spectrum for the deformed ST vortex beam. The circular spectrum is compressed along the kx axis. (b) The
ST vortex beam is stretched along the x axis in real space. (c) Theoretically calculated and experimentally measured results of the
transverse spreading effect for the original vortex beam. The vortex beam splits into two parts at t ¼ 5tR. (d) Theoretically calculated and
experimentally measured results for the deformed vortex beam. The vortex remains almost undistorted at t ¼ 5tR.

FIG. 5. (a) The real and imaginary parts of the pressure field with l ¼ 1 and l ¼ −1. The imaginary part is obtained by applying a
Hilbert transform to the measured real part. (b) Orthogonality relations between the ST vortex beams with charges−2 toþ2 are obtained
by the inner product of the two corresponding complex pressure fields in the spatial-temporal domain.
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in the spatial degree of freedom. Here, we demonstrate that
the orthogonality relation still holds for the ST vortex with
a spatial-temporal degree of freedom. The orthogonality
relation is obtained by the inner product of the two
corresponding pressure fields in the spatial-temporal
domain:

Ijl ¼
R
p�
jpldxdtR

p�
l pldxdt

; ð5Þ

where plðx; tÞ is the complex pressure field of the ST
vortex with charge l. In our experiment, only the real part of
the pressure field is directly measured, and the correspond-
ing imaginary part is obtained via a Hilbert transform (see
details in Supplemental Material [48]). As an illustration,
the complex pressure fields for charge l ¼ 1 and l ¼ −1 are
shown in Fig. 5(a). The measured orthogonality relation
between the ST vortex beams with charges from −2 to þ2
is shown in Fig. 5(b), where only the diagonal element is
significant. This finding confirms the low cross-talk nature
between different modes.
Conclusion.—In summary, we report the generation of

ST acoustic vortex beams, which contain an edge phase
dislocation and carry an intrinsic transverse OAM. The
vortex beams are characterized in the spatiotemporal
domain using the scalar pressure field and the vector
velocity field. We also observe the transverse spreading
effect and construct ST vortex beams with an ellipse-
shaped spectrum to reduce the spreading. The transverse
OAM provides extra degrees of freedom for manipulating
acoustic waves, which could find applications in acoustic
communication and tweezers. The insertion of multiple ST
vortex pulses with different charges into a single pulse
represents a promising strategy for improving data trans-
mission rates. Leveraging the OAMmultiplexing technique
in underwater acoustic communication [38] is particularly
advantageous given the limitations of optical communica-
tion resulting from strong scattering and absorption. The
construction of ST vortex beams in 2D space enables their
use in planar 2D systems, as well as facilitating in-plane
and instantaneous acoustic manipulation of small objects.
This work also prompts an excellent platform for further in-
depth studies and exploring the intriguing wave physics,
such as spin-orbit coupling effects [5] and dynamic proper-
ties [49,51,52] of ST vortex beams. This kind of spatio-
temporally structured waves have yet to be studied in
acoustics due to the monochromatic nature of acoustic
waves in most cases. Our work would inspire the further
investigation of other spatiotemporally structured acoustic
waves, such as flying-focus wave packets and toroidal
pulses, or even the discoveries of whole new classes of
exotic waves [53–55].
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