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We develop an approach to chiral kinetic theories for electrons close to equilibrium and neutrinos away
from equilibrium based on a systematic power counting scheme for different timescales of electromagnetic
and weak interactions. Under this framework, we derive electric and energy currents along magnetic fields
induced by neutrino radiation in general nonequilibrium states. This may be regarded as an effective chiral
magnetic effect (CME), which is present without a chiral chemical potential, unlike the conventional CME.
We also consider the so-called gain region of core-collapse supernovae as an example and find that the
effective CME enhanced by persistent neutrino emission in time is sufficiently large to lead to the inverse
cascade of magnetic and fluid kinetic energies and observed magnitudes of pulsar kicks. Our framework
may also be applicable to other dense-matter systems involving nonequilibrium neutrinos.
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Introduction.—In chiral matter composed of approxi-
mately massless fermions with chiral imbalance, an
electric current is induced by magnetic fields. This chiral
magnetic effect (CME) [1–4] has been widely studied
in a variety of physical systems, such as heavy ion
collisions [5], early Universe [6], compact stars [6], and
Dirac-Weyl semimetals [7,8]. Moreover, the presence of
electric currents from CME results in unstable modes for
dynamically growing magnetic fields, known as chiral
plasma instability (CPI) [9,10], which has multiple appli-
cations particularly in cosmology and astrophysics [6].
On the other hand, the magnitude of chiral imbalance is

expected to be small in most physical systems due to the
absence of intrinsic parity violation. The exception
is systems involving the weak interaction that globally
violates parity symmetry. One example is the electron
capture and its inverse process, e−L þ p ↔ νL þ n, in core-
collapse supernovae (CCSN), where chiral imbalance of
leptons could be generated [10–14]. Accordingly, the
CME and CPI may be triggered, which affect the dynamics
of the matter sector composed of electrons a
nd nucleons. Nevertheless, such chiral imbalance in the
electron sector could be washed out by chirality flipping
due to a small yet nonzero electron mass in thermal
equilibrium [15,16].
This scenario is expected to be modified when neutrinos

are out of equilibrium. In fact, recent studies based on the

newly developed chiral radiation transport theory for
neutrinos that includes the chiral effects [17] suggest the
presence of electric and energy currents of matter along
magnetic fields driven by the backreaction of neutrinos
slightly away from equilibrium [18,19]. This may be
regarded as an effective CME, which is present even
without chiral imbalance. Although these chiral effects
from neutrino radiation not close to equilibrium should be
prominent in practical applications (e.g., outside the core of
CCSN), such a derivation has been lacking to date.
In this Letter, we, for the first time, derive the effective

CME of electrons sourced by neutrino radiation out of
equilibrium. For this purpose, we use the chiral kinetic
theories [20–29] incorporating the chiral effects for ultra-
relativistic electrons close to equilibrium and neutrinos away
from equilibrium, with the collision term of the neutrino
absorption on nucleons and its inverse process. We develop a
systematic power counting scheme for different timescales
of electromagnetic and weak interactions. Even for the
conventional radiation hydrodynamics for neutrinos and
matter, a systematic power counting scheme in the spirit
of the low-energy effective theory has not been explicitly
provided in the literature, to the best of our knowledge. Our
scheme not only provides a theoretical foundation as such,
but also enables us to obtain the effective CME from
radiation of neutrinos in generic nonequilibrium states,
allowing for broader applications than previously.
We also show that this effective CME due to purely

nonequilibrium interaction is enhanced by persistent neu-
trino emission in time and provides a dominant contribution
compared with the previous results [18,19] that are sup-
pressed in the nonrelativistic expansion for nucleons. Given
a quasithermal distribution function of nonequilibrium
neutrinos in the so-called gain region of CCSN, we further
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estimate the numerical values of the effective chiral
magnetic conductivity for the electric and energy currents.
We find that they can reach sufficiently large magnitudes to
lead to the inverse cascade of magnetic and fluid kinetic
energies and observed magnitudes of pulsar kicks.
Throughout this Letter, we use the mostly minus

signature of the Minkowski metric ημν and the completely
antisymmetric tensor ϵμνρλ with ϵ0123 ¼ 1. We introduce the
shorthand notations AðμBνÞ ≡ AμBν þ AνBμ and A½μBν� ≡
AμBν − AνBμ and define F̃μν ≡ ϵμναβFαβ=2 with Fμν being
the electromagnetic field strength. We also set c ¼ kB ¼ 1,
but keep ℏ to show an expansion of the quantum correc-
tions unless stated otherwise.
Chiral kinetic equations for electrons near equilibrium.—

The chiral kinetic equation for electrons with chirality
χ ¼ �1 (denoted by the subscript χ ¼ R;L) takes the
form [6,17]

□qf
ðeÞ
χ ¼

�
1 − fðeÞχ

�
Γ<
χ − fðeÞχ Γ>

χ ; ð1Þ

accompanied by the on-shell condition,

q2 ¼ −χℏSαβq eFαβ: ð2Þ

Here, fðeÞχ is the distribution function of electrons, the
operator □q is defined as

□qf
ðeÞ
χ ¼

�
qμ þ χℏ

Sμνq eFμρnρ

q · n

�
Δμf

ðeÞ
χ ; ð3Þ

with Δμ ¼ Dμ þ eFλμ∂
λ
q and Dμ ¼ ∇μ − Γλ

μρqρ∂qλ, S
μν
q ¼

ϵμναβqαnβ=ð2q · nÞ is the spin tensor associated with a
frame vector nμ ¼ ð1; 0Þ [30], and e is the electron charge.
Also, Γ≶

χ ¼ q · Σ≶
χ are proportional to the emission and

absorption rates of electrons with Σ≶
ν being the lesser and

greater self-energies that can be obtained from the under-
lying scattering processes. In most cases, Σ≶

χ;μ ∝ nμ; qμ up
to Oðℏ0Þ, since further anisotropic contributions stem from
gradient terms of OðℏÞ, and hence, ℏSμνq Σ≶

χ;μ ¼ Oðℏ2Þ are
suppressed above; for the complete expression with these
terms, see Refs. [6,17].
From now on, we will mostly focus on left-handed

electrons. We can further decompose the collision term into
two parts, Γ≶

L ¼ Γ≶
EM þ Γ≶

W, where the subscripts “EM”
and “W” represent the electromagnetic and weak inter-
actions, respectively. When electrons are near thermal

equilibrium, we can decompose fðeÞχ ¼ f̄ðeÞχ þ δfðeÞχ with

jδfðeÞχ j ≪ jf̄ðeÞχ j, where Ō represents a physical object O in
thermal equilibrium and δO corresponds to the small
fluctuation. In such a case, we may also approximate

Γ≶
L ≈ Γ̄≶

EM þ δΓ≶
EM þ Γ≶

W; ð4Þ

where δΓ≶
EM are functions of δfðeÞχ up to linear in δfðeÞχ .

Detailed balance in thermal equilibrium entails�
1 − f̄ðeÞL

�
Γ̄<
EM ¼ f̄ðeÞL Γ̄>

EM; ð5Þ

and the collision term becomes�
1 − fðeÞL

�
Γ<
L − fðeÞL Γ>

L

≈ ð1 − f̄ðeÞL ÞðδΓ<
EM þ Γ<

WÞ − f̄ðeÞL ðδΓ>
EM þ Γ>

WÞ
− δfðeÞL ðΓ̄>

EM þ Γ̄<
EMÞ ð6Þ

up to the terms linear to nonequilibrium fluctuations
[i.e., OðjδΓ≶

EMjÞ], where we have also neglected the sub-

leading contributions Γ≶
Wδf

ðeÞ
L .

Given the above approximations, one may recast part of
the collision term associated with electromagnetic inter-
action into the form of a relaxation time:�
1 − f̄ðeÞL

�
δΓ<

EM − f̄ðeÞL δΓ>
EM − δfðeÞL ðΓ̄>

EM þ Γ̄<
EMÞ

≈ −q · nτ̂−1EMδf
ðeÞ
L : ð7Þ

Note that τ̂−1EM can be an operator acting on δfðeÞL in general,
while its exact form is not of our interest here. Then the
chiral kinetic equation for left-handed electrons takes
the form

□qf
ðeÞ
L ≈ −q · nτ̂−1EMδf

ðeÞ
L − FW; ð8Þ

where

FW ¼ f̄ðeÞL Γ>
W − ð1 − f̄ðeÞL ÞΓ<

W ð9Þ
is responsible for the backreaction of neutrino radiation
upon the matter sector. In the above expression, we neglect
nonequilibrium fluctuations of nucleons that are expected
to be suppressed by large masses. We also omit the

collision term ∝ δfðeÞR related to chirality flipping via the
electromagnetic interaction. As will be manifested later,
such a term does not affect the nonequilibrium transport of
electrons due to neutrino radiation as our primary concern,

similar to the term q · nτ̂−1EMδf
ðeÞ
L . Below we will consider

the situation where f̄ðeÞL ¼ f̄ðeÞR , which corresponds to the
vanishing chiral chemical potential of electrons, μ5 ¼ 0.
For the total nonequilibrium corrections on the electric

current and energy-momentum tensor, which can be
calculated via Wigner functions, we have to include the
contributions from both right- and left-handed electrons.
Recall that the Wigner functions for right- and left-handed
electrons take the form [17,27,31]

W<μ
χ ¼ 2π½δðq2Þðqμ þ χℏSμνq ΔνÞ

þ χℏeF̃μνqνδ0ðq2Þ�fðeÞχ ; ð10Þ
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where we suppressed the terms ℏSμνq Σ≶
χ;μ ¼ Oðℏ2Þ as

above. The electric current and energy-momentum tensor
for electrons are given by

jμχ ¼ 2e
Z

d4q
ð2πÞ4W

<μ
χ ; ð11Þ

Tμν
χ ¼

Z
d4q
ð2πÞ4W

<ðμ
χ qνÞ: ð12Þ

Note that FW can generate finite δfðeÞL − δfðeÞR even when

f̄ðeÞL − f̄ðeÞR ¼ 0 (or μ5 ¼ 0).
Collision term for neutrino absorption on nucleons.—To

obtain an explicit form of FW, we shall focus on the
neutrino absorption on nucleons and its inverse process,
where electrons and nucleons are approximately in thermal
equilibrium but neutrinos are not. Following construction
of the collision term for the chiral radiation transport
equation of left-handed neutrinos in Ref. [17], one can
analogously derive Σ≶

Wμ and FW, while the contributions
from the electromagnetic interaction on self-energies can be
calculated independently.
Using the nonrelativistic approximation for nucleons,

ignoring the mass difference between protons and neutrons,
and implementing the isoenergetic approximation, we find

FW ≈
ðq · uÞ3

π
ðg2V þ 3g2AÞG2

Fðnp − nnÞ
�
f̄ðeÞð1 − fðνÞÞ
1 − eβðμn−μpÞ

þ ð1 − f̄ðeÞÞfðνÞ
1 − eβðμp−μnÞ

�
; ð13Þ

where we took f̄ðeÞL ¼ f̄ðeÞR ¼ f̄ðeÞ with f̄ðeÞ ≡ 1=
ðeβðq·u−μeÞ þ 1Þ. Here, uμ is the fluid four-velocity, ni
and μi for i ¼ n, p, e denote the number densities and
chemical potentials of corresponding particles, respec-
tively, fðνÞ is the neutrino distribution function, and
β ¼ 1=T, with T being temperature. Also, gV and gA are
vector and axial-vector couplings in Fermi’s effective
theory for weak interaction and GF is the Fermi constant.
Generically, fðνÞ has to be obtained by solving the chiral
transport equation for neutrinos. It is easy to check that
FW ¼ 0 in β equilibrium.
Systematic power counting and effective CME.—Since

the collision term of the kinetic equation for left-handed
electrons incorporates the interactions with distinct time-
scales, we have to modify the standard relaxation-time
approximation to evaluate the nonequilibrium fluctuations.
To have a description of kinetic equations consistent

with radiation hydrodynamics, we postulate fðeÞL ¼ f̄ðeÞL þ
δfðeÞL;EM þ δfðeÞL;W, where δfðeÞL;EM ∼ τ̂EM=L ≪ 1 as the gra-
dient expansion with L being the system size, while the

expansion for δfðeÞL;W is based on the small expansion

parameter related to the weak coupling, δfðeÞL;W ∼ ϵ4G2
F ≪ 1

with ϵ being the typical energy scale in the system. This
power counting scheme makes it feasible to disentangle
the backreaction on the matter sector due to the weak
interaction systematically.
It then follows that

□qf̄
ðeÞ
L ≈ −q · nτ̂−1EMδf

ðeÞ
L;EM ð14Þ

and

□qδf
ðeÞ
W ≈ ð1 − f̄ðeÞL ÞΓ<

W − f̄ðeÞL Γ>
W ¼ −FW: ð15Þ

Note that the term −q · nτ̂−1EMδf
ðeÞ
W ∼ ϵ4G2

Fe
4 is subleading

in both Eqs. (14) and (15), and provides the higher-order
corrections to the transport coefficients of the matter sector,
and hence, it is dropped. We accordingly find

δfðeÞL;EM ≈ −τ̂EMðq · nÞ−1□qf̄
ðeÞ
L : ð16Þ

When considering chirality flipping, one shall find δfðeÞL;EM

and δfðeÞR;EM in terms of the linear combination of□qf̄
ðeÞ
L and

□qf̄
ðeÞ
R based on the coupled chiral kinetic equations.

On the other hand, δfðeÞW has to be solved from Eq. (15)
separately. For simplicity, we shall work in the Minkowski
spacetime such that Dμ ¼ ∂μ. As we will eventually be
interested in the regime of sufficiently large scale where
the electric field Eμ ¼ Fμρnρ is screened, let us focus on
momentum anisotropy of neutrinos induced by the
magnetic field Bμ ¼ F̃μνnν. Then, the left-hand side of

Eq. (15) reduces to qμð∂μ þ ϵμραβeBαnβ∂ρqÞδfðeÞW . For con-
venience, we introduce the shorthand notation for the
spatial component, V̄μ ≡ ΘμνVν, of an arbitrary vector
Vμ using the projection operator Θμν ≡ ημν − nμnν. Also,
we always work in the fluid rest frame such that uμ ¼ nμ.

In the present setup, we expect ∂
ρ
qδf

ðeÞ
W ∝ uρ; qρ; Bρ,

so the Lorentz-force term in the kinetic theory,

ϵμραβqμeBαnβ∂ρqδf
ðeÞ
W , identically vanishes. Consequently,

Eq. (15) reduces to

q · ∂δfðeÞW ≈ −FW: ð17Þ
For a generic differential equation,

q · ∂fðq; xÞ ¼ Gðq; xÞ; ð18Þ

with Gðq; xÞ being an arbitrary function, the retarded
solution of fðq; xÞ is given by using the method of
characteristics as (see also Ref. [32])

fðq; xÞ ¼ 1

q0

Z
x0

−∞
dx00Gðq; x0Þjc; ð19Þ
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where jc ¼ fx0μ⊥ ¼ xμ⊥; x
0μ
k ¼ xμk − q̄μðx0 − x00Þ=q0g. Here,

Vμ
k ≡ ðV · q̄Þq̄μ=ðq̄ · q̄Þ and Vμ

⊥ ≡ V̄μ − Vμ
k represent the

parallel and perpendicular components of a vector Vμ with
respect to q̄μ, respectively. From the useful equation above,
we obtain

δfðeÞW ðq; xÞ ¼ −
1

q0

Z
x0

0

dx00FWðq; x0Þjc; ð20Þ

where the explicit expression of FW is shown in Eq. (13).

Note that here qμϵμραβBαnβ∂ρqδf
ðeÞ
W ¼ 0 is satisfied.

In this case, the (spatial) electric and energy currents
of electrons induced by the backreaction of neutrino
radiation read

jμB ≈ ℏe2
Z

d4q
ð2πÞ3

δðq2Þ
q0

ðBμq · ∂q − q · B∂μq̄ÞδfðeÞW ; ð21Þ

Tμ0
B ≈

ℏe
2

Z
d4q
ð2πÞ3 δðq

2ÞðBμq · ∂q − q · B∂μq̄ÞδfðeÞW ; ð22Þ

for q0 ≥ 0. Here, we used Eq. (10) and performed inte-
gration by parts on the last term to derive the above
expressions. Note that although half of the left-handed
electrons that receive the backreaction from neutrinos are
converted to right-handed ones at the timescale τ ≫ τ̂EM
due to chirality flipping, this does not affect the above
macroscopic currents at μ5 ¼ 0. As schematically shown in
Fig. 1, while the CME for right- and left-handed electrons
in equilibrium cancel each other [Fig. 1(a)], the neutrino
radiation triggers the effective CME with a nonvanishing
electric current [Fig. 1(b)].
As a particular limit of this formulation, we can also

consider the case where neutrinos are close to equilibrium.
In this case, we can take fðνÞ ¼ f̄ðνÞ þ δfðνÞ and rewrite FW
into the form of the relaxation time approximation:

FW ≈ q · nτ−1W δfðνÞ: ð23Þ

Combining with the chiral transport equation for neutrinos
near equilibrium [18], the kinetic equation of left-handed
electrons implies

δfðeÞL;W ≈ −δfðνÞ ¼ −τWðq · nÞ−1q ·Df̄ðνÞ: ð24Þ

Note that δfðeÞL;W ≫ δfðeÞL;EM since τW ≫ τ̂EM. This is con-
sistent with the previous derivation based on the momen-
tum conservation in Ref. [19].
Numerical estimates in CCSN.—Let us now estimate the

magnitude of the effective CME in CCSN as an example.
For this purpose, we adopt the analytic form of the neutrino
distribution function introduced in Ref. [33],

fðνÞðq0Þ ¼
�
q0
ϵ̄

�
α

e−ðαþ1Þq0=ϵ̄; ð25Þ

where α is a numerical parameter describing spectral
pinching and ϵ̄ is the average energy. In such a case,
FW only depends on q0, and hence,

δfðeÞW ðq; xÞ ≈ −
x0
q0

FWðq0Þ; ð26Þ

which takes a secular form with respect to the elapsed
time x0. One then finds

jμB ≈
ℏe2

4π2
x0Bμ

Z
∞

0

djqj
jqj FWðjqjÞ

≡ ξBBμ; ð27Þ
where we used the integration by parts with the vanishing
surface terms from FWð0Þ → 0 and FWð∞Þ → 0.
Additionally, we should include the electric current

of right-handed positrons induced by antineutrinos. This
contribution takes the form of Eq. (27) by replacing FW

with −F̃WðjqjÞ ¼ −FWðjqjÞn↔p;μe→−μe , where the minus
sign stems from opposite chirality. In fact, the left-handed
neutrinos and right-handed antineutrinos move along the
same direction as the magnetic field since they are driven
by scattered electrons and positrons with both opposite
charges and chiralities. Consequently, the total electric
current induced by the magnetic field is given by

jμB;tot ¼
ℏe2

4π2
x0Bμ

Z
∞

0

djqj
jqj ½FWðjqjÞ − F̃WðjqjÞ�

≡ ξtotB Bμ: ð28Þ

Although the linear growth of jμB;tot in time is due to
the time-independent fðνÞðq0Þ, the current is generally
enhanced with time provided FW − F̃W does not flip the
sign in time.
We can also evaluate the energy current of electrons

driven by neutrino backreaction with magnetic fields via

Tμ0
B ¼ ℏe

8π2
x0Bμ

Z
∞

0

djqjFWðjqjÞ

≡ κBeBμ: ð29ÞFIG. 1. The schematic figure of the effective CME from
neutrino radiation.
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Incorporating the similar contribution from positrons, the
total energy current is given by

Tμ0
B;tot ¼

ℏe
8π2

x0Bμ

Z
∞

0

djqj½FWðjqjÞ þ F̃WðjqjÞ�

≡ κtotB eBμ: ð30Þ

Note that the opposite chirality is compensated by the
opposite charge unlike the case for jμB.
We now extract the numerical values for variables

involved in FW in the gain region where neutrino absorp-
tion dominates over neutrino emission. From Ref. [34], we
take the electron fraction Ye ≈ 0.4, mass density ρgain ∼
1010 g cm−3, and temperature T∼1011K≈8.6MeV. Based
on charge neutrality, we impose ne ¼ np ≈ 0.4ngain and
nn ≈ 0.6ngain and approximate ρgain ≈ Mðnp þ nnÞ ¼
Mngain with the nucleon mass M ≈ 940 GeV, which yields
μe ≈ 0.79 MeV, μn ≈ 870 MeV, and μp ≈ 867 MeV in
equilibrium. Adopting the numerical values α ¼ 2.65
and ϵ̄ ¼ 13.05 MeV from Ref. [35] as an example, we
find ξB ≈ 2.2 MeV, ξtotB ≈ −0.5 MeV, κB ≈ 350 MeV2, and
κtotB ≈ 780 MeV2 for x0 ¼ 0.1 s. The scale of ξtotB around
MeV, despite being a rough estimate, may originate from
μp − μn ≈ −3 MeV. One can show the overall sign of ξtotB

just depends on the sign of μp − μn when μe ≪ T. Also, the
persistent neutrino emission in the astrophysical timescale
compensates the weakness of GF, as expected in the
scenario of neutrino heating in CCSN. The validity of

the linear fluctuation breaks down when δfðeÞW ∼ 1 for
x0 ∼ 1 s, and we may regard the above values of ξtotB and
κtotB for x0 ¼ 0.1 s as approximate upper bounds.
In light of the results of numerical simulations of

the chiral magnetohydrodynamics including the effective
CME in Refs. [19,36] (see also Ref. [37] in the context of
the early Universe), we may derive several consequences.
First, the effective CME with this ξtotB generates a magnetic
field with a strength ∼1016 G and magnetic helicity density
∼ − ð1–10 MeVÞ3 via the CPI. Second, this order of
magnitude of ξtotB is sufficiently large to lead to the inverse
cascade of magnetic and fluid kinetic energies. While the
previous studies focus on the region within proto-neutron
stars, the present result suggests the inverse cascade even in
the gain region. This feature should be contrasted with the
conventional neutrino radiation hydrodynamics without
chiral effects that shows the direct cascade in three spatial
dimensions [38–40].
Finally, based on the momentum conservation, we can

also estimate the kick velocity of the proto-neutron star
with the core density ρcore ≈Mncore and ncore ∼ 0.1 fm−3

due to the effective CME as

vkick ∼
jTi0

B;totj
ρcore

≈
�

eB
1013–14 G

�
km=s: ð31Þ

It is approximately the same as the upper bound previously
obtained in Ref. [18] that assumes neutrinos close to
equilibrium (no such an assumption in the present
derivation). Inserting the magnitude of the magnetic field
due to the CPI above, the resulting kick velocity is
vkick ¼ 100–1000 km=s, which is comparable to the
observed magnitudes of pulsar kicks [41].
Summary.—In conclusion, we have derived an effective

CME triggered by neutrino radiation through the neutrino
absorption on nucleons and its inverse process. From there,
the electric and energy currents propagating along a
magnetic field can be enhanced by persistent neutrino
emission in time. Unlike the conventional CME, this effect
is purely nonequilibrium and appears even with chirality
flipping of electrons. Our findings provide not only a
possible mechanism of pulsar kicks but also a strong
argument for the inverse cascade of the magnetic and
kinetic energies in the gain region of CCSN. These
scenarios should be numerically checked by the first-
principles calculations of the chiral radiation hydrodynam-
ics for neutrinos. It would also be interesting to apply the
present framework to other systems, such as neutron star
mergers and cosmology in the early Universe.
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