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Cutting a honeycomb lattice (HCL) ends up with three types of edges (zigzag, bearded, and armchair), as
is well known in the study of graphene edge states. Here, we propose and demonstrate a distinctive twig-
shaped edge, thereby observing new edge states using a photonic platform. Our main findings are (i) the
twig edge is a generic type of HCL edge complementary to the armchair edge, formed by choosing the right
primitive cell rather than simple lattice cutting or Klein edge modification; (ii) the twig edge states form a
complete flat band across the Brillouin zone with zero-energy degeneracy, characterized by nontrivial
topological winding of the lattice Hamiltonian; (iii) the twig edge states can be elongated or compactly
localized at the boundary, manifesting both flat band and topological features. Although realized here in a
photonic graphene, such twig edge states should exist in other synthetic HCL structures. Moreover, our
results may broaden the understanding of graphene edge states, as well as new avenues for realization of
robust edge localization and nontrivial topological phases based on Dirac-like materials.
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Graphene, a carbon-based monolayer material, has
attracted immense attention due to its fundamental interest
and highly exploited applications [1]. Edge-dependent
electronic states, for example, have been extensively
studied, from the physical properties of graphene nano-
ribbons [1–4] to possible development of graphene-based
spintronic devices [5,6]. Apart from two-dimensional
electronic materials, various synthetic honeycomb lattices
(HCLs) have been employed as artificial graphene for
electrons, atoms, and photons [7], which emulate the
behavior of electrons in graphene but avoid the limitation
and structure instability of real materials. In particular,
photonic graphene, an HCL of evanescently coupled wave-
guide arrays [8], has been proposed and demonstrated
as an ideal platform for investigation of graphene edge
states [9,10], implemented in various systems, including
coupled polariton micropillars [11,12], microwave reso-
nators [13,14] and evanescently coupled waveguide [8].
Perhaps, the most exemplary success lies in the exploration
and demonstration of topological physics [15–19], from
photonic Floquet topological insulators [15] and valley Hall
topological insulators [20,21], to topological surface-
emitting lasers [22–24].
Thus far, three types of edges in graphene have been

studied: the zigzag, bearded, and armchair edges [4]. The
defect-free armchair edge has no edge state, whereas zigzag
and bearded edges have a complementary set of nearly
degenerate edge states in the one-dimensional Brillouin
zone (1D BZ) [1,4]. Such electronic edge states have
been observed at the zigzag edge or structured armchair

edges [25–29]. Although the bearded (Klein) edge states
have never been observed in real graphene owing to the
mechanical instability of the dangling carbon bond, they
were realized in the optical analog of graphene—the
photonic graphene [10]. Theoretical analyses have shown
that these edge states are topologically characterized by the
winding properties of the bulk Hamiltonian [30,31]. In
addition, other edge geometries including decorated arm-
chair edges with Klein nodes have also been proposed by
edge modification [32,33]. While the topological properties
and relations of the three known edges are still an active
subject, a natural question arises: is there a fourth type of
edge distinct from the three known edges? If there is, what
is its unique feature?
In this work, in contradistinction to the widely inves-

tigated edges in graphene, we propose and demonstrate a
new type of edge, which we shall name “twig edge” due to
its shape. We unveil that it is a generic type of edge in HCLs
by considering the primitive-cell generator rather than a
simple lattice truncation or cutting the bulk along a chosen
direction. Our analysis suggests that the twig edge together
with three other edge conditions represents the fundamental
and complete basis of HCLs, and other decorated or
modified edges can be viewed as their combinations.
We show that the twig edge enables a set of zero-energy
edge states which form a 1D dispersionless flat band
complementary to the armchair edge, characterized by
the nontrivial winding of the (gauge-dependent) Bloch
Hamiltonian. Experimentally, we establish a photonic
graphene with the twig edge using a laser-writing technique
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and realize, to the best of our knowledge, the first
observation of both elongated and highly compact edge
states at the twig edge without employing any defect or
nonlinearity.
We first discuss the formation of different edges of

graphene [Fig. 1(a)] along with their edge state properties.
One kind of unit cell for the HCL structure is sketched in
the lower left corner of Fig. 1(b) (red rhombus) with two
assigned basic vectors ða1; a2Þ. For an infinite lattice (or
under a periodic boundary condition), the bulk Bloch
Hamiltonian from this chosen unit cell is

H BAðkÞ ¼
�

0 ΔBAðkÞ
Δ�

BAðkÞ 0

�
;

ΔBAðkÞ ¼ t1 þ t2eika2 þ t3eika1 ; ð1Þ

where t1 is the intracell coupling and t2, t3 are the intercell
couplings [Fig. 1(b)], the subscript BA indicates bearded
edge and armchair edge. By translating the unit cell, the
HCL with these two edges can be obtained [see the left
and bottom edges in Fig. 1(b)]. The band structure along
the kx (ky) direction is calculated by properly choosing the
vertical (horizontal) supercell marked by a shaded rectangle
in Fig. 1(a). As has been shown before [4], the bearded
edge supports edge states residing between two Dirac
points in the 1D BZ, whereas the armchair edge has none.
On the other hand, one can also have a different choice
of unit cell [yellow rhombus in upper right corner of

Fig. 1(b)], where the basic vectors are changed to ða3; a4Þ.
Translating this unit cell leads to the formation of HCL
with zigzag and twig edges [see the right and top edges in
Fig. 1(b)]. Similar to Eq. (1), the associated bulk Bloch
Hamiltonian H ZTðkÞ for the zigzag and twig edges
becomes

H ZTðkÞ ¼
�

0 ΔZTðkÞ
Δ�

ZTðkÞ 0

�
;

ΔZTðkÞ ¼ t1eika3 þ t2 þ t3eika4 ; ð2Þ

where t2 (t1, t3) become the intracell (intercell) couplings
[Fig. 1(b)]. Note that each unit cell and the corresponding
Bloch Hamiltonian describe two distinct edge conditions
along x and y directions.
In thiswork,we focus our analysis on the twig edge and its

relations with others. The properties of twig edge
are described by H ZT along the x direction (top-right
part in Fig. 1). The zigzag edge states are denoted by the
red lines in momentum space [Fig. 2(a1)], with a spectrum
region complementary to that of the bearded edge
states [4,10]. For the twig edge, as shown in Fig. 2(a2), it
supports a unique topological flat band constructed by the
edge states across the entire 1DBZ. The energy of twig edge
states is only distributed at the B sublattices on the top
boundary and exponentially decays into the bulk [Fig. 2(c)].
Such zero-energy edge states in graphene are attributed to
the bulk topological properties and can be analytically
derived from the “bulk-boundary correspondence” [31,34].
For the HCLwith chiral symmetry, the topological invariant
can be described by the winding number [30]

w ¼ 1

2π

I
d
dk

arg½ΔðkÞ�dk ; ð3Þ

where k can be kx or ky component depending on the edge
direction, and ΔðkÞ is the off-diagonal term of bulk
Hamiltonian. Considering the zigzag and twig edges, the
bulkHamiltonian can be rewritten asH ZTðkÞ ¼ hZTðkÞ · σ,
where hZTðkÞ ¼ fRe½ΔZTðkÞ�; Im½ΔZTðkÞ�g, and the Pauli
matrix σ ¼ ðσx; σyÞ. To calculate thewinding number for the
zigzag edge, the Bloch vector ky is fixed and the orientation
of hZTðkÞ varies along kx, as illustrated by the blue arrows in
Fig. 2(b). If hZTðkÞ rotates to make a whole loop within a
period of kx,w is nonzerowhich leads to the presence of edge
states at the given ky. The shaded regions in Fig. 2(b)
demonstrate the values of ky for which nontrivial winding
leads to the zigzag edge states, consistent with the results in
Fig. 2(a1). To directly illustrate their winding path, hZTðkÞ
with different ky is plotted in the ðσx; σyÞ plane in Fig. 2(d).
The origin point O marked by a red dot in Figs. 2(d2)
and 2(e1) is the gap closing and phase transition point [35].
WhenO is encircled by thewinding loop [Fig. 2(d3)], it falls
in the shaded region in Fig. 2(b) where the edge states exist

FIG. 1. Illustration of HCLs with four different edge conditions.
(a) Schematic of an HCL with four distinct types of edges. Two
shaded rectangles illustrate supercells for bearded or zigzag
(horizontal) and twig or armchair (vertical) edges. A probe beam
aiming at single site of the twig (zigzag) edge will be compact
(elongated) along the edge, indicated by bright yellow dots in (b).
(b) HCL structure with two sublattices (A, B) in ðx; yÞ plane. The
white dashed line is merely used to separate the two parts in the
HCL that are described by different unit cells and Bloch
Hamiltonian. The unit cell enclosed by a red (yellow) rhombus
is for bearded or armchair (zigzag or twig) edges. a1; a2 and a3; a4
are the corresponding basis vectors when different unit cells are
selected. a1 ¼

ffiffiffi
3

p
a=2x̂þ a=2ŷ, a2 ¼

ffiffiffi
3

p
a=2x̂ − a=2ŷ and

a3 ¼
ffiffiffi
3

p
a=2x̂ − a=2ŷ, a4 ¼ −aŷ, a is the lattice constant.

Double headed arrows for t1, t2, t3 mark the three nearest
couplings from any chosen B site.
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with a nonzero winding number. The other two loops in
Figs. 2(d1) and 2(d2) correspond to the trivial and transi-
tional cases at ky ¼ 0 and ky ¼ 2π=3a. On the other hand,
when hZTðkÞ is employed to analyze the topological proper-
ties for the twig edge, ky varies constantly for any kx, and an
example at kx ¼ π=

ffiffiffi
3

p
a is shown by the vertical line in

Fig. 2(b). The winding loops always encircle O in the
ðσx; σyÞ plane, except at the gap closing point at kx ¼ 0

[Fig. 2(e)]. As such, the twig edge states exist and are
characterized by nontrivial winding throughout the whole
1DBZ, forming a topological flat band. Such a complete flat
band found at the twig edge differs from the “assembled” flat
band consisting of edge states supported by different
(zigzag-bearded) HCL edges [4]. Moreover, in contrast to
the unconventional edge states found at the bearded edge in
photonic graphene [10], we did not find any additional edge
state at the twig edge even with a continuous model.
We emphasize our approach for understanding the

relation between bulk topological properties and edge
conditions in graphene: to unveil the topological nature
of edge states, the edges should be considered from “piling
up” the unit cells instead of specific truncations of the HCL.
Thus, the boundary sites must be contained within a
complete unit cell. For instance, by comparing H BA and
H ZT , one can see ΔZTðkÞ ¼ expðika3ÞΔBAðkÞ due to the
different orientations of basic vectors. When only the bulk
property of the system is considered, the gauge term in
different bulk Hamiltonians has no physical effect.
However, once the edges are considered, one unique bulk
Hamiltonian is selected, and the topological features along
kx and ky are affected by the gauge term [Eq. (3)], which in
turn determines the existence of edge states. Such gauge
dependence of edge states does not conflict with the gauge

invariant of the Berry phase derived from a given bulk
Hamiltonian; rather, it reflects that the gauge-field effect can
be “physical,” as manifested from the nontrivial topological
states at different edges. The interplays between the edge
conditions and the winding properties of bulk Hamiltonian
reveal the distinctive feature of zero-energy edge states.
Next, we present experimental realization of twig edge

states using photonic graphene, along with numerical
simulations. The photonic HCL with the desired edge
structure is established by the cw-laser writing technique
in a nonlinear crystal (SBN) [37]. Such an HCL with two
twig (top and bottom) and zigzag (left and right) edges is
shown in Fig. 3(a), with a lattice spacing of 32 μm. To
excite the twig edge states, a probe beam with specific
amplitude and phase distribution matching that of the
theoretically calculated edge mode [Fig. 2(c)] is launched
into the HCL at the top edge [35]. To show that the twig
edge states exist in a large momentum region, the
probe beam with two different transverse momenta is
selected, matching the blue-point (green-point) excitation
at kx ¼ π=

ffiffiffi
3

p
a (kx ¼ π=2

ffiffiffi
3

p
a) in Fig. 2(a2). Notably, the

zigzag or the bearded edge cannot support edge states
simultaneously at these two relative spectral positions in the
1D BZ. At the twig edge, however, the probe beam remains
localized at the edge and populates only the B sublattices
after 20 mm of propagation through the lattice [Figs. 3(b1)
and 3(b2)], forming the edge states in agreement with
calculated results [Figs. 2(c1) and 2(c2)]. The leakage of
energy to the A sites at the two ends (outside of the dashed
square) is mainly due to the finite-size effects along the x
direction. For comparison, the mixed bulk modes are
excited at k ¼ 0 when the probe is sent to the edge [35].
The output of the probe beam with mixed bulk modes

FIG. 2. Theoretical analysis of the topological property of zigzag or twig edge states in HCLs. (a) 1D band structures for HCL with
(a1) zigzag and (a2) twig edges, where the red lines represent the regions of edge states. (b) Vector fields of hZTðkÞ. Red and blue dots
represent two inequivalent Dirac points K and K0 at corners of the first BZ. The values of ky at the shaded regions indicate the zigzag
edge with nontrivial winding, where blue arrows indicate the direction of the vector field along ky ¼ π=a. Twig edge states exist for any

kx, and orange arrows are for that of the twig edge at kx ¼ π=
ffiffiffi
3

p
a. (c) Normalized intensity distributions of twig edge states at (c1)

kx ¼ π=
ffiffiffi
3

p
a and (c2) kx ¼ π=2

ffiffiffi
3

p
a denoted by blue and green dots in (a2), respectively. (d) Winding loops for the zigzag edge in the

ðσx; σyÞ plane at different ky. The red dot marks the origin point O. (e) has the same layout as (d) but for the twig edge at different kx.
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cannot be localized on the edge and couples into
the A sublattice [Fig. 3(b3)], which contrasts with that in
Figs. 3(b1)–3(b2). To explicitly show the excitation con-
dition, the Fourier spectra of the probe beam are exper-
imentally captured and shown in Fig. 3(d), corresponding
to the edge and middle spectral components of the 1D BZ.
Since the propagation distance in experiment is limited by
the crystal length, numerical simulations to a long propa-
gation distance are presented in Fig. 3(c) to better differ-
entiate the dynamics: for the edge mode excitation, light
remains edge localized although the mode profile changes
slightly at longer propagation distances; but for the mixed
mode excitation, it spreads into the bulk occupying both A
and B sublattice sites, resulting in a pronounced change of

the profile. More experimental results can be found in
Supplemental Material [35].
Since all twig edge states are degenerate and form a

dispersionless flat band, it enables the formation of the
compact edge state along the boundary [27,38–41]. We
demonstrate the edge excitation at the zigzag and twig edges
for comparison, which share the same bulk Hamiltonian but
the zigzag edge states occupy only a portion of the 1D BZ.
By selecting a site along different edges and removing all the
mode components of dispersive bands, the modified edge
states are obtained and are shown in Figs. 4(a1) and 4(c1) for
twig and zigzag edges. Most of light along twig edge is in
one supercell [Fig. 4(a2)], while that of the zigzag edge state
elongates to neighbor sites along the edge [Fig. 4(c2)].

FIG. 3. Experimental and numerical demonstration of the twig edge states in photonic graphene. (a) An HCL with twig edges along
the x direction established in the experiment. d ¼ 32 μm is the distance between nearest sites. (b1),(b2) Experimental outputs of the
probe beams which match the eigenmode of twig edge states at (b1) kx ¼ π=

ffiffiffi
3

p
a and (b2) kx ¼ π=2

ffiffiffi
3

p
a. (b3) The output for the mixed

mode excitation at kx ¼ 0. The corresponding simulation results for a longer propagation distance (z ¼ 50 mm) are shown in (c), where
the solid white circles mark the topmost sites of the twig edge. (d) Fourier spectra of the input beams corresponding to (b), in which solid
(dashed) lines mark the center (edge) of the 1D BZ.

FIG. 4. Demonstration of compact edge states at the twig edge of photonic graphene. (a) Theoretical results of a compact edge state for
the twig edge. (a1) The intensity distribution of the modified edge state. The initial selected site is marked by a green arrow. (a2) The
percentage of energy projected on supercells (N) along the boundary. (a3) The spectrum distribution of the compact edge state in k
space, where edge states exist in the red shaded region. (b) Experimental results of a compact edge state. (b1) A probe beam matching
the compact edge state at the input. (b2) The output of the probe beam after 20 mm propagation. (c),(d) have the same layout as (a),(b)
but obtained from the zigzag edge for a direct comparison.
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The mode mapping R ¼ jhφkjΨij2 is defined to show the
distribution of such edge state in momentum space, whereΨ
is the modified edge state shown in Figs. 4(a1) and 4(c1) and
φk denotes the edge eigenstate at momentum k. The
modified edge state along the twig edge spans the entire
1D BZ [Fig. 4(a3)], indicating a more compact form along
the boundary in real space compared to that at the zigzag
edge [Fig. 4(c3)]. We call the edge state shown in Fig. 4(a1)
“compact edge state.” To demonstrate such a distinctive
compact feature of twig edge states in experiment,
the probe beam which matches the compact edge state
[Fig. 4(b1)] is sent to the lattice, and it remains intact and
compact after 20 mm propagation [Fig. 4(b2)]. On the other
hand, when the same probe beam excites only one supercell
along the zigzag edge [Fig. 4(d1)], it cannot support the
compact edge state, and light spreads into A sublattices
[Fig. 4(d2)]. These experimental results illustrate the unique
feature of the compact edge state originating from the
topological flat band formed by the degenerated edge
eigenstates.
In summary, we have demonstrated a new type of

graphene edge state using a photonic platform. The new
twig edge forms a complete set of edge conditions together
with three other well-known edges. We have discussed the
topological origin of the edge states, unraveling the relation
between edge conditions and the bulk topological proper-
ties. Moreover, soliton-like compact edge states exhibiting
both flat band and topological features are observed with-
out employing any defect or nonlinearity. Realization of the
twig edge and its characteristic edge states in HCLs opens
up an avenue for fundamental research in many areas, such
as the valley Hall effect and topological corner and edge
states [15,21,41–45] in Dirac-like systems, which may lead
to subsequent development of unconventional application
devices.

We thank H. Buljan for helpful discussion. This work was
supported by National Key R&D Program of China
(2022YFA1404800), the National Natural Science
Foundation of China (No. 12134006, No. 12274242, No.
11922408, No. 12204252), China Postdoctoral Science
Foundation (No. BX2021134, No. 2021M701790), and
the Natural Science Foundation of Tianjin for
Distinguished Young Scholars (No. 21JCJQJC00050),
Program for Changjiang Scholars and Innovative
Research Team in University (IRT_13R29), 111 Project
(No. B23045) in China.

X. S. and L. Y. have contributed equally to this work.

*songdaohong@nankai.edu.cn
†zgchen@nankai.edu.cn

[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, The electronic properties of
graphene, Rev. Mod. Phys. 81, 109 (2009).

[2] K. Nakada, M. Fujita, G. Dresselhaus, and M. S.
Dresselhaus, Edge state in graphene ribbons: Nanometer
size effect and edge shape dependence, Phys. Rev. B 54,
17954 (1996).

[3] L. Brey and H. A. Fertig, Electronic states of graphene
nanoribbons studied with the Dirac equation, Phys. Rev. B
73, 235411 (2006).

[4] M. Kohmoto and Y. Hasegawa, Zero modes and edge states
of the honeycomb lattice, Phys. Rev. B 76, 205402 (2007).

[5] Y.-W. Son, M. L. Cohen, and S. G. Louie, Half-metallic
graphene nanoribbons, Nature (London) 444, 347 (2006).

[6] O. V. Yazyev and M. I. Katsnelson, Magnetic Correlations at
Graphene Edges: Basis for Novel Spintronics Devices,
Phys. Rev. Lett. 100, 047209 (2008).

[7] M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, and
V. Pellegrini, Artificial honeycomb lattices for electrons,
atoms and photons, Nat. Nanotechnol. 8, 625 (2013).

[8] O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and
D. N. Christodoulides, Conical Diffraction and Gap Solitons
in Honeycomb Photonic Lattices, Phys. Rev. Lett. 98,
103901 (2007).

[9] M. C. Rechtsman, Y. Plotnik, J. M. Zeuner, D. Song, Z.
Chen, A. Szameit, and M. Segev, Topological Creation and
Destruction of Edge States in Photonic Graphene,
Phys. Rev. Lett. 111, 103901 (2013).

[10] Y. Plotnik, M. C. Rechtsman, D. Song, M. Heinrich, J. M.
Zeuner, S. Nolte, Y. Lumer, N. Malkova et al., Observation
of unconventional edge states in “photonic graphene,”
Nat. Mater. 13, 57 (2014).

[11] M. Milicevic, T. Ozawa, G. Montambaux, I. Carusotto, E.
Galopin, A. Lemaitre, L. Le Gratiet, I. Sagnes, J. Bloch, and
A. Amo, Orbital Edge States in a Photonic Honeycomb
Lattice, Phys. Rev. Lett. 118, 107403 (2017).

[12] O. Jamadi, E. Rozas, G. Salerno, M. Milićević, T. Ozawa, I.
Sagnes, A. Lemaître, L. Le Gratiet et al., Direct observation
of photonic Landau levels and helical edge states in strained
honeycomb lattices, Light Sci. Appl. 9, 144 (2020).

[13] M. Bellec, U. Kuhl, G. Montambaux, and F. Mortessagne,
Manipulation of edge states in microwave artificial
graphene, New J. Phys. 16, 113023 (2014).

[14] M. Bellec, C. Poli, U. Kuhl, F. Mortessagne, and H.
Schomerus, Observation of supersymmetric pseudo-Landau
levels in strained microwave graphene, Light Sci. Appl. 9,
146 (2020).

[15] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Photonic Floquet topological insulators, Nature (London)
496, 196 (2013).

[16] A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M.
Kargarian, A. H. MacDonald, and G. Shvets, Photonic
topological insulators, Nat. Mater. 12, 233 (2013).

[17] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor,
Imaging topological edge states in silicon photonics,
Nat. Photonics 7, 1001 (2013).

[18] L.-H. Wu and X. Hu, Scheme for Achieving a Topological
Photonic Crystal by Using Dielectric Material, Phys. Rev.
Lett. 114, 223901 (2015).

[19] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L.
Lu, M. C. Rechtsman, D. Schuster et al., Topological
photonics, Rev. Mod. Phys. 91, 015006 (2019).

PHYSICAL REVIEW LETTERS 131, 013804 (2023)

013804-5

https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/PhysRevB.54.17954
https://doi.org/10.1103/PhysRevB.54.17954
https://doi.org/10.1103/PhysRevB.73.235411
https://doi.org/10.1103/PhysRevB.73.235411
https://doi.org/10.1103/PhysRevB.76.205402
https://doi.org/10.1038/nature05180
https://doi.org/10.1103/PhysRevLett.100.047209
https://doi.org/10.1038/nnano.2013.161
https://doi.org/10.1103/PhysRevLett.98.103901
https://doi.org/10.1103/PhysRevLett.98.103901
https://doi.org/10.1103/PhysRevLett.111.103901
https://doi.org/10.1038/nmat3783
https://doi.org/10.1103/PhysRevLett.118.107403
https://doi.org/10.1038/s41377-020-00377-6
https://doi.org/10.1088/1367-2630/16/11/113023
https://doi.org/10.1038/s41377-020-00351-2
https://doi.org/10.1038/s41377-020-00351-2
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1103/PhysRevLett.114.223901
https://doi.org/10.1103/PhysRevLett.114.223901
https://doi.org/10.1103/RevModPhys.91.015006


[20] T. Ma and G. Shvets, All-Si valley-Hall photonic topologi-
cal insulator, New J. Phys. 18, 025012 (2016).

[21] J. Noh, S. Huang, K. P. Chen, and M. C. Rechtsman,
Observation of Photonic Topological Valley Hall Edge
States, Phys. Rev. Lett. 120, 063902 (2018).

[22] A. Dikopoltsev, T. H. Harder, E. Lustig, O. A. Egorov, J.
Beierlein, A. Wolf, Y. Lumer, M. Emmerling et al., Topo-
logical insulator vertical-cavity laser array, Science 373,
1514 (2021).

[23] L. Yang, G. Li, X. Gao, and L. Lu, Topological-cavity
surface-emitting laser, Nat. Photonics 16, 279 (2022).

[24] R. Contractor, W. Noh, W. Redjem, W. Qarony, E. Martin,
S. Dhuey, A. Schwartzberg, and B. Kanté, Scalable single-
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