
Improved Hot Dark Matter Bound on the QCD Axion

Alessio Notari ,1,* Fabrizio Rompineve ,2,† and Giovanni Villadoro 3,‡
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We obtain a reliable cosmological bound on the axion mass ma by (1) deriving the production rate
directly from pion-pion scattering data, which overcomes the breakdown of chiral perturbation theory and
results in ∼30% differences from previous estimates; (2) including momentum dependence in the
Boltzmann equations for axion-pion scatterings, which enhances the relic abundance by ∼40%. Using
present cosmological datasets we obtain ma ≤ 0.24 eV, at 95% C.L. We also constrain the sum of neutrino
masses,

P
mν ≤ 0.14 eV at 95% C.L., in the presence of relic axions and neutrinos. Finally, we show that

reliable nonperturbative calculations above the QCD crossover are needed to exploit the reach of upcoming
cosmological surveys for axion detection.
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Introduction.—The absence of CP violation in QCD is
one of the long-standing motivations for physics beyond
the standard model (SM). Its simplest explanation, the
Peccei-Quinn (PQ) mechanism [1,2], predicts the existence
of a light (pseudo)scalar particle [3,4], the axion a, which
can, moreover, play the role of the dark matter and whose
detection is among the most important endeavours in
particle physics of our times. As such, it is currently being
tackled via a diverse array of experimental, astrophysical,
and cosmological strategies.
This effort is especially challenging, in that first, axion

interactions must be very suppressed in order not to affect
stellar evolution (see Ref. [5]); second, relic cold axions
produced via the misalignment mechanism [6–8] and the
decay of topological defects [9–11] may only make a small
fraction of the observed dark matter abundance, depending
on the axion mass ma, and this would then hinder any
detection strategy which relies on identifying the axion
with the dark matter. Astrophysical searches are a prom-
ising alternative, but are affected by larger uncertainties
(see, e.g., recent conflicting reassessments [12–14] of the
SN1987A constraint, for bounds from other sources, see
Refs. [15–18]).
In this Letter, we focus on a different route to axion

detection, which partially escapes the shortcomings above,
while relying only on the unavoidable ingredient of the PQ

mechanism: the axion coupling to QCD. The resulting
scattering processes (most importantly with pions) can be
effective in the early Universe at temperatures T ∼
100 MeV and above, thereby generating a population of
relativistic axions [19–24]. Very much like neutrinos, these
behave as “hot,” rather than cold, dark matter (HDM)
components, and can thus be searched for, or constrained,
using observations of the cosmic microwave background
(CMB) [25] and of cosmic large scale structure (LSS).
Given the recently attained precision of such datasets, as
well as the important sensitivity improvements of current
[26–28] and upcoming [29–32] cosmological surveys, the
crucial theoretical task is to reliably predict the axion HDM
abundance. This sets the goal of this Letter.
Long-employed estimates of axion production via scat-

terings with pions, based on computations at leading order
(LO) in chiral perturbation theory (χPT) [22] (see
Refs. [33–37] for corresponding HDM bounds on ma from
CMB data), have been recently shown to be unreliable [38],
since the rate receives large one-loop corrections at
T ≳ 70 MeV. This significantly reduces the range of
temperatures up to which theoretical control of uncertain-
ties can be maintained. Consequently, the corresponding
cosmological constraints [39] are weaker than those set by
solar axion experiments [40] (although these rely on the
model-dependent axion coupling to photons).
We overcome this obstacle using a novel approach: we

employ experimental data on ππ ↔ ππ scattering, which
indeed extend to regions where LO χPT fails. We then point
out that the aπ cross sections can be obtained by a simple
rescaling, owing to the well-known fact that a π0 field
contains an a component (see [41] for a similar strategy and
[42] for production in stars). This allows us to obtain a
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reliable axion production rate up to the QCD confinement
temperature Tc ≲ 150 MeV. In particular, unlike [43–45],
conservatively we do not rely on interpolations between LO
χPT and perturbative QCD rates.
We then present an equally important novelty for the

axion HDM abundance calculation. At the temperatures of
interest, the evolution of the thermal plasma in the Universe
is strongly affected by the QCD crossover, whereby heavy
hadrons form and rapidly transfer significant entropy to the
remaining light degrees of freedom. This invalidates the
previously employed equilibrium assumption for the axion
phase space distribution, which we indeed find to be
significantly distorted, by solving momentum-dependent
Boltzmann equations. This leads to a previously over-
looked enhancement of the axion HDM abundance, which
is much more significant than in the familiar case of
neutrino decoupling during eþe− annihilation [46,47]
(see Ref. [48] for related work focused on heavy axions).
The two advances above allow us to set a reliable upper

bound on ma from cosmology, which importantly extends
to the region targeted by future solar axion experiments
[49,50]. Furthermore, our work additionally reveals pre-
viously neglected nonperturbative QCD contributions to
axion production at Tc and above, motivating dedicated
studies to correctly interpret the implications of forth-
coming experiments for axion detection.
Boltzmann equations.—We focus on the minimal model-

independent axion interaction, Lint ¼ αsaGG̃=ð8πfaÞ, with
G the gluon field strength, G̃ its dual, αs the strong coupling
constant, and fa ¼ 107 GeVð0.57 eV=maÞ [51] the axion
decay constant.
We use the momentum-dependent Boltzmann equations

to compute the actual spectrum of axions produced via
scatterings. We find this to be necessary, for two reasons.
First, the initial axion abundance may be negligible and
production may not be efficient enough, so that the axion
spectrum never reaches the equilibrium distribution.
Second, even when reaching equilibrium, interaction rates
depend on the axion momentum, so that high momenta
decouple later than low momenta. Since the number of
relativistic degrees of freedom g�;S decreases quickly and
substantially with temperature around Tc, high momenta
are less diluted with respect to photons than low momenta.
The Boltzmann equations for the axion distribution

function fp, with comoving 3-momenta p, reads [20,52]

dfp
dt

¼ ð1þ fpÞΓ< − fpΓ>; ð1Þ

where the axion, with negligible mass at the time of
production, has physical energy E ¼ jpj=R and four-
momentum kμ ¼ ðE;kÞ, R is the scale factor, t is cosmic
time, and the energy dependent rates Γ< and Γ> describe
creation and destruction of an axion. Thermal equilibrium
of the QCD bath implies Γ> ¼ eE=TΓ<. At weak coupling

the rates are dominated by 2 ↔ 2 scatterings, with ampli-
tude M, leading to [52]:

Γ< ¼ ð2πÞ4
2E

Z �Y3
i¼1

d3ki

ð2πÞ32Ei

�
feq1 f

eq
2 ð1þ feq3 Þ

× δð4Þðkμ1 þ kμ2 − kμ3 − kμÞjMj2; ð2Þ

where feqi ≡ ðeEi=T − 1Þ−1. For ππ ↔ πa scatterings, the
physical four-momenta are k1 and k2 for the incoming
pions, k3 for the emitted pion.
The axion relic abundance is then commonly expressed

in terms of the effective number of (massless) neutrino
species beyond the SM neutrinos Nν ≈ 3.044 [53–55]:
ΔNeff≡Neff−Nν¼ð8=7Þð11=4Þ4=3ðρ̃a=ργÞrec, where ρ̃a; ργ
are the energy densities of axions for ma ¼ 0 and photons
respectively, evaluated at recombination. While in our
region of interest ma is actually close to the recombination
temperature (≲eV), we still use ΔNeff as a conventional
parametrization of the axion abundance.
We make contact with previous momentum-independent

treatments in the literature [56] through the averaged rate

Γ̄≡ 1

neq

Z
d3k
ð2πÞ3 Γ

<; ð3Þ

with neq ≡ R
d3k=ð2πÞ3feqp . Furthermore, under the

assumption of instantaneous decoupling of an initial
equilibrium axion abundance, the approximation ΔNeff ≃
0.027½106.75=g�;SðTdÞ�4=3 is commonly used, with Td de-
fined by Γ̄ ¼ HjT¼Td

and H ≡ _R=R. As mentioned above,
neither of these two approaches is justified in our case.
Axion rate below Tc.—At T ≲ Tc the QCD thermal bath

is dominated by pions. As pointed out in Ref. [38], next-to-
leading-order (NLO) corrections invalidate the LO χPT
computation already at T ≳ 60 MeV. In retrospect, this is
not surprising given that (1) the typical center of mass
energy

ffiffiffi
s

p
for two pions at such temperatures is already

above 0.4 GeVand (2) the scattering amplitudes grow with
energy, thereby more energetic pions, for which χPT is
even more unreliable, are weighted more in the integral (3).
In fact, the same problem was tackled long ago for pion

damping rates [76–78] by using experimental π − π scat-
tering data directly. With this strategy, the pion rate was
computed up to T ¼ Tc (beyond which the rate becomes
rapidly comparable with the mass and pions cannot be
considered as elementary particles anymore). In an attempt
to rescue the χPT computation, Ref. [78] proposed also a
unitarization approach, where the χPT expansion is applied
to (functions of) the scattering phase shifts rather than to the
amplitude M. Unitarity is then respected, taming the
growth at high energies. The unitarization procedure is,
however, not unique. While some choices agree well with
experimental data, without the latter it would be hard to
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defend the use of one particular prescription, or why
higher-order corrections can be neglected.
Unfortunately, for axions there are no experimental data

and at a first glance it seems that only unitarization could
improve on the fixed order χPT computation. However, in
the PQ mechanism the neutral pion mixes with the axion
[3], such that a-π and π0-π amplitudes are related by the
simple rescaling:

Maπi→πjπk ¼
ϵfπ
2fa

Mπ0πi→πjπk þO
�
m2

π

s

�
; ð4Þ

with fπ ¼ 92.3 MeV, mπ ¼ 138 MeV (we use the average
pion mass), ϵ≡ ðmd −muÞ=ðmd þmuÞ, where mu and md
are up and down quark masses, mu=md ≃ 0.47 [79]. That
this relation holds at LO and NLO order can be checked by
a direct comparison of the amplitudes for π-π [80] and a-π
[22,38] scattering. In fact, it remains valid at all orders in
χPT (see [56] for details). The Oðm2

π=sÞ corrections near
the two pions threshold can be computed directly at LO and
they are at most Oð10%Þ and rapidly decrease at higher
energies. While here we focused on the model-independent
coupling of the QCD axion, Eq. (4) can easily accom-
modate general axion couplings, by replacing ϵ with the
corresponding mixing [56].
Thanks to Eq. (4) phenomenological fits of π-π scatter-

ing data can be used to reconstruct a-π scattering ampli-
tudes with a few percent precision up to Tc. To compute
Γ> we applied Eq. (4) to the phenomenological π-π partial
wave amplitudes provided in Refs. [81,82] (specifically the
S0, S2, and P waves, valid up to the two-kaon thresholdffiffiffi
s

p ¼ 2mK ≃ 1 GeV, while we checked that higher partial
waves contribute negligibly). The result is presented in
Fig. 1 (solid blue curve, upper panel), for a reference
temperature T ¼ 120 MeV. As expected, it decreases
sharply at large momenta, in contrast to the LO a-π rate
(dashed). The corresponding averaged rates are shown in
Fig. 1 (lower panel) and differ by ∼30%.
The decrease of the a-π rate at high temperatures is in

part due to the opening of new scattering channels (see [77]
for an analogous discussion for pions). Using the LO χPT
Lagrangian, we checked, for instance, that scatterings with
kaons πK → aK are subleading below Tc, but would
dominate above T ≃ 200 MeV [56] (similar considerations
may apply to scattering off nucleons). While in general a
χPT calculation for these processes is less reliable, such an
estimate shows that the phenomenological a-π rate domi-
nates the axion thermalization rate at low temperatures,
representing a reliable lower bound at T ≲ Tc.
Integrating numerically Eqs. (1) [56] and assuming

conservatively no extra production from T > Tc, we get
the lower bound on ΔNeff (boundary of the solid blue
region) in Fig. 2. Because of the rapid change in g�;S axions
decouple with a distorted spectrum. The main consequence
is a large enhancement of ΔNeff , by ∼40% (compared to

the momentum-independent result, dotted black curve in
Fig. 2), while the residual distortion of the shape only has
minor effects on the cosmological analysis presented below
(see also [56] and [83,84] for related discussion on
neutrinos). A slightly less conservative assumption is to
consider the axion in thermal equilibrium at some temper-
ature T > 1 TeV (with g�;S saturated by the standard
model), see Fig. 2 (boundary of the light blue region).
Estimates above Tc.—Above Tc the QCD bath has a

smooth crossover from the hadronic phase to a quark-gluon
plasma. The crossover is fully nonperturbative and the rates
(2) should be replaced with Γ> ¼ Γ>

top=ð2Ef2aÞ, with the
topological rate

Γ>
top ≡

Z
d4xeik

μxμ

�
αs
8π

GG̃ðxμÞ αs
8π

GG̃ð0Þ
�
; ð5Þ

where h� � �i stands for thermal average. At present, we are
not aware of any computation of Eq. (5) in this regime, a
challenging task beyond the aim of this work. All we can
attempt is a very rough estimate of Γ̄ during the crossover,
say for Tc ≲ T ≲ 2 GeV, using dimensional analysis, i.e.,
Γ̄ ∼ κT3=f2a, where κ is an unknown coefficient. For
illustrative purposes we choose two reference values κ ¼
0.01 and κ ¼ 0.1 in Fig. 2, justified as follows.

FIG. 1. Scattering rates for aπ ↔ ππ. Top: momentum de-
pendent axion destruction rates at T ¼ 120 MeV. Bottom:
averaged rates.
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First, at T ≳ fπ the a-π rate just below Tc is
∼0.04ϵ2T3=f2a. The isospin breaking suppression ϵ is
present only in the coupling to pions but not to other
hadrons [56]. Factoring that away and considering the
contributions from other states above Tc, it is reasonable to
expect κ ∼Oð0.1Þ at around Tc and slightly above.
Second, recent attempts in pure SUð3Þ lattice gauge

theory estimate Γsph ≡ Γ>
topðkμ ¼ 0Þ ≃ κlattT4 for the zero

mode, with κlatt ranging from Oð0.1Þ to Oð0.01Þ as T
increases from Tc to 1 GeV [85,86].
We stress that our dimensional analysis estimate for the

nonperturbative contribution is provided only to highlight its
potential importance, especially for upcoming experiments.
Note also that in the same range of temperatures

(150 MeV≲ T ≲ 500 MeV), the most interesting ones
for the upcoming CMB experiments, entropy and energy
densities have the largest relative variation [87]. Thus the
spectral distortion discussed before is expected to be even
more relevant in this case; it becomes thereforemandatory to
study the full energy dependence in Eq. (5) with nonpertur-
bative methods, in order to correctly assess the implications
of forthcoming experiments for the axion parameter space.
At sufficiently large temperatures QCD becomes

weakly coupled and the axion rates are dominated by

the perturbative scattering with gluons and quarks
[24,88,89]. In principle, one could interpolate these large
temperature asymptotic computations with the low temper-
ature ones from pion scattering discussed before to estimate
the rates in the strongly coupled intermediate region, as in
Refs. [43,44]. However, such strategy has two potential
problems. First, perturbative computations at finite temper-
ature are affected by infrared divergences of two kinds, one
related to forward scattering [24,88] and the other to
collective effects [90,91], which are intrinsically nonper-
turbative. The former have been improved in [89] but a full
next-to-leading order computation is still missing and the
minimum temperature at which such computation is
reliable is unknown. The latter are connected to the strong
sphaleron rates Γsph introduced above and a semiclassical
estimate (see [56] for more details) seems to suggest that
they dominate over the perturbative contribution well above
Tc. The second potential problem is that many quantities,
such as the free energy, present sudden changes in the
crossover region due to the large number of degrees of
freedom that freeze out. In particular, for the axion rates we
already know that below Tc the only non-Boltzmann
suppressed contribution comes from the scattering with
pions, whose coupling is, however, isospin suppressed.
Above Tc many more degrees of freedom will start
contributing without isospin or Boltzmann suppressions.
This suggests that the axion rate might not have a
completely smooth interpolation between the low and high
temperature regions, which raises doubts on the reliability
of the rates used in [43–45].
Current bound and outlook.—Using the “pions only”

curve in Fig. 2 we set a conservative upper bound on ma

from Planck 2018 CMB data [92], baryon acoustic oscil-
lations [93–96] and pantheon supernovae [97] (see [56]).
We modified the Boltzmann solver CLASS [98,99] to
include the axion with its actual distribution function
[56]. We ran a Markov chain Monte Carlo (MCMC)
analysis of the ΛCDMþP

mν þma cosmological model,
where

P
mν ≥ 0.06 eV [79] is the sum of the neutrino

masses, using the MontePython sampler [100,101]. We find
ma ≤ 0.24 eV, corresponding to ΔNeff ≲ 0.19 (red line
with star in Fig. 2), and

P
mν ≤ 0.14, both at 95% C.L.

(statistical error only); the 2D posterior distributions of ma

and
P

mν are reported in Fig. 3 [56]. Despite the large
enhancement from momentum dependence, our bound on
ma is similar to the previous result based on the LO
calculation until Tc [102], because our new rate is smaller
at T ≲ Tc.
Importantly, our new bound does not rely on interpolated

rates above Tc, as in [45], which as we have argued are not
under control, see also [56].
Our conservative bound, which uses only the axion

coupling required to solve the strong CP problem, can be

FIG. 2. Relic abundance for an axion minimally coupled to
QCD. The 95% C.L. expected sensitivities of upcoming CMB
surveys for massless species at recombination are shown by the
dot-dashed gray lines, see text for details. The red curve above the
star is excluded at 95% C.L. by our new analysis, and corre-
sponds to a would-be decoupling temperature Td ≲ 150 MeV
[Td here is just a reparametrization of ΔNeff as defined below
Eq. (3)]. The dot-dashed blue and dashed purple curves include
an initial thermal population at T ¼ 1 TeV. The purple curves
also include tentative estimates of nonperturbative production
above Tc.
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either weaker or stronger than the astrophysical constraints
from globular clusters [16] (see [17] for a recent more
constraining update) and than solar axion searches [40],
depending on the UV structure of the axion model. It is
significantly weaker than the constraints of Refs. [14,18],
which are, however, subject to astrophysical uncertainties.
In contrast, our bound only relies on standard cosmology
below Tc.
While we did not include nonperturbative production in

our MCMC search in the conservative spirit of our work,
Fig. 2 shows that it could significantly strengthen the
current bound. Even more importantly, as shown on the
right vertical axis of Fig. 2, the upcoming Simons
Observatory [29] and CMB-S4 [30] will probe axion
production during the QCD crossover. In particular, they
could reach ma ∼ 0.01 eV, and possibly even below, close
to the region where cold axions can be the dark matter (note
that the dashed purple curves in Fig. 2 do not include
production above T ¼ 2 GeV nor the enhancement due to
the rapid variation of g�;S above Tc).
Such exciting possibilities motivate a dedicated study of

axion production rates by nonperturbative methods, for
arbitrary axion momenta, beyond the attempts made so far
only for the zero mode.
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