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Waveforms are classical observables associated with any radiative physical process. Using scattering
amplitudes, these are usually computed in a weak-field regime to some finite order in the post-Newtonian or
post-Minkowskian approximation. Here, we use strong-field amplitudes to compute the waveform produced
in scattering of massive particles on gravitational plane waves, treated as exact nonlinear solutions of the
vacuum Einstein equations. Notably, the waveform contains an infinite number of post-Minkowskian
contributions, aswell as tail effects.We also provide, and contrastwith, analogous results in electromagnetism.
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The observation of gravitational waves has brought
renewed importance to the study of general relativity and
its observables. Surprisingly, scattering amplitudes—one of
the key outputs of quantum field theory—are providing a
new way to study classical general relativity; for reviews,
see Refs. [1–3]. Starting from novel perspectives on [4–6],
and a remarkable state-of-the-art calculation for [7], the
conservative Hamiltonian of the gravitational two-body
problem, a new program for providing higher-order post-
Minkowskian (PM) approximations to gravitational observ-
ables has emerged based on the classical limit of scattering
amplitudes. This has led to a variety of exciting new results
for gravitational observables, e.g., Refs. [8–26], which build
on many of the powerful structures in scattering amplitudes
such as generalized unitarity and double copy, as well as
techniques from effective field theory.
A key tool in this program has been the development of a

formalism to systematize the extraction of classical physical
observables from scattering amplitudes [27]. So far, all
observables computed with this approach are valid for weak
fields only: they are obtained from amplitudes at finite PM
order, so truncate at a corresponding fixed order in the
coupling [28–39]. This is in sharp contrast with other
approaches to gravitational dynamics, such as the self-force
paradigm [40–45], where perturbation theory is implemented
around a curved background and the weak-field limit is not
considered.
To address this gap, the amplitude-based approach can be

generalized to curved backgrounds by means of strong-field

scattering amplitudes and their classical limits [46]. This
provides an alternative route to the computation of classical
observables, as strong-field amplitudes encode a substantial
amount of information about higher-order processes [47–54]
and finite size effects [55–57] in trivial backgrounds, and can
also admit remarkably compact formulas [58–60]. A key
aspect is that even first-order perturbation theory around a
curved background—which we refer to as “first postback-
ground,” or 1PB, order—encodes infinitely many orders of
the PM expansion. This is analogous to the relation between
the PM and post-Newtonian expansions for bound orbits,
where a fixed contribution of the former encodes infinitely
many orders of the latter due to the virial theorem.
Here we show for the first time how classical observables

encoding all order results can be extracted from scattering
amplitudes. We derive expressions for the classical gravi-
tational waveform emitted by a point particle scattering on a
gravitational plane wave (an exact solution to the nonlinear
Einstein equations), encoding all order contributions in the
PM expansion when the flat spacetime limit is taken, as well
as tail effects which usually enter at high order in the PM
approximation. We also perform analogous calculations for
charged particles scattering on electromagnetic planewaves.
While our aim is not to study the phenomenology of
electrodynamics, the waveforms do not seem to appear in
an otherwise extensive literature [61–64], and it is revealing
to compare and contrast with the gravitational case [65–68].
Note that plane waves are not just good models of

gravitational waves, but also describe any spacetime in the
neighborhood of a null geodesic [69]. This directly con-
nects our results to the gravitational two-body problem: in
the limit where one mass is negligible, the massless probe
will experience the heavy body’s metric as a plane wave.
Indeed, plane wave or ultrarelativistic limits have been used
to analyze gravitational self-force [70] and black hole
quasinormal modes [71].
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Asymptotic waveforms.—Let jΨi be a normalized super-
position of free-particle (mass m) states,

jΨi ¼
Z

dΦðpÞϕðpÞeip·b=ℏjpi; ð1Þ

where dΦðpÞ is the Lorentz-invariant on-shell measure, the
wave packet ϕðpÞ has a well-defined classical limit
(cf. Ref. [27]), and bμ is the impact parameter. This state
is evolved on an electromagnetic or gravitational plane
wave background. In terms of the S matrix S on that
background, the time-evolved state is simply SjΨi.
Our interest is in the classical gravitational or electromag-

netic radiation emitted by a scalar particle as it scatters on
these backgrounds, asmeasured by an asymptotic observer at
future null infinity. The particular observable of interest is the
waveform, encoded in the expectation value of the Maxwell
and Riemann tensors, hFμνðxÞi and hRμνσρðxÞi. In coordi-
nates xμ ¼ ðt;xÞ, approaching future null infinity corre-
sponds to taking r≡ jxj → ∞ while u ¼ t − r is held
constant. Following Ref. [32], the waveform W is defined
simply as the coefficient of the leading1=r term in hFi or hRi.
It is a function of u and the two angular degrees of freedom
encoded in the null vector x̂μ ¼ ð1; x̂Þ. Inserting complete
sets of final states into the expectation value, and using the
mode expansion of Fμν and Rμνσρ, one easily obtains an
expression for the waveform in terms of scattering ampli-
tudes on the background. The leading contribution is at 1PB,
meaning order e (the fundamental charge) in QED or order κ
(the gravitational coupling) in gravity, but all orders in the
background fields, and comes from interference between
tree-level two-point and three-point amplitudes. Unlike in
vacuum, two-point amplitudes on backgrounds are not trivial
even at tree level, encoding, e.g., memory effects [46].
Defining the (theory-dependent) combination,

αðkÞ ¼
Z

dΦðp0ÞhΨjS†jp0ihp0; kηjSjΨi; ð2Þ

we arrive at, in QED and gravity, respectively,

Wμνðu; x̂Þ ¼ −
ℏ1=2

π
Re

Z
∞

0

d̂ωe−iωuk½με
−η
ν� αðkÞ;

Wμνσρðu; x̂Þ ¼ −
κ

πℏ1=2 Im
Z

∞

0

d̂ωe−iωuk½με
−η
ν� k½σε

−η
ρ� αðkÞ;

ð3Þ

in which kμ ¼ ℏωx̂μ for ω a classical frequency (as will be
useful later when taking the classical limit), εημ ≡ εημðkÞ is the
photon polarization vector, and d̂x ≔ dx=ð2πÞ. One can
check that the combination of amplitudes in αðkÞ reproduces
the radiation emitted due to geodesic motion, i.e., the first
contribution of self-force effects [42].
Plane wave backgrounds.—Plane waves are highly

symmetric vacuum solutions of the Einstein or Maxwell

equations with two functional degrees of freedom. In
gravity, they are described by metrics of the form [72]:

ds2 ¼ 2dxþdx− − dxadxa − κHabðx−Þxaxbðdx−Þ2; ð4Þ

where latin indices label the “transverse” directions
x⊥ ¼ ðx1; x2Þ, while the 2 × 2 matrix Habðx−Þ is symmet-
ric, traceless, and compactly supported on x−i < x− < x−f
(ensuring the spacetime admits an S matrix [73]). The
metric has a covariantly constant null Killing vector n ¼ ∂þ
(or nμ ¼ δ−μ ) which will recur throughout. To ease notation,
we absorb the gravitational coupling into the background,
taking κHab → Hab from here on; as such, note that
expressions below containing all orders in H implicitly
contain all order PM contributions in κ.
Plane wave metrics have several associated geometric

structures. First, there is a zweibein Ea
i ðx−Þ and its

inverse Eiaðx−Þ, labeled by the index i ¼ 1, 2, satisfying
Ëia ¼ HabEb

i , _Ea
½iEj�a ¼ 0. The zweibein encodes gravita-

tional (velocity) memory through the difference

ΔEi
a ¼ Ei

aðx− > x−f Þ − Ei
aðx− < x−i Þ; ð5Þ

which compares the relative transverse positions of two
neighboring geodesics. The zweibein also defines a trans-
verse metric γijðx−Þ ≔ Ea

ðiEjÞa and deformation tensor

σabðx−Þ ≔ _Ei
aEib, the latter encoding the expansion and

shear of the null geodesic congruence associated to Eq. (4).
These definitions are completed by the initial condition
Ei
aðx− < x−i Þ ¼ δia, which yields γijðx− < x−i Þ ¼ δij and

σabðx− < x−i Þ ¼ 0.
Turning to electromagnetism, planewaves can be defined

by the potential AμðxÞ ¼ −xbEbðx−Þnμ in light front coor-
dinates [given by the flat space part of Eq. (4)] and nμ is as
above. Ebðx−Þ is the two-component, compactly supported
electric field. A useful associated quantity is

a⊥ðx−Þ ≔
Z

x−

−∞
dsE⊥ðsÞ; ð6Þ

such that ea⊥ is the effective “work done” on a charge. The
electromagnetic velocity memory effect is encoded in the
constant ea⊥ðx− > x−f Þ [74]; this is the change in transverse
momentum of a particle crossing the background from the
asymptotic past to the future.
To simplify the presentation of our results, we make the

assumption that velocity memory effects induced by our
backgrounds are parametrically small, and thus negligible.
(We relax this assumption in SupplementalMaterial B [75].)
This means setting abðx− > x−f Þ ¼ 0 in electromagnetism,
and Ei

aðx− > x−f Þ ¼ δia in gravity. The main simplification
is that the tree-level two-point amplitudes reduce to
hp0jSjΨi → eiθðp0Þϕðp0Þ, for a theory-dependent phase θ
which can be absorbed by redefining u [76].
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Electromagnetism.—We now construct the classical limit
of the electromagnetic waveform Wμνðu; x̂Þ from Eq. (3).
Given our assumption of no memory, the only ingredient
required is the three-point amplitude for a charged scalar,
on an electromagnetic plane wave background, to emit a
photon. Let the incoming (outgoing) scalar have momen-
tum pμ (p0

μ), and the emitted photon have momentum kμ
and helicity η. The amplitude is calculated by evaluating the
cubic part of the action on the appropriate scattering states
in a plane wave; see, e.g., Ref. [64]. The result is

hp0; kηjSjΨi ¼
Z

dΦðpÞϕðpÞeip·b=ℏδ̂3þ;⊥ðp0 þ k−pÞA3;

A3 ¼ −
2ie

ℏ3=2

Z
y
εη ·PðyÞ exp

�
i
ℏ

Z
y

−∞
dz

k ·PðzÞ
pþ − kþ

�
;

ð7Þ

where
R
y ≔

R
∞
−∞ dy and δ̂ðxÞ ≔ 2πδðxÞ. The “dressed”

momentum PμðyÞ is the classical momentum of the particle
in the background,

PμðyÞ ¼ pμ − eaμðyÞ þ nμ
2eaðyÞ · p − e2a2ðyÞ

2pþ
; ð8Þ

where aμðyÞ ¼ δ⊥μ a⊥ðyÞ, obeying P2ðyÞ ¼ m2. Only three
components of overall momentum are conserved in A3 as
the background breaks x−-translation symmetry.
Calculation of the waveform.—We assemble the QED

waveform in Eq. (3) from Eq. (7), using the assumption of
negligible memory effects. We perform the sum over photon
helicities using the completeness relation in light front gauge.
All gauge-dependent pieces vanish by antisymmetry or
generate boundary terms which can be ignored [74], leaving
only a contribution from −ημν. An immediate simplification
in the classical limit is that the δ function sets p0 ¼ p, and
thus the wave packet appears as jϕðpÞj2. This means that
the impact parameter b drops out, and under the usual
assumption that ϕ is sharply peaked around some classical
momentum, we can integrate overp, localizing the integrand
at the on-shellmomentumof the incomingparticle,whichwe
continue to write as p for simplicity. This gives

Wμνðu; x̂Þ ¼ −
ie

4π2pþ

Z
y;ω

ωe−iω½u−x̂·XðyÞ�x̂½μPν�ðyÞ; ð9Þ

inwhichXμðyÞ is the classical particle orbit, obeyingX0
μðyÞ ¼

PμðyÞ=pþ. Performing the frequency integral yields a very
compact final expression for the classical waveform:

Wμνðu; x̂Þ ¼
e
2π

Z
y
δ(u − x̂ · XðyÞ) d

dy

x̂½μPν�ðyÞ
x̂ · PðyÞ

¼ e
2π

X
sols

pþ
x̂ · P

d
dx

x̂½μPν�
x̂ · P

; ð10Þ

where the sum runs over all solutions of the δ-function
constraint. It can be checked that this matches the result
obtained directly from classical electrodynamics; see
Supplemental Material A [75].
Properties of the waveform.—First observe that, due to

the derivative, the waveform is vanishing in the absence of
acceleration. Indeed, the final integration by parts, per-
formed as part of the evaluation of the frequency integral,
corresponds to removing Coulomb field contributions from
the asymptotic waveform, i.e., restricting to the radiation
field which is of interest [78].
Next, observe from Eq. (8) that the dressed momentum

P, hence the orbit X, is quadratic in the coupling e: it
follows immediately that the waveform contains terms of
all orders in e. This is both explicit, due to the presence of P
in the denominator, and implicit, in that one must solve the
δ-function constraint. This requires inverting x̂ · XðyÞ
which will introduce arbitrary nonpolynomial dependence
on the coupling. (Even for the simple but unphysical choice
of a “box” electric field, solving the constraint means
solving a cubic equation.) In general, there will be multiple
solutions to the constraint, meaning that the waveform at
any given ðu; x̂μÞ is sourced at several points on the orbit.
We examineWμν by choosing a specific planewave profile

and other kinematic data; Fig. 1 illustrates the rich structure
found in the classical waveform for a “Sauter pulse” defined
by ea1 ¼ mξsech2ðνy−Þ and a2 ¼ 0 for strength ξ and
frequency ν. Furthermore, the all orders property of the
waveform can be made explicit in the case of an impulsive
plane wave, for which all integrals can be performed; see
Supplemental Material B [75]. Alternatively, we can expand
in powers of e, recovering the first perturbative contribution
to our waveform, coming from Compton scattering in
vacuum [32]; see Supplemental Material C [75].
For any plane wave, we can consider the waveform

aligned with the direction of the background: x̂μ ¼
ffiffiffi
2

p
nμ

(the factor results from conventions). Parametrizing x̂μ by
azimuthal and polar angles ϕ and θ, respectively, alignment
with the background corresponds to θ ¼ 0. At this collinear
point the argument of the δ function is simply u −

ffiffiffi
2

p
y, and

thus has a single point of support. Most of the structure in
the waveform vanishes due to contraction or commutation
with nμ, and one finds

Wμνjθ¼0 ¼ −
e2

4π

Fμν

�
uffiffi
2

p
�

pþ
ffiffiffi
2

p ; ð11Þ

a result we will later contrast with gravity. If we consider
any other point on the celestial sphere, the waveform has a
far richer structure, though—see again Fig. 1.
Gravity.—We now require the tree-level three-point

amplitude for a massive scalar emitting a graviton, on
the gravitational plane wave background. Let the on-shell
incoming (outgoing) momentum for the scalar be pμ (p0

μ),
but let kμ now be the emitted graviton momentum.
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In contrast to QED, all particles are dressed in gravity: in
scattering calculations, any particle of asymptotic momen-
tum lμ and mass m has the dressed momentum [79,80],

LμðyÞdyμ ¼ lþdyþ þ ðliEi
a þ lþσabybÞdya

þ
�
m2

2lþ
þ γij

lilj
2lþ

þ lþ
2
_σbcybyc þ li _E

i
by

b

�
dy−;

ð12Þ
which obeys gμνLμðyÞLνðyÞ ¼ m2. Note that, in contrast to
the dressed momentum Eq. (8) in QED, the gravitational
dressing depends on the perpendicular coordinates ya. The
outgoing graviton polarization also becomes dressed by the
background; it is conveniently expressed in terms of a
projector acting on the free polarization:

Eη
μνðk; yÞ ¼ Pμνσρðk; yÞεσρη

≔
�
Pμρðk; yÞPνσðk; yÞ −

iℏ
kþ

nμnνδaρδbσσabðyÞ
�
εσρη ;

ð13Þ

where Pμνðk; yÞ ¼ gμνðyÞ − 2KðμðyÞnνÞ=kþ contains the
dressed momentum KμðyÞ of the graviton. With these
ingredients and the simplification of negligible memory,
we can write down the required amplitude [80]:

A3 ¼ −
2iκ

ℏ3=2

Z
y

exp½iVðyÞ�ffiffiffiffiffiffiffiffiffiffiffiffijEðyÞjp Eη
μνðk; yÞPμðyÞP0νðyÞ; ð14Þ

where the first line of Eq. (7) still holds; the exponent is

VðyÞ ≔ 1

ℏ

Z
y−

−∞
dz

PμðzÞKνðzÞgμνðzÞ
pþ − kþ

; ð15Þ

and jEðyÞj is the zweibein determinant. It can be checked
that all contractions between dressed momenta and polar-
izations appearing are independent of the transverse coor-
dinates, even though their constituents are not. Hence the
integrand inEq. (14) is a function of only y−, and is (trivially)
evaluated on the classical particle orbit parametrized by y−.
The calculation proceeds as in QED; we assemble the

waveform Eq. (3) from the three-point amplitude Eq. (14).
Similarly to the QED case, we can restrict the sum over
graviton polarizations to physical degrees of freedom. To
obtain the classical limit of thewaveform,we inspect powers
of ℏ in the amplitude Eq. (14) and in the definition Eq. (3);
we again find that all prefactors of ℏ cancel, and the classical
limit is obtained by setting ℏ ¼ 0 everywhere else. This
again allows thewave packet to be integrated out, arriving at

Wμνσρðu; x̂Þ ¼
κ2

π

Z
∞

0

d̂ωω2e−iωux̂½μx̂½σ

Z
y

eiωV̄ðyÞffiffiffiffiffiffiffiffiffiffiffiffijEðyÞjp

×

�
ην�γηρ�δ −

1

2
ην�ρ�ηγδ

�
P̄αβγδðx̂; yÞ

× PαðyÞPβðyÞ þ c:c:; ð16Þ

in which the reduced exponent V̄ is

1

2pþ

Z
y

−∞
dz

m2

pþ
x̂þ þ γijðzÞ

�
pþ
x̂þ

x̂ix̂j þ
x̂þ
pþ

pipj − 2pix̂j

�

¼ x̂ · XðyÞ; ð17Þ

for XðyÞ the classical particle orbit and P̄μνσρðx̂; yÞ ≔
Pμνσρðk; yÞjk̄¼ωx̂ evaluated on that orbit. Now, the tracelike
term in Eq. (16) arising from the polarization sum can be
simplified by first observing that

ηγδP̄αβγδðx̂; yÞPαðyÞPβðyÞ ¼ m2 þ 2ip2þ
ωx̂þ

�
i∂−V̄ −

1

2
σaa

�
ðyÞ:

It can be checked that the term in brackets is exactly the y−

derivative of the entire integrand in Eq. (16), and hence gives
a boundary term which can be dropped, leaving only the
mass term.
It remains to perform the ω integral. However, in contrast

to QED, the projector P̄αβγδðx̂; yÞ contains terms with
different scaling in ω. We highlight this by defining

T0
νρðx̂; yÞ ≔

Pναðx̂; yÞPρβðx̂; yÞPαðyÞPβðyÞ − 1
2
ηνρm2ffiffiffiffiffiffiffiffiffiffiffiffijEðyÞjp ;

T1
νρðx̂; yÞ ≔

δaνδ
b
ρσabðyÞ

x̂þ
ffiffiffiffiffiffiffiffiffiffiffiffijEðyÞjp p2þ; ð18Þ

FIG. 1. Two examples of the waveform Wμνðu; x̂Þ for a particle
at rest struck by the wave ea1 ¼ mξsech2ðνx−Þ and a2 ¼ 0, for
strength ξ and frequency ν. We work in units where ν ¼ 1. Top:
W1−ðu; x̂Þ as a function of u for various θ. We have fixed ξ ¼ 2
and ϕ ¼ 0. At θ ¼ 0 (red and black dashed curve), the waveform
is a multiple of the driving field Fμν as in Eq. (11), but is very
different for larger angles. Bottom: W1þðu; x̂Þ at fixed angles
θ ¼ π, ϕ ¼ 0, showing the dependence of the waveform on the
strength ξ of the background.
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such that the integrand scales in the frequency as
∼ω2T0 − iωT1. Combining the presented term in Eq. (16)
with its complex conjugate and trading explicitω factors for
y−–derivatives gives our final result for the waveform:

Wμνσρðu; x̂Þ ¼ −
κ2

π
x̂½μx̂½σ

Z
y
δ(u − V̄ðyÞ)

× ½D2T0
ρ�ν�ðx̂; yÞ −DT1

ρ�ν�ðx̂; yÞ�; ð19Þ

in which the derivative D acts as

DfðyÞ ≔ d
dy

�
fðyÞ

∂−V̄ðyÞ
�
: ð20Þ

Again, for confirmation of this result via classical general
relativity calculations, see Supplemental Material A [75].
Properties of the waveform.—Some insight into the

gravitational waveform is provided by observing from
Eq. (17) that V̄ is determined by the 0PB classical orbit
XμðyÞ of a particle crossing the plane wave spacetime. The
orbit itself goes like the integral of the transverse metric

γij ¼ EðijajEjÞ
a . Reinstating explicit dependence on the

gravitational coupling by taking Hab → κHab, it is clear
that the integral of γij will contain terms which are at least
linear in κ. Since Eq. (19) contains terms which go like V̄−1,
as well as an integral localized in terms of V̄, it follows that
the waveform will contain terms of all orders in the
background and hence in κ. To connect to the PM
construction of the waveform we expand in κ, showing
in Supplemental Material C [75] that the leading contri-
bution comes from gravitational Compton scattering.
While the nonlinearity of general relativity makes it

harder to evaluate the waveform analytically for test
plane wave profiles, progress can be made in the impulsive
case where κHabðx−Þ ¼ δðx−Þκdiagðλ;−λÞ. This is dem-
onstrated in Supplemental Material B: the resulting wave-
form is explicitly all orders in κλ. See also [81].
The structure of Eq. (19) indicates the presence of tail

effects in the gravitational waveform. This follows from the
fact that the two terms in thewaveform descend directly from
those in the polarization tensor Eq. (13). The background
dressing of this polarization is directly related to the failure of
theHuygens principle for gravitational perturbations in plane
wave spacetimes: initial data localized on a light cone spread
outside of the light cone as it evolves [79,82,83]. These
effects are present in both the T0 and T1 terms of the 1PB
waveform, with the T1 contribution being pure tail; by
comparison, in the PM expansion of the two-body problem
tail effects only emerge at fourth order (see, e.g., Ref. [17]).
These tail effects are a consequence of the inherent

nonlinearity of gravity compared to electromagnetism, and
this leads to another interesting feature of the gravitational
waveform which is not present in QED. Consider the case,
as in Eq. (11), where the direction of observation x̂μ aligns

with the wave direction nμ, corresponding to azimuthal
angle θ ¼ 0. The plane wave metric is not asymptotically
flat in precisely this (and only this) direction [84], so we
approach it with caution. For any θ ≠ 0, the gravitational
waveform is well defined, but in the limit θ → 0, it is
divergent. To see this, one expands x̂μ for small θ, i.e.,
x̂j ¼ sin θfcosϕ; sinϕg ∼ θ, and

x̂þ ¼ 1 − cos θffiffiffi
2

p ∼ θ2; x̂− ¼ 1þ cos θffiffiffi
2

p ∼ 1:

With this, it is simplest to pick components of W, and to
focus on the pure tail term which contains the deformation
tensor σ. The contribution of this term to W−a−b is

κ2p2þx̂−x̂−
πx̂þ

Z
y
δ(u − V̄ðyÞ)D σabðyÞffiffiffiffiffiffiffiffiffiffiffiffijEðyÞjp ∼

1

θ2
; ð21Þ

in which the 1=x̂þ term generates the divergence (while V̄
and ∂−V̄ remain finite in the limit θ → 0). The divergence
reflects the fact that it is not possible to “scatter” gravitons
in the nμ direction, in which the background is not
asymptotically flat; the interaction between the emitted
radiation and the background never switches off. This is in
contrast to QED, where the photon and background do not
interact, and the waveform remains finite, cf. Eq. (11).
(Indeed the distinction with QED is visible at the entirely
perturbative level of the scalar-graviton Compton ampli-
tude, which is singular at forward scattering [85].) The
angular divergence would have physical consequences; it
will enter, via the Riemann tensor, into the geodesic
deviation equation for a null congruence at the next order
of the PB expansion. The divergence will thus emerge as a
physical singularity describing a region of spacetime in
which null geodesics become infinitely separated. It would
be interesting to investigate this.
Conclusions.—We have derived the gravitational wave-

form emitted by a massive particle when it scatters off a
gravitational plane wave background, a solution to the fully
nonlinear Einstein equations. Analogous formulas have
been presented for the electromagnetic case. In contrast to
existing results, these waveforms are manifestly all orders
in the coupling, and exhibit a rich structure including tail
effects that usually enter at higher order in the PM
expansion. Our results underline the power of using
strong-field amplitudes to study classical physics [46]. In
future work we aim to go to higher orders in the PB
expansion, including higher points and loops. There is no
conceptual obstacle to doing so, and we expect this to
provide easier access to observables of interest in classical
gravity. It would also be interesting to consider other
physically relevant strong backgrounds, like black holes
or beams of gravitational radiation, and to analyze our
results for specific profiles arising as plane wave limits of
these backgrounds.
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