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We study the interplay between intrinsic spin-orbit coupling and nonlinear photon-photon interactions in
a nonparaxial, elliptically polarized fluid of light propagating in a bulk Kerr medium. We find that in
situations where the nonlinear interactions induce birefringence, i.e., a polarization-dependent nonlinear
refractive index, their interplay with spin-orbit coupling results in an interference between the two
polarization components of the fluid traveling at different wave vectors, which entails the breaking of
translation symmetry along the propagation direction. This phenomenon leads to a Floquet band structure
in the Bogoliubov spectrum of the fluid, and to characteristic oscillations of its intensity correlations. We
characterize these oscillations in detail and point out their exponential growth at large propagation
distances, revealing the presence of parametric resonances.
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Spin-orbit coupling (SOC) in materials arises due to the
interaction between the electron spin and its momentum,
and lies at the heart of various phenomena and concepts
such as spin Hall effects [1,2], topological insulators [3],
and Majorana fermions [4]. In the context of quantum
fluids, progress in the engineering of synthetic gauge fields
has paved the way for intriguing phenomena resulting from
the interplay between SOC and particle interactions in
ultracold atoms [5,6]. In the ground states of Bose gases,
e.g., this interplay yields stripe-superfluid or lattice phases
[7–12]. In degenerate Fermi gases, on the other hand, SOC
can significantly impact the celebrated BEC-BCS crossover
[13] or lead to topological superfluids [14,15]. Beyond
matter waves, SOC also exists in photonic systems [16,17].
This has been demonstrated, in particular, for exciton-
polaritons in microcavities [18–23] or for photons tunnel-
ing in properly designed microstructures [24]. In those
systems, effective photon-photon interactions also emerge
due to the interaction between the underlying excitons, and
their interplay with SOC has been investigated in numerous
works [25–29].
An alternative optical platform where photon inter-

actions can be realized are fluids of light in the propagating
geometry [30]. Here the propagation of light through a
nonlinear medium mimics, in the paraxial limit, the
temporal evolution of a two-dimensional (2D) quantum
fluid, the propagation axis playing the role of an effective
time and the nonlinearity mediating the photon interactions.
This analogy has been beautifully illustrated with mea-
surements of the Bogoliubov dispersion [31,32], the
dynamical formation of optical condensates [33,34], the
spontaneous nucleation of vortices in a photonic lattice

[35], or the temporal dynamics of correlation functions
following a quench [36,37]. Owing to the absence of cavity
or underlying microstructure, fluids of light in the propa-
gating geometry do not apparently seem to constitute a
natural platform for achieving SOC. Nevertheless, recently
a spin-orbit mechanism has been demonstrated in this
system [38], based on the fundamental coupling between
the polarization and the trajectory of optical fields subjected
to a refractive-index gradient. Unlike linear setups, where
the gradient is provided by the medium inhomogeneity
[39–46], in nonlinear media SOC emerges in the presence
of fairly strong spatial variations of the optical field itself,
requiring it to deviate from its paraxial propagation regime.
This induces a nonlinear index gradient, which couples to
the optical spin via the polarization-trajectory coupling
term of the wave equation [38].
In this Letter, we show that elliptically polarized fluids of

light propagating in media displaying nonlinear birefrin-
gence exhibit a breaking of translation symmetry along the
optical axis direction (i.e., the effective-time axis) due to
SOC. In stark contrast with the case of linearly polarized
fluids considered in Ref. [38], this leads to the emergence
of a Floquet band structure in the excitation spectrum,
analogously to what is observed in driven systems [47], but
here in a purely isolated optical fluid. The breaking of
translation symmetry also gives rise to peculiar oscillations
in several physical quantities, in particular the intensity-
correlation function of the fluid of light. By characterizing
these oscillations in detail, we further point out their
exponential growth at large propagation distances. This
showcases the existence of parametric resonances, an
original manifestation of the interplay between nonlinearity
and SOC in fluid systems.
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Our setup consists of a bulk nonlinear medium infinitely
extended along the x and y axes and z > 0 (see Fig. 1). A
monochromatic field Eðr; tÞ ¼ Re½EðrÞe−iω0t� propagates
inside the material at frequency ω0. The components of the
complex amplitude E obey the nonlinear Helmholtz
equation

∇2E −∇ð∇ · EÞ þ ω2
0

c2
½n20 þ 2n0ΔnðEÞ�E ¼ 0; ð1Þ

with c the vacuum speed of light and n0 the linear refractive
index. The nonlinear refractive index ½ΔnðEÞ�ij ¼
ðn2;d þ n2;sÞjEj2δij − n2;sE�

i Ej (i; j ¼ x, y, z) is a tensor
featuring two independent Kerr indices n2;d and n2;s.
Equation (1) corresponds to the Euler-Lagrange equation
for the action functional S ¼ R

d3rL, where [38]

L ¼ −
1

2β0
ð∇iE�

j∇iEj −∇iE�
j∇jEi − β20E

�
i EiÞ

−
1

2
½gdδijδi0j0 þ gsðSkÞijðSkÞi0j0 �E�

i EjE�
i0Ej0 : ð2Þ

Here summation over repeated indices is implied, β0 ¼
n0ω0=c is the propagation constant, and ðSkÞij ¼ −iεijk
denotes the kth spin-1 matrix. The simultaneous presence of
a spin-independent (gd ¼ −n2;dω0=c) and a spin-dependent
(gs ¼ −n2;sω0=c) nonlinear coupling, both assumed pos-
itive, is typical of isotropic systems described by multi-
component fields, where the pairing in channels of different
total spin can occur at different strengths. Besides optical
nonlinear media [48,49], this behavior is observed in
atomic spinor Bose-Einstein condensates [50] and in
microcavity exciton polaritons [16,51–53], where the
spin-dependent term is sometimes called self-induced
Zeeman splitting. Note, however, that unlike polariton
condensates [25–29], the fluid of light described by
Eq. (1) is fully three-dimensional. In our setup, the
mechanism of SOC of light originates from the term
∇ð∇ · EÞ ∼∇ð∇ lnΔn · EÞ in Eq. (1), which couples the

fluid polarization to its trajectory (via the nonlinear index
gradient). In the corresponding Lagrangian forma-
lism, Eq. (2), the SOC effects are encoded in the term
∝ ∇iE�

j∇jEi. While naturally present in Maxwell equa-
tions, the latter is discarded within the usual paraxial
approximation [30]. In the following, we do not perform
this approximation but work out the full Lagrangian
[Eq. (2)].
Our aim is to determine the field amplitude inside the

medium, given its transverse profile E½r⊥ ¼ ðx; yÞ; z ¼ 0�
at the air-medium interface. This can be regarded as the
evolution problem of a 2D system with respect to the
effective time z [30]. In the following, we assume that E is
the sum of a large homogeneous background and a small
fluctuation, and treat the latter using Bogoliubov-Popov
theory [54–57]. For that purpose, we write E ¼
ðEþ; Ez; E−ÞT and employ the density-phase decomposition
Eþ ¼ ffiffi

I
p

cosðϑ=2ÞeiðΘþχ=2Þ, E− ¼ ffiffi
I

p
sinðϑ=2ÞeiðΘ−χ=2Þ of

the field circular components E� ¼∓ ðEx ∓ iEyÞ=
ffiffiffi
2

p
.

Here I and ϑ quantify the total optical intensity of the
transverse components and their relative weight, respec-
tively, while Θ (χ) is their total (relative) phase. We
then split the field into a background and a fluctua-
ting contribution, writing I ¼ I0 þ δI, ϑ ¼ ϑ0 þ δϑ, and
χ ¼ Δkzþ δχ, where Δk ¼ kþ − k−. The wave numbers
k� of the two polarization components are imposed by
Eq. (1):

k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β20 − 2β0ðgd � gs cosϑ0ÞI0

q
: ð3Þ

Notice that Δk ¼ kþ − k− ≠ 0 as soon as gs ≠ 0 and
cosϑ0 ≠ 0, i.e., when the background field is elliptically
or circularly polarized. This defines the phenomenon of
nonlinear circular birefringence, which will play a crucial
role in the following.
Next, we insert the fluctuation variables into the

Lagrangian [Eq. (2)] and determine the quadratic correction
Sð2Þ to the background action. This is achieved by
redefining Ez → eiΘEz and Θ → Θþ ðkþ þ k−Þz=2, and
expanding Eq. (2) with respect to δI, δϑ, and δχ. Note that
the fluctuations of Θ are, in contrast, possibly large in two
dimensions [56], but its derivatives remain small, and so
does Ez. In this procedure, Sð2Þ turns out to be independent
of the z derivatives of Ez, so that one can use the Euler-
Lagrange equation δSð2Þ=δE�

z ¼ 0 to eliminate Ez [58].
The quadratic action Sð2Þ ¼ R

dz
R
d2q⊥=ð2πÞ2L̃ð2Þ can

be written in terms of a single column vector X ¼
ðδĨ=2I0; δϑ̃=2; Θ̃; δχ̃=2ÞT for the Fourier variables with
respect to r⊥, e.g., δĨðq⊥; zÞ ¼

R
d2r⊥δIðr⊥; zÞe−iq⊥·r⊥ ,

with q⊥ ¼ ðq⊥ cosφq; q⊥ sinφqÞ the transverse momen-
tum. We find that

L̃ð2Þ ¼ _X†Λ2
_X þ _X†Λ1X þ X†ΛT

1
_X − X†Λ0X; ð4Þ

FIG. 1. We study the propagation of an optical field with two
circularly polarized components E� in a nonlinear medium. Both
Eþ and E− display weak spatial intensity fluctuations δIðr⊥; z ¼
0Þ (modeled by a speckle with correlation length σ), which couple
to the optical spin via the nonlinear refractive index. Breaking of
translation invariance along z is observed in the input-output
correlation hδIðr⊥; 0ÞδIðr⊥; zÞi.
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where _X ≡ ∂zX. The 4 × 4 matrices Λ0;1;2 are real π-
periodic functions of the angular variable φðzÞ ¼ φq þ
Δkz=2 [58], which encodes a breaking of translation
invariance along the effective time axis z, the central result
of the Letter. This dependence stems from the SOC term in
Eq. (2), and is completely absent in the paraxial framework.
In our description, the paraxial approximation corresponds
to taking _X=β0, ðq⊥=β0Þ2, and gd;sI0=β0 small; the resulting
expansion of L̃ð2Þ up to first order becomes φðzÞ indepen-
dent and formally identical to the Bogoliubov Lagrangian of
symmetric binary mixtures of atomic condensates [60,61].
In the same spirit as in Ref. [38], we define a

Hamiltonian H̃ð2Þ ¼ ΠT _X þ _X†Π� − L̃ð2Þ depending on X
and the conjugate momenta vector Π ¼ ∂L̃ð2Þ=∂ _XT. The
effective-time evolution of X and Π is governed by the
Hamilton equations _X¼∂H̃ð2Þ=∂ΠT and _Π ¼ −∂H̃ð2Þ=∂XT ,
yielding the eight coupled equations
�

_X
_Π�

�
¼

� −Λ−1
2 Λ1 Λ−1

2

−ðΛT
1Λ−1

2 Λ1 þ Λ0Þ ðΛ−1
2 Λ1ÞT

��
X

Π�

�
: ð5Þ

In Ref. [38], Eq. (5) was solved in theΔk ¼ 0 case (linearly
polarized background field), where the matrix of coeffi-
cients is constant. Here on the contrary, we assume that the
birefringence condition Δk ≠ 0 is fulfilled. Hence, the
coefficients of Eq. (5) oscillate in z with period 2π=Δk.
We stress that although this behavior is typical of
Bogoliubov equations for periodically driven systems
[62–66] (see also Ref. [67]), here it occurs in a purely
isolated system due to the breaking of time-translation
symmetry by the background. The underlying mechanism
is the interplay between nonlinear birefringence and SOC.
The latter is responsible for the presence, in Eq. (2), of
interference terms between the two polarization compo-
nents propagating at relative wave vector Δk. Note that this
phenomenon is absent in linear birefringent media, where
the fluctuation is always independent of the back-
ground field.
According to Floquet’s theorem [68,69], the general

solution of Eq. (5) has the form
�
Xðq⊥; zÞ
Π�ðq⊥; zÞ

�
¼

X
l

Clðq⊥Þ
�
X0;lðq⊥;φÞ
Π�

0;lðq⊥;φÞ
�
e−iΩlðq⊥Þz: ð6Þ

Here the sum runs over eight independent solutions, labeled
by l and appearing with weight Cl. These Floquet
solutions are characterized by their eigenfunctions X0;l
and Π�

0;l and the corresponding quasifrequencies, Ωl. Note
that as is customary for Bogoliubov equations [70], for each
solution with quasifrequency Ωl there exists another one
with quasifrequency −Ω�

l associated with the same physical
oscillation, hence a total of four Bogoliubov modes. In the
paraxial regime, in contrast, one has only a density (d) and
a spin (s) mode, characterized by in- and out-of-phase
intensity oscillations of the two polarization components,
respectively, as discussed in the Supplemental Material [58].

We first plot the real part of the quasifrequency spectrum
in Fig. 2(a). Because the Ωl’s are defined modulo Δk, it is
sufficient to take their real part in the first Brillouin zone,
−jΔkj=2 < ReΩl ≤ jΔkj=2 [58]. In the q⊥ → 0 limit, the
spectrum in panel (a) displays the usual four phono-
nic bands �Ωd;sðq⊥Þ ≃�cd;sq⊥, with two sound velo-
cities cd;s. Those correspond to the standard Bogoliubov
modes in the paraxial regime, where c2dðsÞ ¼ ðgd þ gs�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2d þ g2s þ 2gdgs cos 2ϑ0

q
ÞI0=2β0. On the contrary, the

other four bands tend to a finite value and describe light
propagating backward along z. At increasing q⊥ the various
bands cross one another at several points, giving rise to an
involved structure. In addition, some quasifrequencies—
labeled by numbers in Fig. 2(a)—develop a finite imagi-
nary part at certain values of q⊥, see Fig. 2(b) (notice that
complex quasifrequencies always occur in complex con-
jugate pairs). This important result reveals the presence of
parametric resonances, which will be discussed in more
details below.
A central feature of Eq. (6) is that the modes X0;l

and Π�
0;l are π-periodic functions of φðzÞ. Since φðzÞ

contains a term linear in z, in general this leads to
oscillations of specific observables in z. To illustrate
this phenomenon and as an application of the above
formalism, we now consider a concrete scenario where a
fluid of light is initially prepared in the form of a (two-
component) plane-wave background plus a small fluctuat-
ing field (see Fig. 1):

�
Eþðr⊥; z ¼ 0Þ
E−ðr⊥; z ¼ 0Þ

�
¼

ffiffiffiffi
I0

p �
cos ϑ0

2
þ ϵϕþðr⊥Þ

sin ϑ0
2
þ ϵϕ−ðr⊥Þ

�
; ð7Þ

(a) (b)

FIG. 2. (a) Real and (b) imaginary parts of the quasifrequency
spectrum of an elliptically polarized fluid of light as functions of
the transverse momentum. Each parametric resonance is as-
signed a number, which is used to identify the corresponding
regions in the two plots. In (b) the corresponding resonance
conditions are also provided. Here we have chosen the back-
ground polarization ϑ0 ¼ π=4 and the nonlinear couplings
gdI0=β0 ¼ 0.2, gsI0=β0 ¼ 0.05.
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where 0 < ϵ ≪ 1, and ϕα (α ¼ �) is a two-component
random complex speckle field of two-point correlation
hϕαðr⊥Þϕ�

α0 ðr⊥ þ Δr⊥Þi ¼ γðΔr⊥Þδαα0 , the brackets denot-
ing statistical averaging. For definiteness we consider a
Gaussian correlation γðΔr⊥Þ ¼ expð−jΔr⊥j2=4σ2Þ, with σ
the correlation length. An initial state of the form of
Eq. (7) was recently exploited experimentally [37] in
order to realize an optical analog of the quench dynamics
of thermal fluctuations in a 2D Bose gas, following
Ref. [71]. The mode weights Clðq⊥Þ giving access to
the state vector [Eq. (6)] at arbitrary z are easily deduced
from the z ¼ 0 values of the fields [Eq. (7)] and the
conjugate momenta, as shown in the Supplemental
Material [58]. The latter are fixed requiring the vanishing
of the weights of backward-propagating modes, as shown
in the Supplemental Material [58]. The knowledge of
the weights enables one to compute any statistical observ-
able. One of the simplest is the function g2ðzÞ≡
hδIðr⊥; 0ÞδIðr⊥; zÞi, which expresses how intensity fluc-
tuations at a finite effective time z > 0 and at a given point
in the transverse plane are correlated with their z ¼ 0 value
(see Fig. 1). We find that [58]

g2ðzÞ
ϵ2I20

¼
X
l

Z
∞

0

q⊥dq⊥
2π

γ̃ðq⊥ÞKlðq⊥; zÞe−iΩlðq⊥Þz; ð8Þ

where γ̃ðq⊥Þ is the speckle power spectrum. In the paraxial
regime q⊥ → 0 and gd;sI0 ≪ β0, the coefficients for the
density and the spin modes KdðsÞ≃1=2�ðgdþgs cos2ϑ0Þ=
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2dþg2s þ2gdgs cos2ϑ0

q
reduce to constants independent

of q⊥ and z. g2 in the paraxial limit is shown in Fig. 3 as a
function of z (dashed curve), at fixed background polari-
zation, nonlinearities, and correlation length. At z ¼ 0,
g2ð0Þ=ϵ2I20 ¼ 2, which corresponds to the Rayleigh law
of the speckle field. At large z, the correlation is negative
and approaches zero as z → þ∞ following g2ðzÞ=ϵ2I20 ≃
−ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gdI0=β0
p

z=2σÞ−2. In between these two asymptotic
limits g2 changes sign, in agreement with the sum ruleR
∞
0 dzg2ðzÞ ¼ 0.
Beyond the paraxial limit, the emerging Floquet struc-

ture of the spectrum gives rise to periodic z oscillations of
the coefficients Kl. This manifests itself in oscillations of
g2 about its background value at large z, as seen in Fig. 3
(solid blue curve). The magnitude of these oscillations is
directly controlled by two main physical parameters: first,
the speckle correlation length σ, which controls by how
much the fluid of light deviates from paraxiality, a
necessary condition for the system to exhibit SOC, and
second, the coupling strength gs, which gives rise to
nonlinear birefringence. These dependences are illustrated
in the inset of Fig. 3: the oscillations’ amplitude decreases
(increases) with β0σ (gsI0=β0). In particular, at large σ the

spectrum γ̃ðq⊥Þ becomes very narrow, so that the integral
[Eq. (8)] becomes dominated by the small-q⊥ modes, and
Klðq⊥; zÞ can be replaced by its constant, q⊥ ¼ 0 value.
The oscillation frequency, in contrast, is practically inde-
pendent of σ. It is mainly governed by the nonlinear
birefringence mismatch Δk of the fluid’s two components.
From a Fourier analysis of g2ðzÞ, we find that these
oscillations are essentially harmonic at large enough σ,
with a frequency ≃0.8jΔkj [58].
A second remarkable consequence of the Floquet struc-

ture of the fluid’s spectrum is a phenomenon of parametric
resonance [72], analogous to that observed in periodically
driven atomic [62–66] and photonic [73–77] systems.
Parametric resonances are associated with the spontaneous
emergence of complex frequencies in the Floquet spectrum,
see Fig. 2(b). They can occur when the two lowest positive
eigenvalues Ωð0Þ

1;2 of the time average of the matrix entering

Eq. (5) fulfill Ωð0Þ
a ðq⊥Þ þΩð0Þ

b ðq⊥Þ ≃ nΔk for a, b ¼ 1, 2
and integer n > 0 [58,65]. Parametric resonances induce an
exponential growth of the population of the corresponding
Bogoliubov modes at large z, resulting in a strong increase
of the fringe amplitude in g2, as illustrated in Fig. 4(a). To
explore more systematically the occurrence of these insta-
bilities, we have analyzed their characteristic growth rate Γ
for various interaction strengths gsI0 and background
polarizations cosϑ0. To this aim, we studied the evolution
of g2ðzÞ within a fixed range of large values of z and fitted
the data with an exponential law of the form expðΓzÞ. The
results are summarized by the diagram in Fig. 4(b). As

FIG. 3. Effective-time evolution of the intensity-intensity
correlation function. In the main plot we compare the exact
(solid blue curve) and paraxial (dashed curve) predictions for
β0σ ¼ 15 and the same parameters ϑ0 ¼ π=4, gdI0=β0 ¼ 0.2,
and gsI0=β0 ¼ 0.05 as in Fig. 2. z is measured in units of the
nonlinear length zNL ¼ 1=2gdI0. In the inset we enlarge the
large-z tail and include two additional curves showing the results
for β0σ ¼ 22 (red curve) and gsI0=β0 ¼ 0.035 (green curve), the
other parameters being the same as above.
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expected, Γ vanishes when either cosϑ0 → 0 (linearly
polarized background) or gs → 0 (no spin-dependent non-
linearity). At large enough gs, Fig. 4(b) also reveals a sharp
increase of Γ as j cosϑ0j is decreased from 1, pinpointed by
the white dashed curve. This corresponds to the appearance
of an additional complex frequency that starts to dominate
the exponential growth in the chosen effective-time win-
dow, our fitting procedure yielding the largest Γ. Note that
the exponential growth of g2 is physical as long as
hðδIÞ2i=I20 ≪ 1 [and same for hðδϑÞ2i and hðδχÞ2i], cor-
responding to z ≪ lnðϵ−2Þ=maxl;q⊥ ½ImΩlðq⊥Þ�. At larger
z, nonlinear effects not captured by the Bogoliubov
approximation eventually cause a saturation of the value
of physical observables [62,65].
Several experimental studies of the polarization depend-

ence of the nonlinear refractive index are available [78–87].
Typically one finds gs=gd of order 10−1, not far from the
value gs=gd ¼ 0.25 chosen in this work. Taking this value
and a nonlinear strength gdI0=β0 ∼ 10−3 [37], we find that
the oscillations of g2ðzÞ are visible at propagation distances
z of the order of a few tens of meters. Such a scale points
toward optical fibers (see, e.g., Ref. [88]) as good candi-
dates for the observation of the phenomena predicted in this
Letter.
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