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We address the fundamental question of whether or not it is possible to achieve conditions under which
the coupling of a single dipole to a strongly confined electromagnetic vacuum can result in nonperturbative
corrections to the dipole’s ground state. To do so we consider two simplified, but otherwise rather generic
cavity QED setups, which allow us to derive analytic expressions for the total ground-state energy and to
distinguish explicitly between purely electrostatic and genuine vacuum-induced contributions. Importantly,
this derivation takes the full electromagnetic spectrum into account while avoiding any ambiguities arising
from an ad hoc mode truncation. Our findings show that while the effect of confinement per se is not
enough to result in substantial vacuum-induced corrections, the presence of high-impedance modes, such
as plasmons or engineered LC resonances, can drastically increase these effects. Therefore, we conclude
that with appropriately designed experiments it is at least in principle possible to access a regime where
light-matter interactions become nonperturbative.
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The first theoretical prediction of the Lamb shift by Bethe
in 1947 [1] was an important milestone of modern physics.
Not only did he show that the quantized electromagnetic
vacuum leads to an observable energy shift in the hydrogen
spectrum, but also how a finite value for this shift can be
obtained from a divergent perturbation theory through
renormalization. In recent years, vacuum-induced modifica-
tions of molecular properties have regained considerable
attention in the context of cavity QED [2–7], where the
coupling of matter to individual electromagnetic modes is
strongly enhanced by a tight confinement of the field. It has
been speculated that under such ultrastrong coupling
conditions [3,4], the electromagnetic vacuum could change
the rate of chemical reactions [8–11] or modify work
functions [12], phase transitions [13], and (super-) conduc-
tivity [14–16], even without externally driving the cavity
mode. However, theoretical support for such phenomena
relies mainly on the analysis of phenomenological single-
mode models (see, for example, Refs. [2–7] and references
therein), which ignore the coupling to an infinite number of
other vacuum modes. In turn, multimode models require the
introduction of an ad hoc cutoff to avoid divergencies, which
ends up affecting the results [17]. Thus, such models per se
are incapable of making reliable predictions about the
magnitude or even the sign of vacuum-induced energy
shifts, and it remains unclear whether the nonperturbative
regime is accessible at the level of individual dipoles.

In this Letter we investigate the ground-state energy shift
of a single dipole due to its coupling to the electromagnetic
vacuum in a confined geometry. Specifically, we focus on
the two basic settings of a lumped-element LC resonator
and a nanoplasmonic cavity, which are representative for a
large variety of ultrastrong coupling experiments [3,4] and
allow us to resolve this open problem by performing a
cutoff-independent derivation of the vacuum-induced shifts
of the ground state. These shifts can further be interpreted
in terms of purely electrostatic effects and genuine vacuum
corrections and studied as a function of the relevant system
parameters in generic cavity QED setups. This analysis
explicitly shows that, when relying on confinement only,
the resulting energy shifts are dominated by electrostatic
corrections, while contributions from dynamical modes
remain perturbative at most. However, the effect of vacuum
fluctuations can be strongly enhanced for electromagnetic
modes with a high impedance, where the ratio between the
electric and the magnetic field strength is modified com-
pared with free space. This condition can be reached, for
example, with appropriately designed lumped-element
resonators or with plasmonic resonances, where the matter
component contributes with a large kinetic inductance.
Indeed, we find that, in both of the considered settings,
nonperturbative shifts of the ground state, which are
comparable to the bare transition frequency of the dipole,
are feasible in principle. These predictions thus serve as an
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important guideline for designing experiments that can
reach this regime as well as a benchmark for more refined
models and numerical simulations of ultrastrong coupling
physics.
QED in a confined geometry.—We first consider the

setup shown in Fig. 1, where a single dipole is coupled to
the quantized electromagnetic field in a volume V defined
by two perfect metallic plates with area A and spacing d.
Without loss of generality, we model the dipole as an
effective particle of charge −q and mass m, which is
displaced by rd ¼ ðxd; yd; zdÞ from the opposite charge at a
fixed position r0 ¼ ð0; 0; z0Þ. The quantized field is repre-
sented, first of all, by an infinite set of transverse modes
with frequencies ωλ and mode functions uλ, which are
determined by a vanishing potential at the boundaries,
ϕðxÞj

∂V ¼ 0. Further, we allow charges to flow freely
between the two plates, which gives rise to one additional
independent degree of freedom to account for a finite
potential difference across the plates. This purely longi-
tudinal mode represents our cavity mode of interest and can
be modeled as an LC resonance with inductance L,
capacitance C ¼ ϵ0A=d, and frequency ωc ¼ 1=

ffiffiffiffiffiffiffi
LC

p
.

Therefore, in this setting, which is most relevant for cavity
QED systems in the GHz and THz regime, the properties of
the cavity mode can be engineered independently of the
geometry of confinement.
In the nonrelativistic regime and under the validity of the

dipole approximation, the full Hamiltonian describing this
setup can be written as [18]

H ¼
X
λ

ℏωλa
†
λaλ þ ℏωca

†
cac þH0

dip þ V imðr0; rdÞ

þ q
m
Aðr0Þ · pþ

q2

2m
A2ðr0Þ þ ℏgðac þ a†cÞμþ ℏg2

ωc
μ2:

ð1Þ

Here, the first two terms represent the transverse electro-
magnetic modes and the LC cavity mode with bosonic

annihilation operators aλ and ac, respectively. The third
term, H0

dip ¼
P

j Ejjjihjj, is the Hamiltonian of the dipole
in free space, which we write in terms of its eigenstates jji
and eigenenergies Ej.
The confinement modifies the electromagnetic surround-

ing seen by the dipole, which, first of all, leads to a
modification of the Coulomb potential by the metallic
plates. In Eq. (1), this effect is included through V imðr0; rdÞ,
which accounts for the additional interactions between the
dipole and its image charges. Secondly, the boundaries
modify the frequencies and mode functions of the trans-
verse electromagnetic modes inside the volume V ¼ dA
enclosed by the plates. In the Coulomb gauge, these modes
couple to the momentum p ¼ −iℏ∇rd via the usual minimal
coupling substitution. This gives rise to the p · A and A2

contributions in the second line of Eq. (1), where

AðxÞ ¼
X
λ

ffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ϵ0ωλ

s
½uλðxÞaλ þ u�λðxÞa†λ � ð2Þ

is the vector potential. Note that, for a given geometry, the
transverse mode functions uλ and the electrostatic mod-
ifications V im are related by the electromagnetic Green’s
function and cannot be treated independently of each other.
Explicit expressions for uλ and V im for the considered setup
are given in the Supplemental Material [18].
Finally, the dipole couples to the homogeneous electric

field associated with the LC resonance, which is repre-
sented by the last two terms in Eq. (1). Here, we have
defined the dimensionless dipole transition operator
μ ¼ zd=a0, where a0 ¼ jh0jzdj1ij is the characteristic size
of the dipole. The relevant coupling parameter can then be
written as [20]

η ¼ g
ωc

¼ qa0
ed

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πα

Z
Zvac

s
; ð3Þ

where α ≃ 1=137 is the fine-structure constant, Z ¼ ffiffiffiffiffiffiffiffiffi
L=C

p
is the resonator impedance, and Zvac ¼ 1=ðϵ0cÞ is the
impedance of free space. This way of expressing the
coupling is convenient as it immediately shows that,
although being intrinsically weak, light-matter interactions
can be substantially enhanced by engineering modes with a
high impedance, Z ≫ Zvac. Such modes necessarily cor-
respond to longitudinal modes and involve, for example,
moving charges with a large kinetic inductance.
Ground-state energy shift.—A central quantity of interest

in ultrastrong coupling cavity QED is the change in the
ground-state energy, EGS, when the dipole is placed inside
the cavity. For η≲ 1 this shift can be calculated by starting
from the unperturbed ground state, jj ¼ 0ijvaci, and
treating all corrections in second-order perturbation theory.
However, due to an infinite number of modes aλ, the result

FIG. 1. (a) Sketch of a generic cavity QED system with a single
dipole located in a strongly confined volume V between two
metallic plates. The inductance L is used to model an additional
external cavity mode with frequency ωc ¼ 1=

ffiffiffiffiffiffiffi
LC

p
and imped-

ance Z ¼ ffiffiffiffiffiffiffiffiffi
L=C

p
, where C ¼ ϵ0A=d. (b) Coordinates of the two

charges representing the dipole and sketch of a mode function of
the transverse vector potential. See text and the Supplemental
Material [18] for more details.
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of such a calculation will diverge or contain an
explicit cutoff dependence when the number of modes is
restricted [17,21]. This problem is known, for example,
from the evaluation of Casimir-Polder forces [22] and can
be resolved by keeping in mind that a similar divergence
also occurs in free space while the observable energy
difference ΔEGS ¼ EGSjcavity − EGSjfree remains finite. In
the Supplemental Material [18] we present the details of
this calculation, which results in a total energy shift of the
form

ΔEGS ¼ ΔEim þ ΔEA þ ΔEcav: ð4Þ

The individual contributions account for the purely electro-
static corrections and the genuine vacuum shifts from the
transverse modes and the cavity mode, respectively. To
make explicit predictions, we will evaluate these contribu-
tions for an isotropic harmonic dipole with frequency ω0.
Nevertheless, since the ground-state energy shift is domi-
nated by the transition to the first-excited state, all results
apply very accurately for more general systems with the
same transition frequency and transition dipole moment.
In the limit

ffiffiffiffi
A

p
≫ d, the image charge potential V im can

be evaluated analytically, and the resulting shift can be
approximately written as [18]

ΔEim ≃ −VC
a30
d3

F imðz0=dÞ; ð5Þ

where VC ¼ q2=ð4πϵ0a0Þ is the relevant Coulomb energy.
The dimensionless function

F imðxÞ ¼
1

8

�
2

x3
− Ψð2Þð1 − xÞ −Ψð2Þð1þ xÞ

�
; ð6Þ

where Ψð2ÞðxÞ is the polygamma function, is plotted in
Fig. 2(a). It assumes a minimal value of F imð1=2Þ ≈ 4.21 at
the center of the cavity and scales as F imðz0=d → 0Þ ≃
d3=ð4z30Þ for small z0, where it reproduces the usual van der
Waals energy of an atom in front of a single metallic plate.
The evaluation of the shift ΔEA from the transverse

modes is more subtle [23] and only gives meaningful
predictions once the corresponding free-space contribution
is subtracted. Techniques to do so have originally been
developed for calculating the Lamb shift [1] and Casimir-
Polder forces [22,24,25], but have later been applied to
cavity geometries as well [24,26–30]. Our analytic calcu-
lations of ΔEA in the Supplemental Material [18] follow
closely the derivations presented in Ref. [27], but extended
to the relevant limit of strong confinement, ω0=ω⊥ < 1,
where ω⊥ ¼ πc=d is the frequency of the fundamental
transverse mode and c is the speed of light. In addition, we
use numerical summation to verify that all results are
independent of the precise details of the cutoff function and
already converge for rather low values of the cutoff scale

Λ ≈ 5ω⊥. This is a crucial observation, since it shows that
none of the following results depends on the often unknown
high-frequency properties of the model. From this analysis
we obtain [18]

ΔEA ¼ αℏω0

�
qa0
ed

�
2

FA

�
ω0

ω⊥
;
z0
d

�
; ð7Þ

where the dimensionless scaling functionFA > 0 is plotted
in Fig. 2(a). For ω0 → 0 it assumes a value of
FAð0; 1=2Þ ¼ 2π=3 at the center of the cavity and scales
as FAð0; zd=d → 0Þ ≃ d2=ð2πz20Þ near the plate. For
ω0 > ω⊥, i.e., when retardation effects become important,
this function decreases rapidly, as shown in Fig. 2(b).
From Eq. (7) we see that, compared to electrostatic

effects, the overall energy shift resulting from all transverse
modes is positive. This is an important finding and shows
that for strong confinement, the positive energy correction
from the A2 term dominates over the negative second-order
shifts obtained from the p · A coupling. However, compared
with electrostatics, the magnitude of ΔEA is suppressed by
the fine-structure constant, and we obtain the bound

ΔEA

jΔEimj
¼ α

ℏω0

VC

d
a0

FAðω0=ω⊥; z0=dÞ
F imðz0=dÞ

¼ π
ω0

ω⊥
FAðω0=ω⊥; z0=dÞ

F imðz0=dÞ
< 1; ð8Þ

FIG. 2. (a) Dependence of the dimensionless functions F im and
FA on the dipole position within the cavity, z0=d. (b) Dependence
of FA on the ratio ω0=ω⊥, where ω⊥ ¼ πc=d, for two different
positions z0=d. (c) Total value of the ground-state energy shift
ΔEGS when the dipole is coupled to an LC resonance with
impedance Z and the plates are separated by a distance d. For this
plot a value of z0=d ¼ 0.5, ℏω0 ¼ VC=2, and q ¼ e have been
assumed.
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which holds in all parameter regimes [18]. This observation
is consistent with the fact that Casimir-Polder forces
between a dipole and a metallic plate are attractive and
shows that even an extreme confinement, d ∼ a0, does not
change this result. Equation (7) also implies that for any
d > a0 the combined vacuum shift resulting from all
transverse modes is only a small fraction of the bare
transition frequency, ω0.
The third term in Eq. (4) arises from the coupling of the

dipole to the additional LC resonance. This mode is absent
in free space, and therefore we can use standard perturba-
tion theory to obtain

ΔEcav ¼ −
ℏg2

ωc þ ω0

þ ℏg2

ωc
: ð9Þ

In the limit ω0 ≪ ωc and using Eq. (3), we can write this
contribution as

ΔEcav ≃ αℏω0

�
qa0
ed

�
2 Z
Zvac

F cav; ð10Þ

with a numerical factor F cav ¼ 2π. Like for the transverse
modes, the vacuum shift induced by the LC resonance is
positive and has the same scaling with frequency and
distance d. The overall magnitude, however, is enhanced by
the ratio Z=Zvac, which can be used to compensate for the
small value of the fine-structure constant.
For GHz resonators, values of Z=Zvac ∼ 50–80 have

already been demonstrated using optimized geometric
inductors [31] or superinductors [32]. Although experimen-
tally challenging, Eq. (10) implies that under such con-
ditions, nonperturbative vacuum shifts, ΔEcav=ðℏω0Þ ∼ 1,
are in principle accessible. As illustrated in Fig. 2(c), the
coupling to such high-impedance modes can also result in
“anomalous” vacuum shifts, ΔEGS > 0, where the positive
contribution from the dynamical modes exceeds electro-
static effects. This is very intriguing, as such a positive shift
implies an outward vacuum pressure on the cavity mirrors,
in contrast to the attractive Casimir force arising from the
zero-point energy of the electromagnetic modes [33].
However, in contrast to related previous predictions [21],
we find that the experimental conditions for accessing this
regime are rather extreme, and more refined studies will be
necessary to assess the role of such effects for potential
applications.
Plasmonic nanosphere cavity.—In the previous setup we

have assumed perfect metallic boundary conditions and
thereby ignored dynamical electromagnetic modes associ-
ated with the redistribution of electrons inside the metal. In
our second example we specifically address the influence of
these excitations and consider the setup shown in Fig. 3(a),
where the dipole is placed at a distance z0 above the surface
of a plasmonic nanosphere cavity with radius R. Following
Ref. [34], we model the electrons inside this sphere as an

incompressible fluid of density n0, which exhibits a
discrete set of plasmon modes with frequencies ωl ¼
ωP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ð2lþ 1Þp

. Here, ωP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n0=ðmeϵ0Þ

p
is the

plasma frequency and me is the electron mass. These
modes describe excitations of the surface charge density σ
with an angular momentum quantum number l. By
restricting the motion of the dipole along the z axis for
simplicity, the Hamiltonian for this setup is [18]

H¼H0
dipþV imþℏ

Xlmax

l¼1

�
ωla

†
lalþglðalþa†lÞμþ

g2l
ωl

μ2
�
;

ð11Þ

where V im ≡ V imðz0; zdÞ denotes the image potential expe-
rienced by a static dipole in front of the sphere. In Eq. (11),
al (a†l) are the annihilation (creation) operators for the
plasmon modes up to a maximal quantum number lmax,
and we have defined the coupling constants gl ¼
gP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ4=ð2lþ 1Þ4

p
½R=ðRþ z0Þ�lþ2=2. Here,

ηP ¼ gP
ωP

¼ qa0
eR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πα

ZP

Zvac

s
ð12Þ

and ZP ¼ ðπϵ0RωPÞ−1 is the characteristic impedance.
Note that Eq. (11) has been derived starting from
Coulomb interactions only, and therefore neglects small
corrections from the coupling to transverse modes, which
we have already evaluated above. In the limit lmax → ∞,
the so-called P2 term,

P
l g

2
lμ

2=ωl, cancels the instanta-
neous image potential, V im, exactly. However, by writing
Eq. (11) in this canonical form one avoids a double-
counting of electrostatic interactions also for a finite
number of modes, and one recovers the correct single-
mode cavity QED Hamiltonian for lmax ¼ 1 [20].
Since the plasmon modes are absent in free space, the

ground-state shift resulting from Hamiltonian (11) is given
by ΔEGS ≃ ΔEim þ ΔEP. Here, ΔEim accounts again

FIG. 3. (a) Sketch of a dipole located a distance z0 above the
surface of a plasmonic nanosphere cavity with radius R and
surface charge density σ. (b) Plot of the function FP defined in
Eq. (15) versus the cutoff lmax, where F∞

P denotes the asymptotic
value for lmax → ∞. For these plots ω0=ωP ¼ 1 and different
values of z0 have been assumed.
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for the electrostatic contribution ∼V im, which in the limit
z0=R ≪ 1 reduces to the van der Waals interaction [18]

ΔEimðz0 ≪ RÞ ≃ −
q2a20

4πϵ0ð2z0Þ3
ð13Þ

for a dipole oriented along the z direction. The energy shift
resulting from the coupling to the dynamical plasmon
modes can be written as

ΔEP ≃ αℏω0

�
qa0
ez0

�
2 Zeffðz0Þ

Zvac
FP

�
ω0

ωP
;
z0
R

�
; ð14Þ

where Zeffðz0Þ ¼ ðπϵ0z0ωPÞ−1 and

FPðx; yÞ ¼
πy3

2

Xlmax

l¼1

ðlþ 1Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þ=lp
1þ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ 1Þ=lp
�

1

1þ y

�
2lþ4

:

ð15Þ

In Fig. 3(b) we plot the value of this function for increasing
lmax and show that it converges to a finite value F∞

P ðx; yÞ
for a sufficiently large lmax. This demonstrates that also in
this scenario we can obtain an unambiguous result for the
ground-state energy shift that does not depend on an ad hoc
mode truncation. However, Fig. 3(b) also shows that, for
z0 < R, a single-mode cavity QED model would be
insufficient to predict this shift accurately.
In Eq. (14), we have combined the contribution from all

plasmon modes into an effective impedance Zeffðz0Þ, which
shows that for small dipole-sphere separations, z0 replaces
the radius R as the relevant length scale. In this limit,
F∞

P ðx ≪ 1; y ≪ 1Þ ≃ π=
ffiffiffiffiffi
32

p
. For plasma frequencies in

the range of 1–10 eV [35,36] and z0 ¼ 0.5 nm [37,38] we
obtain Zeff=Zvac ≈ 12–125, which for a large molecule with
qa0=ðez0Þ ≈ 1 corresponds to ΔEP=ðℏω0Þ ≈ 0.05–0.50,
still assuming that ω0 ≲ ωP. Therefore, also in the plas-
monic case, nonperturbative vacuum effects are within
experimental reach. Note, however, that since Zeffðz0Þ is
fixed by geometry and cannot be engineered independently,
we find that the total shift in this setup, ΔEim þ ΔEP < 0,
is negative for all values of z0 and ω0 [18].
Summary and conclusions.—In summary, we have

presented an ab initio and cutoff-independent derivation
of the total ground-state energy shift in two prototypical
cavity QED settings. By focusing on simple geometries, we
have obtained analytic predictions for the dependence of
this shift on the most relevant experimental parameters and
provided a clear distinction between purely electrostatic
corrections and genuine vacuum effects. Our results dem-
onstrate that the coupling to strongly confined transverse
modes, as often considered in cavity QED, is not enough to
induce significant perturbations of the ground state. The
main effect of the confinement is electrostatic modifica-
tions, which in turn are often neglected in this context.

These findings are consistent with the previous literature
on Casimir-Polder interactions and establish a direct link
between those closely related, but so far largely discon-
nected fields of research.
However, going beyond such conventional settings, our

analysis predicts a significant enhancement of vacuum
corrections in the presence of high-impedance modes.
Under such conditions, the regime of nonperturbative cavity
QED [20], with its many intriguing phenomena [39–49],
comes within experimental reach. The very general current
analysis can help to guide further experimental and theo-
retical progress in this direction.
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