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Gradient fields can effectively suppress particle tunneling in a lattice and localize the wave function at all
energy scales, a phenomenon known as Stark localization. Here, we show that Stark systems can be used as
a probe for the precise measurement of gradient fields, particularly in the weak-field regime where most
sensors do not operate optimally. In the extended phase, Stark probes achieve super-Heisenberg precision,
which is well beyond most of the known quantum sensing schemes. In the localized phase, the precision
drops in a universal way showing fast convergence to the thermodynamic limit. For single-particle probes,
we show that quantum-enhanced sensitivity, with super-Heisenberg precision, can be achieved through a
simple position measurement for all the eigenstates across the entire spectrum. For such probes, we have
identified several critical exponents of the Stark localization transition and established their relationship.
Thermal fluctuations, whose universal behavior is identified, reduce the precision from super-Heisenberg
to Heisenberg, still outperforming classical sensors. Multiparticle interacting probes also achieve super-
Heisenberg scaling in their extended phase, which shows even further enhancement near the transition
point. Quantum-enhanced sensitivity is still achievable even when state preparation time is included in
resource analysis.

DOI: 10.1103/PhysRevLett.131.010801

Introduction.—Cramér-Rao inequality lies at the foun-
dation of estimation theory [1–3]. It bounds the precision
for estimating an unknown parameter h, quantified by
standard deviation δh, through δh ≥ 1=

ffiffiffiffiffiffiffiffiffiffi
MF

p
, whereM is

the number of samples and F is Fisher information.
Generally, Fisher information scales with the probe size
L as F ∼ Lβ. While classical probes can at best achieve
linear scaling, i.e., β ¼ 1 (standard limit), quantum features
may enhance the precision to super-linear scaling with
β > 1 [4–6]. Originally, certain entangled states, known as
GHZ states [7], have been used for achieving β ¼ 2

(Heisenberg limit) [8–16]. However, those schemes are
prone to decoherence and are fundamentally limited to
Heisenberg scaling (i.e., β ¼ 2). Alternatively, many-body
probes can achieve quantum-enhanced sensitivity by
harnessing a variety of quantum features. A class of such
probes exploits various forms of criticality such as first-
order [17–19], second-order [20–34], dissipative [35–41],
time crystals [42], and topological [43–46] phase transi-
tions. Other quantum many-body probes rely on quantum
scars [47–50] and Floquet driving [51,52] as well as
adaptive [53–62], continuous [41,63–66], and sequential
[67,68] measurements. There are two key open problems in
many-body sensors. First, although the precision of these
probes is not fundamentally bounded (i.e., no restriction
on β), it is very hard to find quantum probes whose
precision goes beyond Heisenberg sensitivity (i.e.,

β > 2), with few exceptions [22,28,29,69–71]. Second,
sensing weak fields with such probes is challenging as, for
instance, critical points usually occur at finite field values,
and the precision quickly drops away from that point.
The presence of a gradient field across a lattice makes the

on-site energies off resonant. Consequently, the tunneling
rate is suppressed, and the wave function of the particles
localizes in space. This is known as Stark localization [72]
and has been exploited for inducing single-particle [73–78]
and many-body localization without disorder [78–95],
probing the geometry of nanostructures [96], protecting
coherence [97], investigating gauge theories [98–100], and
creating quantum scars [48,101–105]. Stark localization has
been experimentally observed in ion traps [106], optical
lattices [102,107], and superconducting simulators [108].
In the limit of large one-dimensional systems, in the absence
of disorder and nonlinearity, Stark localization takes
place in infinitesimal fields for both single-particle [76]
and multiparticle interacting [104] cases. One may wonder
whether Stark systems can achieve quantum-enhanced
precision sensing. The key fact is that Stark localization
transition takes place at the zero-field limit. Quantum-
enhanced sensitivity in such a transition can be a break-
through in ultraprecise sensing of weak fields, a domain in
which most many-body sensors fail. In addition, since Stark
localization happens across the whole spectrum it provides
more thermal robustness than conventional criticality which
is limited to the ground state.
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In this Letter, we show that Stark probes can achieve
strong super-Heisenberg scaling in a region stretched all the
way in the extended phase to the transition point, for both
single-particle and multiparticle interacting cases, allowing
for ultraprecision weak-field sensing. In single-particle
probes, one can achieve β ¼ 5.98 for the ground state
and β ¼ 4.11 for the midspectrum eigenstates, through a
simple position measurement. Moreover, we determine
several critical exponents and their universal relationship
and show that thermal fluctuations reduce the precision
from super-Heisenberg to Heisenberg scaling, still out-
performing classical sensors. In addition, interacting many-
body ground states achieve super-Heisenberg scaling, with
β ¼ 4.26, which is close to the midspectrum single-particle
case. This is because in the half-filling regime, the many-
body ground state can be approximated by filling single-
particle eigenstates up to midspectrum.
Ultimate precision limit.—Let us consider a quantum

probe whose density matrix ρðhÞ depends on an under
scrutiny parameter h. To do so, one has to perform a
measurement, described by a set of projective operators
fΠig, on the probe. The result is described by a classical
probability distribution in which each outcome appears
with the probability piðhÞ ¼ Tr½ΠiρðhÞ�. For this measure-
ment setup, F in the Cramér-Rao inequality is called
Classical Fisher Information (CFI), FCðhÞ ¼

P
i piðhÞ

½∂h lnpiðhÞ�2 [109]. Optimizing the CFI over all possible
measurement setups leads to Quantum Fisher Information
(QFI), namely FQðhÞ ¼ maxfΠigFCðhÞ, determining the
ultimate precision limit achievable by a quantum probe
[110]. A closed form for the QFI is obtained through
fidelity susceptibility as χðhÞ ¼ 2½1 − F̃ðhÞ�=Δh2, where
Δh → 0 [111]. Here, F̃ðhÞ¼Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðhÞ1=2ρðhþΔhÞρðhÞ1=2

p

is the fidelity between ρðhÞ and ρðhþ ΔhÞ. The QFI then
takes the form FQðhÞ ¼ 4χðhÞ.
Single-particle probe.—We consider a one-dimensional

probe with L sites in which one particle can tunnel to its
neighbors with rate J. The probe is affected by a gradient
field hwhich we would like to estimate. The Hamiltonian is

HðhÞ ¼ J
XL−1

i¼1

ðjiihiþ 1j þ jiþ 1ihijÞ þ h
XL

i¼1

ijiihij: ð1Þ

As h=J increases, the system goes through a phase
transition from an extended to a Stark localized phase
[76,78,79,83,84]. The transition is dramatic and affects the
entire spectrum of the system which makes it very distinct
from the conventional quantum phase transition as a ground
state feature [87].
For our system in Eq. (1), in the thermodynamic limit

(i.e., L → ∞), the localization transition for all energy
levels takes place at h ¼ hc ¼ 0 [76]. One can renormalize
the energy of the system as ε ¼ ðE − EminÞ=ðEmax − EminÞ,
with Emin and Emax as extremal eigenenergies of the

Hamiltonian HðhÞ to fit the whole spectrum of the system
within 0 ≤ ε ≤ 1. For any given ε, the QFI with respect to h
has been calculated for the closest eigenstate. In Figs. 1(a)
and 1(b), we plot FQ as a function of h=J for various L,
when our probe is in the ground state (ε ¼ 0) and a
midspectrum eigenstate (ε ¼ 0.5), respectively. The QFI
takes its maximum value at h ¼ hmax, which is expected
to become the critical point, i.e., hmax ¼ hc, in the
thermodynamic limit. For the ground state [see Fig. 1(a)],
the maximum takes place at vanishingly small fields,
namely hmax → 0. For the midspectrum [see Fig. 1(b)],
however, a clear peak for the QFI can be observed at a
nonzero hmax. Regardless of the energy levels, several
features can be observed. First, by increasing L, the peak of
the QFI, namely FQðhmaxÞ, dramatically enhances showing
divergence in the thermodynamic limit. Second, the posi-
tion of the peak gradually moves toward zero suggesting
that in the thermodynamic limit one has hmax → hc ¼ 0.
Third, despite the decay of the QFI in the localized regime,
its value remains high for a large interval of h, e.g., to
have FQ ≥ 10, the gradient field can be within the range
0 ≤ h=J ≤ 0.25 (0 ≤ h=J ≤ 1) for the ground (midspec-
trum) state. Fourth, in the localized regime, after a certain
threshold the QFI becomes size independent showing
divergence to the thermodynamic limit, represented by
dashed lines in Figs. 1(a) and 1(b). Finite-size effects are
evident in the initial plateaus of the QFI, representing the
extended phase of the system. Interestingly, the dashed

(a) (b)

(c) (d)

FIG. 1. The QFI versus h=J when our probe with sizes L is
prepared in (a) the ground state and (b) the midspectrum
eigenstate. The dashed lines in both panels are the best fit of
FQ in the localized phase, showing the behavior in the thermo-
dynamic limit. (c) The transition point hmax=J versus energy ε, in
various system sizes, indicating the emergence of mobility edges
in finite systems. (d) The scaling of hmax=J with L for various ε.
Markers and solid lines represent numerical results and fitting
function hmax ¼ aL−b, respectively. Inset: a and b for different ε.
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lines suggest an algebraic behavior of the QFI, namely
FQðhÞ ∝ jh − hmaxj−α, in the localized phase which can be
perfectly fitted by α ¼ 2.00 for the ground state and
α ¼ 4.00 for the midspectrum eigenstates. The fast
convergence to the thermodynamic limit in the localized
phase is discussed in more detail in the Supplemental
Material [112].
To see how single-particle Stark localization transition

depends on energy, in Fig. 1(c) we plot hmax as a function of
ε for various system sizes. The figure clearly indicates an
energy-dependent transition which is known as mobility
edge. In fact, midspectrum eigenstates are harder to localize
than the eigenstates at the edges of the spectrum, a common
feature that has also been observed in Anderson [113,114]
and many-body [115] localization. In the thermodynamic
limit, mobility edge disappears, and the transition takes
place at hmax ¼ 0 across the whole spectrum. To see how
hmax decreases with an increasing system size at different
energy scales, in Fig. 1(d), we plot hmax versus L for
energies starting from the ground state (ε ¼ 0) to mid-
spectrum (ε ¼ 0.5). Our numerical simulation (denoted by
markers) is well described by the fitting function
hmaxðLÞ ¼ aL−b (solid lines). The exponents a and b
are plotted as a function of ε in the inset of Fig. 1(d).
While the exponent b shows a stable behavior around
b ≃ 1, the exponent a changes dramatically from a ≃ 0 (for
the ground state) to a ≃ 4 (for the midspectrum).
Super-Heisenberg sensitivity.—In the extended phase,

the QFI heavily depends on size L. To see how the QFI
scales with the probe size, in Figs. 2(a) and 2(b), we plot the
QFI at the transition point, i.e., FQðhmaxÞ, as a function of
L for the ground (ε ¼ 0) and the midspectrum (ε ¼ 0.5)
states, respectively. The QFI is shown by markers, and
red lines are fitting functions FQðh ¼ hmaxÞ ∝ Lβ with
β ¼ 5.98 for the ground state and β ¼ 4.11 for the mid-
spectrum states. This shows strong super-Heisenberg scal-
ing in which β, by our knowledge, exceeds all other known

many-body probes with local interaction and bounded
spectrum. We highlight these as our main results. By
entering the localized regime β goes down and eventually
vanishes. The smooth decay of β is depicted in the insets of
Figs. 2(a) and 2(b).
Finite-size scaling.—On one side, Figs. 1(a) and 1(b)

suggest that in the thermodynamic limit (i.e., L → ∞) QFI
behaves as FQ ∝ jh − hmaxj−α. On the other hand, the
finite-size analysis at the transition point h ¼ hmax [see
Figs. 2(a) and 2(b) ] indicates FQðh ¼ hmaxÞ ∝ Lβ. These
two behaviors suggest

FQðhÞ ∝
1

L−β þ Ajh − hmaxjα
; ð2Þ

where A is a constant. In the localized regime, where
jh − hmaxjα ≫ L−β, the dependence on L becomes negli-
gible. Thanks to the large value of β, the convergence to this
limit is very rapid in our Stark probe; see the Supplemental
Material [112] for more details. The algebraic behavior of
QFI hints that this transition might be of the second-order
type. Any second-order phase transition is accompanied by
a diverging length scale as ξ ∼ jh − hcj−ν, where the
exponent ν controls the speed of divergence. In the case
of localization transition, ξ is indeed the localization length.
To verify the nature of the transition and determine the
critical exponents, we consider a conventional second-
order finite-size scaling analysis. This implies that the QFI
follows the Ansatz

FQðhÞ ¼ Lα=νg½L1=νðh − hcÞ�; ð3Þ

where gð·Þ is an arbitrary function. To verify the above ansatz
one canplotL−α=νFQðhÞ, versusL1=νðh − hcÞ for differentL.
By tuning the parameters ðhc; α; νÞ one tries to collapse all the
curves of different system sizes on a single one. In Figs. 3(a)
and 3(b), we plot the best achievable data collapse, using the
PYTHON package PYFSSA [116,117] forL ¼ 200 toL ¼ 1000
for ε ¼ 0 and ε ¼ 0.5, respectively. Our careful finite-
size scaling analysis results in ðhc; α; νÞ ¼ ð1.02 × 10−9;
2.00; 0.33Þ and ðhc; α; νÞ ¼ ð1.03 × 10−5; 4.00; 1.00Þ, for(b)(a)

FIG. 2. The maximum of QFI (markers) as a function of L for
(a) the ground state and (b) the midspectrum eigenstate. The solid
red lines are fitting of the form FQðhmaxÞ ∝ Lβ with β ¼ 5.98 for
ε ¼ 0 and β ¼ 4.11 for ε ¼ 0.5. The inset of each panel
represents the behavior of β away from criticality. In the
midspectrum (right panel), β remains almost steady in the
extended phase and drops in the localized phase.
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FIG. 3. Finite-size scaling analysis using Eq. (3) for (a) the
ground state and (b) the midspectrum eigenstate. The optimal
data collapse is obtained for the reported ðhc; α; νÞ.
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the ground and the midspectrum states, respectively. The
values obtained for α are fully consistent with the values
extracted by independent data fitting in Figs. 1(a) and 1(b).
The two Ansätze [Eqs. (2) and (3) ] describe the QFI and

thus cannot be independent. Indeed, by factorizing Lβ

from Eq. (2) one finds that these two will be the same if and
only if

β ¼ α

ν
: ð4Þ

This means that α, β, and ν are not independent exponents,
and two of them can describe the Stark transition. In the
Supplemental Material [112], by providing the values of α,
ν, and β we show the validity of Eq. (4) across the whole
spectrum.
Optimal measurement.—Saturating the quantum

Cramér-Rao bound generally demands complex optimal
measurements which may even depend on the unknown
parameter h. Therefore, finding an experimentally feasible
set of measurements with precision close to the Cramér-
Rao bound is highly desirable. Interestingly, in our probe, a
simple position measurement described by local projective
operators fΠi ¼ jiihijgLi¼1 saturates the QFI across the
whole spectrum (see the Supplemental Material [112]).
Thermal probes.—Apart from the ground state,

accessing individual eigenstates is very difficult. In prac-
tice, our probe might be described by a thermal state
ρðh; TÞ ¼ e−H=KT=Tr½e−H=KT �, where T is temperature and
K is the Boltzmann constant. Note that the QFI is still
computed with respect to h and T is only a parameter. We
consider two different scenarios with h in the extended
phase, namely h ¼ 10−8J, and in the localized phase,
namely h ¼ 0.05J. The QFI, versus h, for both cases is
plotted as a function of T in Figs. 4(a) and 4(b), respec-
tively. The QFI starts with a plateau, whose width is
KT ≃ ΔE, where ΔE ¼ E2 − E1 is the energy gap. In this
regime, the thermal state is described by the ground state.
That is why in the extended phase [Fig. 4(a) ], the
plateaus are separated for each L while in the localized
phase [Fig. 4(b) ], they collapse. Interesting behavior can be

observed for KT > ΔE, where the QFI decays as T
increases. In this regime, as shown in Fig. 4, for both
localized and extended probes, the QFI decays as
FQ ∝ cðLÞT−μ, where cðLÞ ∝ Lγ , with γ ¼ 2.0 (see the
Supplemental Material [112]) and μ ¼ 1.99 is a universal
exponent. Therefore, in the limit of KT > ΔE the QFI is
universally described as

FQðhÞ ∼ fðhÞT−μLγ; ð5Þ

which shows Heisenberg scaling with respect to system
size, outperforming classical sensors.
Many-body interacting probes.—In this section, we

show that our probe can also operate in the case of
multiparticle interacting systems. We consider a one-
dimensional probe of size L with N ¼ L=2 particles
interacting via Hamiltonian

HðhÞ¼J
XL−1

i¼1

ðσxi σxiþ1þσyi σ
y
iþ1þσziσ

z
iþ1Þþh

XL

i¼1

iσzi ; ð6Þ

where σx;y;zi are the Pauli operators and h, again, is the
strength of the gradient field. To benefit from Matrix
Product State (MPS) analysis for capturing large system
sizes, we only focus on the ground state. In Fig. 5(a) we
plot FQ as a function of h=J, in a half filling regime, for
various L. We use exact diagonalization for systems up to
L ¼ 20 and MPS (using TeNPy Library [118]), with bond
dimension χ ¼ 1000, for larger L’s. Surprisingly, the
calculated QFI in the interacting many-body system
behaves qualitatively similarly to the single-particle case
in the midspectrum [see Fig. 1(b) ]. While it shows a steady
behavior in the extended phase, it fluctuates and eventually
peaks at a nonzero hmax. Clearly, FQðhmaxÞ enhances by
increasing L, signaling the divergence in the thermo-
dynamic limit. In the localized phase, the QFI decays
algebraically as FQ ∝ jh − hmaxj−α with α ¼ 4.00. Imple-
menting careful finite-size scaling analysis results in

10-6 10-3 100
105

1010

1015 (a)

10-1 101 103

10-2

101

104(b)

FIG. 4. The QFI of the thermal state as a function of temper-
ature T for various system sizes, when the probe is operating at
(a) the transition point h ¼ hmax ¼ 10−8J and (b) the localized
phase with h ¼ 0.05J.
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FIG. 5. (a) The QFI of a many-body interacting system with
N ¼ L=2 particles versus h=J when the probe of size L is in the
ground state. The dashed line is the best fitting function of jh −
hmaxj in the localized phase illustrating the system’s behavior in
the thermodynamic limit. (b) The QFI at the extended and
transition point, namely h ¼ hmax, as a function of L.
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ðhc; α; νÞ ¼ ð1.16 × 10−5; 4.03; 1.02Þ, showing an agree-
ment with the single-particle probes prepared in the
midspectrum [see Fig. 1(b) ].
To see the scaling of QFI, in Fig. 5(b) we plot FQðhmaxÞ

as a function of L which shows algebraic scaling as
FQðhmaxÞ ∝ Lβ, with β ¼ 3.67 in the extended phase
which is further enhanced at the transition point to
β ¼ 4.26. The exponent, in particular near the transition
point, is also close to the one from the midspectrum single-
particle probes. This interesting observation can be
described in a hand-waving way. The ground state of a
half filling system, at least in the noninteracting limit, can
be constructed by filling single-particle eigenstates up to
midspectrum. Although the presence of interaction makes
this picture less precise, it shows that the overall sensing
power of the probe is dominantly defined by midspectrum
single-particle eigenstates. The clear distinction between
the curves in Figs. 1(b) (i.e., midspectrum of single-particle
probe) and 5(a) (i.e., ground state of many-body probe) is
also indicated by a small deviation between their exponent
β which can be assigned to the effect of interaction. Note
that the gradual movement of hmax toward zero suggests
that, similar to the single-particle case, the Stark many-
body localization transition also takes place at infinitesimal
values of the field. This is consistent with the results of
Ref. [104], found for Stark localization transition in the
absence of disorder and nonlinearity, and shows that many-
body Stark probes also serve for weak-field sensing with
super-Heisenberg precision.
Resource analysis.—If probe size L is the only resource

that we care about, then the QFI is the best figure of merit
for resource efficiency. However, eigenstate preparation
(e.g., ground state) is time-consuming which might be
considered as another resource. For instance, using adia-
batic evolution for ground state initialization near criticality
requires a size-dependent time which scales as t ∼ Lz. The
critical exponent z quantifies the energy gap closing at the
criticality ΔE ∼ L−z [28]. To include time as a resource,
one may consider normalized QFI FQ=t as the figure of
merit [28,30,68] which turns out to be FQ=t ∼ Lβ−z. As
discussed in the Supplemental Material [112], we have
estimated z ≃ 2, resulting in FQ=t ∼ L4, for the single-
particle and z ≃ 0.81, resulting in FQ=t ∼ L3.45, for the
many-body probes which both still show strong quantum-
enhanced precision.
Conclusion.—We have shown that Stark probes are

extremely precise in measuring weak gradient fields,
achieving strong super-Heisenberg precision over a region
which stretches all over the extended phase to the transition
point. Quantum-enhanced sensitivity is still achievable
even when preparation time is included in the resource
analysis. We have considered both single-particle and
many-body interacting systems. In the case of single
particles, we have shown that super-Heisenberg precision
can be achieved through a simple position measurement

across the whole spectrum. In this regime, we have
determined the critical exponents and their relationship.
We have also identified the universal behavior of the probe
at thermal equilibrium, which shows that as temperature
increases the scaling of precision reduces from super-
Heisenberg to Heisenberg. For interacting many-body
ground state, while a strong super-Heisenberg precision
can still be achieved, the scaling exponents become close to
the midspectrum single-particle case. This can be under-
stood as the many-body ground state can be approximately
constructed by filling single-particle eigenstates until
midspectrum.
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