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Ultralight scalar dark matter may induce apparent oscillations of the muon mass, which may be directly
probed via temporal shifts in the spectra of muonium and muonic atoms. Existing datasets and ongoing
spectroscopy measurements with muonium are capable of probing scalar-muon interactions that are up to
12 orders of magnitude more stringent than astrophysical bounds. Ongoing free-fall experiments with
muonium can probe forces associated with the exchange of virtual ultralight scalar bosons between muons
and standard-model particles, offering up to 5 orders of magnitude improvement in sensitivity over
complementary laboratory and astrophysical bounds.
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Introduction.—Various astrophysical and cosmological
observations at different epochs indicate that the Universe
is predominantly composed of dark matter (DM) and dark
energy, with only a mere five percent due to the ordinary
matter that makes up stars, planets, dust, and interstellar
gases [1]. Unravelling the identity and microscopic proper-
ties of DM remains one of the greatest challenges in
modern science. Conventional schemes for direct detection
of DM have largely focused on possible particlelike
signatures of weakly interacting massive particles with
masses in the ∼GeV − TeV range [2]. On the other hand,
ultralight bosons with sub-eV masses and a high number
density may produce distinctive wavelike signatures.
Ultralight bosons may also resolve other outstanding
problems outside of astrophysics; for example, the axion
(a pseudoscalar particle) may resolve the strong CP
problem of quantum chromodynamics [3], while the
relaxion (a scalar particle) may resolve the electroweak
hierarchy problem [4].
There has been growing interest, in recent years, to

search for ultralight scalar DM via its interactions with
photons, electrons, and nucleons; see Ref. [5] for a recent
overview. However, comparatively few studies of the
possible interactions of ultralight scalar DM with muons
have been undertaken. In contrast to electrons and nucle-
ons, there are no stable terrestrial sources of muons. As a
result, there are no direct stringent constraints on the linear
interaction of ultralight scalar bosons with muons from
laboratory searches for equivalence-principle-violating
forces, which, by contrast, place very stringent bounds

on the linear interaction of ultralight scalar bosons with
electrons and nucleons [6–12]. Additional motivation for
probing scalar-muon interactions comes from the persist-
ence of various anomalies in muon physics, including the
proton radius inferred from measurements of the Lamb
shift in hydrogenlike muonic atoms [13–17] and the muon
anomalous magnetic moment [18–20].
In this Letter, we point out that spectroscopy measure-

ments with muonium and muonic atoms can provide
sensitive novel probes of ultralight scalar DM via its
interaction with muons. Spectroscopy measurements in
muonium [21–25] and muonic atoms [13–16] have pro-
vided high-precision tests of bound-state quantum electro-
dynamics, as well as precise determination of fundamental
constants. We estimate that existing datasets and ongoing
spectroscopy measurements with muonium are capable of
probing scalar-muon interactions that are up to 12 orders of
magnitude more stringent than astrophysical bounds. This
opens an exciting new avenue in direct searches for DM.
We also point out that free-fall experiments with muonium
can provide sensitive probes of forces associated with the
exchange of virtual ultralight scalar bosons between muons
and standard-model particles.
Theory.—Ultralight bosons are a good candidate for

explaining the observed DM. Ultralight spinless bosons
may be produced nonthermally via the classic “vacuum
misalignment”mechanism in the early Universe [26–28] or
via the “thermal vacuum misalignment” mechanism [29]
and can subsequently form a coherently oscillating classical
field

ϕðtÞ ≈ ϕ0 cosðωϕtÞ; ð1Þ

which oscillates at the angular frequency ωϕ ≈mϕc2=ℏ
governed approximately by the mass of the DM particle
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mϕ, with c the speed of light in vacuum, and ℏ the reduced
Planck constant. Unless explicitly stated otherwise, we
adopt the natural system of units ℏ ¼ c ¼ 1. The oscillating
DM field in Eq. (1) carries an energy density, averaged over
a period of oscillation, of hρϕi ≈m2

ϕϕ
2
0=2. In the standard

halo model, DM bosons in our local Galactic region are
expected to have a root-mean-square speed of hv2ϕi1=2 ∼
10−3c relative to the Galactic Center, with a comparable
spread in boson speeds. Hence, the typical spread in the
DM boson energies is expected to be ΔEϕ=Eϕ ∼ hv2ϕi=c2∼
10−6, implying a coherence time of τcoh ∼ 2π=ΔEϕ∼
106Tosc, where Tosc ≈ 2π=mϕ is the DM period of oscil-
lation. In Eq. (1), we have neglected small motional
gradient terms.
A scalar field ϕ can couple to standard-model (SM)

fields via the following linear-in-ϕ interactions:

Llin
int ¼

ϕ

Λγ

FμνFμν

4
−
X

ψ

ϕ

Λψ
mψ ψ̄ψ ; ð2Þ

where the first term represents the coupling of ϕ to the
electromagnetic field tensor F, while the second term
represents the coupling of ϕ to the SM fermion fields ψ ,
with mψ the “standard” mass of the fermion, and ψ̄ ¼ ψ†γ0

the Dirac adjoint. The parameters Λγ and Λψ denote the
respective effective new-physics energy scales. The linear
couplings in Eq. (2) can be generated, e.g., via the super-
renormalizable interaction of ϕ with the Higgs field [30]
or from CP-violating pseudoscalar-fermion couplings
[31,32]. These linear couplings may be absent, however,
e.g., as a result of an underlying Z2 symmetry (invariance
under the transformation ϕ → −ϕ). In this case, ϕ could
couple to SM fields via the following quadratic-in-ϕ
interactions with the effective new-physics energy scales
Λ0
γ and Λ0

ψ :

Lquad
int ¼

�
ϕ

Λ0
γ

�
2 FμνFμν

4
−
X

ψ

�
ϕ

Λ0
ψ

�
2

mψ ψ̄ψ : ð3Þ

The interactions in Eqs. (2) and (3) effectively alter the
electromagnetic fine structure constant α and fermion
masses according to [33,34]

α→
α

1−ϕ=Λγ
≈α

�
1þ ϕ

Λγ

�
; mψ →mψ

�
1þ ϕ

Λψ

�
; ð4Þ

α →
α

1 − ðϕ=Λ0
γÞ2

≈ α

�
1þ

�
ϕ

Λ0
γ

�
2
�
;

mψ → mψ

�
1þ

�
ϕ

Λ0
ψ

�
2
�
; ð5Þ

where we have assumed small perturbations. Hence, in the
case of the oscillating scalar field ϕ in Eq. (1), one expects

the following apparent oscillations in the value of the muon
mass mμ:

Δmμ

mμ
≈
ϕ0 cosðmϕtÞ

Λμ
≈

ffiffiffiffiffiffiffiffi
2ρϕ

p
cosðmϕtÞ

mϕΛμ
;

Δmμ

mμ
≈
ϕ2
0 cosð2mϕtÞ
2ðΛ0

μÞ2
≈
ρϕ cosð2mϕtÞ
m2

ϕðΛ0
μÞ2

: ð6Þ

In Appendix A, we estimate the relative sensitivities of
selected transitions in muonium (e−μþ bound state), true
muonium (μ−μþ bound state), and hydrogenlike muonic
atoms (bound state of a muon and hadronic nucleus) to
variations of mμ and other fundamental constants. The
relative sensitivity coefficients for variations ofmμ (defined
as Δν=ν ¼ KμΔmμ=mμ) are jKμj ≈ 1 for most of the
considered transitions. Notable exceptions arise for the
1S − 2S interval in muonium (Kμ ≈me=mμ), the 2S − 2P
Lamb shift in muonium (Kμ ≈ 3me=mμ), and the ground-
state hyperfine splitting interval in hydrogenlike muonic
atoms (Kμ ≈ 2).
A variety of reference frequencies can be used in

measurements of transition frequencies in muonium or
muonic atoms. For instance, the experiment at RAL [23,35]
used molecular iodine, the ongoing Mu-MASS experiment
at PSI [36] uses GPS-based Cs and Rb microwave atomic
clocks [37], the experiments at LAMPF [22,38] used
atomic frequency standards contributing to the LORAN-
C navigation system, while the MuSEUM experiment at
J-PARC [24] used an oven-controlled crystal oscillator
[39]. All such conventional reference frequencies are
sensitive to variations of α and me (and also, in some
cases, to variations of the nucleon and light-quark masses),
but they are practically insensitive to variations of mμ.
Hence, in comparisons of a transition frequency in muo-
nium or a muonic atom with a conventional reference
frequency, the relative sensitivity of the frequency ratio to
variations of mμ is simply given by the value of Kμ for the
transition in muonium or muonic atom.
Direct signatures.—Now, let us appraise the sensitivities

of spectroscopy measurements in muonium and muonic
atoms to the new-physics energy scales Λμ and Λ0

μ

appearing in Eqs. (2) and (3) via the apparent oscillations
ofmμ induced by an ultralight scalar DM field according to
Eq. (6). In Appendix B, we discuss some general details of
searches for signals induced by an oscillating DM field.
Here, we focus on discussion of specific experimental
platforms. We assume that the interaction of ϕ with muons
is much stronger than with other SM fields and that ρϕ is
equal to the average local Galactic DM density, ρϕ ¼
ρDM ≈ 0.4 GeV=cm3 [1].
Muonium: Measurements of the 1S − 2S interval in

muonium were performed at RAL with a precision of
Δν=ν ≈ 4 × 10−9 [23,35]. About 5 weeks of measurements
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were performed over a period of ≈5 yr, with a single line
scan taking ≈30–40 h and consisting of ≈20measurements
at different frequencies. Using Eq. (6) and noting that Kμ ≈
me=mμ for the 1S − 2S transition in muonium, we estimate
the sensitivity of this existing dataset to Λμ and Λ0

μ as
shown by the solid red lines in Fig. 1. The ongoing Mu-
MASS experiment at PSI is targeting an improved pre-
cision of Δν=ν ≈ 4 × 10−12 with ≈40 d of measurements
[36]. Assuming that a single line scan takes ≈7 h [37], we
estimate the sensitivity of these ongoing measurements to
Λμ and Λ0

μ as shown by the dashed red lines in Fig. 1.
Low-field measurements of the ground-state hyperfine

splitting interval in muonium were performed at LAMPF
with a precision of Δν=ν ≈ 3 × 10−7 [21]. High-field
measurements with an improved precision of Δν=ν ≈ 1.2 ×
10−8 were subsequently performed at LAMPF [22,38,44].
In the latter case, several months of measurements were
performed over a period of nearly a decade, with a single
line scan taking ≈1 h. Using Eq. (6) and noting that
Kμ ≈ −1 for the ground-state hyperfine transition in muo-
nium, we estimate the sensitivity of this existing dataset to
Λμ and Λ0

μ as shown by the solid blue lines in Fig. 1. More
recent low-field measurements were performed in the
MuSEUM experiment at J-PARC with a precision of
Δν=ν ≈ 9 × 10−7 [24], where only a single line scan was
performed in ≈15 h. The continuing MuSEUM experiment
at J-PARC is targeting an improved precision of Δν=ν ≈
1.2 × 10−9 with ≈40 d of high-field measurements [24].
Assuming that a single line scan takes ≈6 h [39], we
estimate the sensitivity of these ongoing measurements to
Λμ and Λ0

μ as shown by the dashed blue lines in Fig. 1.

Recent measurements of the 2S − 2P Lamb shift in
muonium were performed in the Mu-MASS experiment at
PSI with a precision of Δν=ν ≈ 2.4 × 10−3 [25]. Data
taking took place continuously over 2 d, with a single
line scan taking ≈3 h. The continuing Mu-MASS experi-
ment at PSI is targeting an improved precision of Δν=ν ≈
10−5 with ≈10 d of measurements [45]. True muonium has
yet to be observed directly, but there are plans to measure
its ground-state hyperfine splitting interval with a precision
of Δν=ν ∼ 10−4 [37,46].
Hydrogenlike muonic atoms: Measurements of the

2S − 2P Lamb shift have been performed in various H-like
muonic atoms, including muonic hydrogen [13,14], muonic
deuterium [15], and muonic helium [16], with a typical
precision of Δν=ν ∼ 10−5. These experiments were per-
formed over the span of several years, with each experiment
collecting ∼10 d of data. Using Eq. (6) and noting that
Kμ ≈ 1 for the 2S − 2P Lamb shift in H-like muonic atoms,
we estimate the sensitivity of this combined existing dataset
to Λμ and Λ0

μ as shown by the solid green lines in Fig. 1.
Measurements of 1S − 2P lines in H-like muonic gold have
recently been performed in the muX experiment at PSI with
a precision ofΔν=ν ∼ 10−3 [47]. TheCREMAcollaboration
aims tomeasure the ground-state hyperfine splitting interval
in muonic hydrogen with a precision of Δν=ν ≈ 10−6 in
about 2 weeks of measurements [48,49].
Indirect signatures.—The exchange of a virtual scalar

bosonϕ between SMparticles generates a potential between
the SM particles. For simplicity, let us assume the flavor-
dependent hierarchy of scales Λμ ≪ Λe ≪ Λother, where
Λother denotes new-physics energy scales associated with

(b)(a)

FIG. 1. Estimated sensitivities to (a) the linear scalar-muon interaction parameter Λμ in Eq. (2) and (b) quadratic scalar-muon
interaction parameter Λ0

μ in Eq. (3) of possible searches for apparent oscillations of the muon mass using existing datasets (solid lines)
and ongoing measurements (dashed lines) pertaining to spectroscopy measurements of the 1S − 2S interval in muonium (red), ground-
state hyperfine splitting interval in muonium (blue), and 2S − 2P Lamb shift in muonic atoms (green). We assume that
ρϕ ¼ ρDM ≈ 0.4 GeV=cm3. However, note that, for scalar masses mϕ ≲ 10−21 eV, such scalars cannot account for 100% of the
DM [40–43]. The sensitivities of the considered spectroscopy experiments to Λμ scale as ∝

ffiffiffiffiffi
ρϕ

p , meaning that for ρϕ=ρDM ¼ Oð0.1Þ
corresponding to the maximum allowable fraction when mϕ ≲ 10−21 eV, the sensitivity weakens by a factor of ≈3. Astrophysical
bounds are shown by the grey regions. Sensitivities and limits are given at the 1σ level. See the main text and Appendices B and C for
more details about the sensitivity estimates and complementary limits.
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SMparticles other than the electron andmuon. The exchange
of ϕ between a nonrelativistic electron and muon generates
the Yukawa-type potential VðrÞ ¼ −memμ expð−mϕrÞ=
ð4πΛeΛμrÞ, where r is the distance between the electron
and muon. Integrating over a homogeneous spherical source
body of radius R and electron number density ne, one finds

VðrÞ

¼ −
nememμ½mϕR coshðmϕRÞ − sinhðmϕRÞ� expð−mϕrÞ

m3
ϕΛeΛμr

:

ð7Þ
In the limiting case, when mϕR ≪ 1, the potential in (7)
simplifies to the two-pointlike-particle form with all source
electrons localized at the central point of the source body.
A test body of massmtest containing a single (anti)muon,

such as ordinary muonium or a H-like muonic atom, would
experience the additional acceleration aμðrÞ ¼ −∇VðrÞ=
mtest. On the other hand, ordinary test bodies devoid of
(anti)muons would experience much smaller additional
accelerations, thereby violating the equivalence principle.
For example, the value of the local gravitational acceler-
ation due to Earth, g, measured in free-fall experiments
using muonium test atoms would differ from experiments
using nonmuonic test masses, with the difference being
Δg ≈ aμ. The ongoing LEMING experiment at PSI [50]
and proposed MAGE experiment [51] aim to measure g
with a precision of Δg=g ∼ 0.1 using free-falling muonium

test atoms in ∼10–100 d of measurements. Using Eq. (7)
and noting that mtest ≈mμ for muonium, we estimate the
sensitivity of the ongoing LEMING experiment to the
combination of parameters ΛeΛμ as shown by the red line
in Fig. 2. For boson masses mϕ ≲ 1=R⊕ ≈ 3 × 10−14 eV,
the sensitivity toΛeΛμ is approximately independent ofmϕ.
For boson masses 1=R⊕ ≲mϕ ≲ 1=h, where h is the
apparatus height above Earth’s surface, the sensitivity to
ΛeΛμ scales approximately as ∝ m−1

ϕ . Finally, for boson
masses mϕ ≳ 1=h, the sensitivity to ΛeΛμ falls off expo-
nentially with increasingmϕ. We assume h ∼ 1 m in Fig. 2.
We see that ongoing free-fall experiments with muonium
are capable of probing values of ΛeΛμ that are up to 5
orders of magnitude more stringent than complementary
laboratory and astrophysical bounds.
Discussion.—From Fig. 1, we can see that searches for

apparent oscillations of mμ with muonium spectroscopy
measurements are capable of probing scalar-muon inter-
actions that are up to 12 orders of magnitude more stringent
than astrophysical bounds, which do not necessarily
assume that ultralight scalars make up any fraction of
the DM and, hence, are independent of ρϕ. The peak
sensitivities of older spectroscopy datasets and ongoing
spectroscopy measurements to Λμ and Λ0

μ are comparable;
however, newer ongoing measurements taken over shorter
timescales may provide better sensitivity to Λμ and Λ0

μ in a
range of higher scalar masses than older datasets of much
longer duration. We note that the astrophysical bounds
shown in Fig. 1, which are derived from systems involving
(proto)neutron stars, only strictly apply to interactions of
muons due to the asymmetric nature of the μ − μ̄ pop-
ulation in (proto)neutron stars. These astrophysical bounds
are weaker in the case of interactions of antimuons, which
would increase the potential reach of spectroscopy mea-
surements of μ̄-containing systems like muonium if the
CPT symmetry is violated due to Λμ̄ ≠ Λμ or Λ0̄

μ ≠ Λ0
μ.

Our proposed spectroscopy methods to probe ultralight
DM via scalar-muon couplings offer significantly more
reach than the storage-ring methods discussed in
Refs. [52,53] to probe ultralight DM via the pseudosca-
lar-muon coupling. The main reason is that scalar-type
couplings are nonderivative in nature and their DM-
induced signatures generally grow with decreasing mϕ,
see Eq. (6). On the other hand, pseudoscalar-type couplings
are derivative in nature and their DM-induced signatures
are generally independent of mϕ. Our proposed spectros-
copy approach also offers up to 2 orders of magnitude
better sensitivity than the storage-ring proposal in Ref. [54]
to probe ultralight DM via scalar-muon couplings. Finally,
we note that the screening mechanism discussed in
Ref. [11] for quadratic scalar-type interactions of ultralight
DM is largely evaded in the case of the quadratic scalar-
muon coupling considered in our present Letter, since Earth
is practically devoid of muons and antimuons.

FIG. 2. Estimated sensitivities to the product of the linear
scalar-electron and scalar-muon interaction parameters, ΛeΛμ,
defined in Eq. (2), of possible searches for an equivalence-
principle-violating force in ongoing muonium free-fall experi-
ments (red line). Complementary bounds from the comparison of
the observed and predicted values of the 1S − 2S interval in
muonium are shown by the dark grey region [25], while more
indirect bounds from the combination of astrophysical observa-
tions and laboratory tests of the equivalence principle are shown
by the light grey region. Sensitivities and limits are given at the 1σ
level. See the main text and Appendix C for more details about
the sensitivity estimates and complementary limits, respectively.
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Appendix A: Sensitivities of transitions in muonium and
muonic atoms to variations of fundamental constants.—
Here, we estimate the relative sensitivities of selected
transitions in muonium and muonic atoms to variations
of mμ and other fundamental constants. For simplicity, we
assume that the CPT symmetry is conserved, which
implies the equality of the muon and antimuon masses,
as well as equal interaction strength of ϕ with muons and
antimuons. We calculate the relative sensitivity coefficients
Kμ at leading order, neglecting higher-order corrections
that are suppressed by (additional) powers of small para-
meters such as α or me=mμ.
Muonium: Muonium is the bound state of an electron

and an antimuon, with a reduced system mass of mr ¼
memμ=ðme þmμÞ ≈með1 −me=mμÞ, where me is the
electron mass. The energy of an electronic state described
by the principal quantum number n is approximately given
by the Rydberg formula En ¼ −mrα

2=ð2n2Þ. The ground-
state hyperfine splitting (HFS) interval in muonium is
approximately given by the Fermi formula ΔEFermi ¼
8m3

rα
4=ð3memμÞ. The main contribution to the 2S − 2P

Lamb shift in muonium comes from the one-loop self energy
(SE) and takes the formΔESE ¼ O½meðmr=meÞ3α5�. Hence,
the sensitivities of the 1S − 2S interval, ground-state hyper-
fine splitting interval, and 2S − 2PLamb shift inmuonium to
variations of the fundamental constants are given by the
following respective formulas:

Δν1S−2S
ν1S−2S

≈ 2
Δα
α

þ Δme

me
þ me

mμ

Δmμ

mμ
; ðA1Þ

ΔνHFS
νHFS

≈ 4
Δα
α

þ 2
Δme

me
−
Δmμ

mμ
; ðA2Þ

Δν2S−2P
ν2S−2P

≈ 5
Δα
α

þ Δme

me
þ 3

me

mμ

Δmμ

mμ
; ðA3Þ

where the sensitivities to changes inmμ in Eqs. (A1) and (A3)
arise due to the mild dependence of mr on mμ.
True muonium: True muonium is the bound state of a

muon and an antimuon, with mr ¼ mμ=2. The Rydberg
contribution to the 1S − 2S interval in true muonium is
analogous to that in ordinary muonium. The ground-state
hyperfine splitting interval in truemuonium is approximately
given by the Fermi-type formula ΔEFermi ¼ 7mμα

4=12,
receiving comparable contributions from an annihilation-
type process and the usual exchange-type process. The main
contribution to the 2S − 2P Lamb shift in true muonium
comes from the one-loop electronic vacuum polarization
(VP) and takes the form ΔEVP ¼ Oðmrα

3Þ. Hence, the
sensitivities of the 1S − 2S interval, ground-state hyperfine
splitting interval, and 2S − 2PLamb shift in truemuonium to
variations of fundamental constants are given by the follow-
ing respective formulas:

Δν1S−2S
ν1S−2S

≈ 2
Δα
α

þ Δmμ

mμ
; ðA4Þ

ΔνHFS
νHFS

≈ 4
Δα
α

þ Δmμ

mμ
; ðA5Þ

Δν2S−2P
ν2S−2P

≈ 3
Δα
α

þ Δmμ

mμ
: ðA6Þ

Hydrogenlike muonic atoms: H-like muonic atoms are
bound states of a single muon and a hadronic nucleus,
withmr ¼ mμMnucl=ðmμ þMnuclÞ ≈mμ, whereMnucl is the
nuclear mass. The Rydberg contribution to the 1S − 2S
interval in muonic atoms is analogous to that in muonium.
The ground-state hyperfine splitting interval in muonic
atoms is similar to that in ordinary muonium and
reads ΔEFermi ¼ 4Z3α4m3

rμnucl=ð3mμmpÞ× ð2Iþ 1Þ=ð2IÞ,
where Z is the proton number, μnucl is the nuclear magnetic
moment in units of the nuclear magneton, mp is the proton
mass, and I is the nuclear spin. As in true muonium, the
main contribution to the 2S − 2P Lamb shift in muonic
atoms comes from the one-loop electronic vacuum polari-
zation and takes the form ΔEVP ¼ OðmrZ2α3Þ. Hence,
assuming that Zα ≪ 1, the sensitivities of the 1S − 2S
interval, ground-state hyperfine splitting interval, and
2S − 2P Lamb shift in H-like muonic atoms to variations
of fundamental constants are given by the following
respective formulas:

Δν1S−2S
ν1S−2S

≈ 2
Δα
α

þ Δmμ

mμ
; ðA7Þ

ΔνHFS
νHFS

≈ 4
Δα
α

þ 2
Δmμ

mμ
−
Δmp

mp
þ Δμnucl

μnucl
; ðA8Þ
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Δν2S−2P
ν2S−2P

≈ 3
Δα
α

þ Δmμ

mμ
: ðA9Þ

TheΔμnucl=μnucl term in Eq. (A8) typically provides a small
sensitivity to variations of the light-quark masses [55].

Appendix B: Searches for signals induced by an
oscillating dark-matter field.—According to Eq. (6),
searches for DM-induced oscillations of mμ are directly
sensitive to the combination of parameters ffiffiffiffiffi

ρϕ
p =Λμ or

ρϕ=ðΛ0
μÞ2 rather than to Λμ or Λ0

μ. In order to infer
information about Λμ or Λ0

μ, one must make assumptions
about the local value of ρϕ during the course of the
measurements. In the main text, we assume the simplest
possibility, namely, that ρϕ equals the average local
Galactic DM density, ρϕ ¼ ρDM ≈ 0.4 GeV=cm3 [1]. In
this case, ϕ0 (and, hence, ρϕ) is expected to remain
approximately constant during measurements on timescales
shorter than τcoh, implying a coherent signal of constant
amplitude and fixed phase. However, since ϕ0 is expected
to fluctuate stochastically on timescales greater than τcoh
[56,57], sampling only a single value of ϕ0 with measure-
ments on a short timescale may cause statistical biasing in
the analysis [58]. In the standard halo model, such partial
sampling is only expected to degrade the sensitivity to Λμ

by a factor of ≈1.5 at the 1σ level and by a similarly mild
factor in the case of Λ0

μ.
One of the main factors determining the sensitivity of

spectroscopy measurements to Λμ or Λ0
μ is their relative

precision rather than their (absolute) accuracy. This is
because one looks for changes in transition frequencies
instead of comparing the (mean) experimental value of the
transition frequency with its prediction within the SM. The
considered spectroscopy measurements are inherently
broadband, with a peak sensitivity to Λμ or Λ0

μ typically
occurring when the total duration of the measurements,
tdataset, is comparable to the signal period Tsignal, with
Tsignal ¼ Tosc in the case of the linear-in-ϕ interaction and
Tsignal ¼ Tosc=2 in the case of the quadratic-in-ϕ interac-
tion. For a temporally coherent signal, the sensitivity scales
as Λμ ∝ m−1

ϕ and Λ0
μ ∝ m−1

ϕ for tcycle ≲ Tsignal ≲ tdataset,
where tcycle is the time taken to perform a single meas-
urement of the transition frequency, and as Λμ ∝ m−2

ϕ and

Λ0
μ ∝ m−3=2

ϕ for Tsignal ≲ tcycle when the transition fre-
quency would be affected by, at most, one of many largely
canceling DM oscillations (though the scaling withmϕ may
be more favorable if one also considers possible alterations
of the transition line shape due to effects of the DM field
when scanning the transition line). When Tsignal ≳ tdataset,
the sensitivity generally scales as Λμ ∝ mϕ and Λ0

μ ∝ m0
ϕ,

since one cannot exclude the possibility of being near an
antinode, rather than a node, of the cosinusoidal signal
during the course of the measurements. In the temporally

coherent regime, the signal-to-noise ratio (SNR) is
expected to improve with the integration time tint as
SNR ∝ t1=2int , whereas in the temporally incoherent regime,

the SNR is expected to improve as SNR ∝ t1=4int τ
1=4
coh . Hence,

when transitioning from the temporally coherent regime to
the temporally incoherent regime, the sensitivity is
expected to degrade faster with increasing mϕ by an

additional factor ∝ m−1=4
ϕ in the case of Λμ and ∝ m−1=8

ϕ

in the case of Λ0
μ.

Appendix C: Complementary bounds on scalar-
muon interactions.—Supernova cooling bounds on Λμ

and Λ0
μ: The scalar-muon couplings in Eqs. (2) and (3)

provide additional possible energy-loss channels involving
the emission of ϕ bosons from the interiors of hot media
such as protoneutron stars in supernovae. In the case of the
linear coupling, the consideration of the emission of ϕ
bosons from the interior of supernova SN1987a rules out
the range of parameters 103 GeV≲ Λμ ≲ 2 × 107 GeV for
mϕ ≲ T, where T ∼ 30 MeV is the peak core temperature
of the protoneutron star [59]. Noting that the muons in a
protoneutron star are semidegenerate and that the typical
energy of an emitted ϕ boson is ∼T, we can estimate the
ratio of the energy-loss rates due to the semi-Compton-type
processes μþ p → μþ pþ 2ϕ for the quadratic coupling
and μþ p → μþ pþ ϕ for the linear coupling as follows:

ϵquad2ϕ

ϵlinϕ
∼
T2=ðΛ0

μÞ4
1=Λ2

μ
: ðC1Þ

Hence, we estimate that the following rough range of
parameters is ruled out in the case of the quadratic
coupling:

10 GeV≲ Λ0
μ ≲ 103 GeV; for mϕ ≲ 15 MeV: ðC2Þ

Compact binary system bounds on Λμ and Λ0
μ: The

scalar-muon couplings in Eqs. (2) and (3) provide addi-
tional possible channels for the decay of the orbital period
of a compact binary system containing at least one neutron
star via the emission of ϕ-boson radiation. In the case of the
linear coupling, the radiation of ϕ bosons from the muon
content of a neutron star in a compact binary system would
affect the decay rate of the orbital period of the system if
mϕ < nΩ, where Ω is the orbital frequency of the binary
system, with n ¼ 1 corresponding to the fundamental mode
and n ¼ 2; 3;… corresponding to higher-order modes that
contribute in the case of noncircular orbits. Refs. [60,61]
derived bounds on vector-type couplings to muons at the
level gVμ ≲ 10−20–10−19 for boson masses ≲10−18 eV. One
expects comparable limits on the linear scalar-muon
coupling, gVμ ∼ gsμ ≡mμ=Λμ, implying

Λμ ≳ 1018 − 1019 GeV; for mϕ ≲ 10−18 eV: ðC3Þ
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The emission of a pair of ϕ bosons is possible when
2mϕ < nΩ. In the limit whenΩa ≪ 1 (where a denotes the
semimajor axis of the binary system), the dominant
radiation mechanism is dipole type as long as the muon-
to-neutron number ratio is not too similar in the two bodies.
Noting that the typical energy of a radiated ϕ boson is ∼Ω,
we can estimate the ratio of power loss rates due to the
emission of a pair of ϕ bosons in the case of the quadratic
coupling and of a single ϕ boson in the case of the linear
coupling via the following Larmor-type estimate:

Pquad
2ϕ

Plin
ϕ

∼
Ω2=ðΛ0

μÞ4
1=Λ2

μ
: ðC4Þ

Hence, we arrive at the following order-of-magnitude
estimate for the bound on the quadratic coupling:

Λ0
μ ≳ 10−4 GeV; for mϕ ≲ 0.5 × 10−18 eV: ðC5Þ

There is a similarly mild bound on Λ0
μ from the consid-

eration of the effect on the orbital dynamics of the binary
neutron-star system due to the exchange of a pair of ϕ
bosons between the muon contents of the two neutron stars,
which induces the modified Yukawa-type potential
V2ϕðrÞ ≈ −m2

μ=½64π3ðΛ0
μÞ4r3� in the limit when 2mϕr ≪ 1.

Bounds on the combination of parameters
ΛeΛμ: Consideration of intra-atomic exchange of a vir-
tual scalar boson ϕ on the 1S − 2S interval in muonium
places the boundΛeΛμ ≳ 105 GeV2 formϕ ≪ meα [25], as
shown in Fig. 2 by the dark grey region. (Similar
approaches using muonium spectroscopy data have also
been used to constrain pseudoscalar [62] and vector [63]
couplings.) Feebler interactions can be indirectly con-
strained by combining the astrophysical bounds on Λμ

discussed above with laboratory bounds on Λe. Searches
for ϕ-mediated equivalence-principle-violating forces place
the limit Λe ≳ 6 × 1021 GeV for mϕ ≲ 3 × 10−14 eV based
on data from the space-based MICROSCOPE mission [12]
assuming that the elemental composition of Earth is a
1∶1∶1 ratio of 24Mg16O, 28Si16O2, and 56Fe by number and
Λe ≳ 5 × 1018 GeV for mϕ ≲ 2 × 10−6 eV based on data
from the ground-based Rot-Wash experiment [6,9]. The
combination of these astrophysical and laboratory bounds
is shown in Fig. 2 by the light grey region.
Indirect bounds on Λμ from equivalence-principle

tests: The scalar-lepton coupling in Eq. (2) radiatively
generates a scalar-diphoton coupling via a triangular lepton
loop, with an effective scalar-diphoton coupling of the size
1=Λγ ∼ ðα=πÞð1=ΛlÞ½1þOðm2

ϕ=m
2
l Þ� when mϕ ≪ ml,

with the coefficients being independent of the lepton
species l. This suggests the peak figure-of-merit sensitiv-
ities (at 1σ level) of Λμ ∼ 3 × 1020 GeV for mϕ ≲ 3 ×
10−14 eV based on the MICROSCOPE data in Ref. [12]

and Λμ ∼ 4 × 1017 GeV for mϕ ≲ 2 × 10−6 eV based on
the Rot-Wash data in Ref. [6]. However, these indirect
bounds on Λμ from torsion-pendula experiments can be
practically evaded, e.g., due to an analogous scalar-tau
coupling with Λτ ¼ Λμ (or Λτ ≈ Λμ), but of opposite sign
to the scalar-muon coupling, when mϕ ≪ mμ; on the other
hand, direct probes of the scalar-muon and scalar-tau
couplings would remain sensitive in this case.
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