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Cross-entropy (XE) measure is a widely used benchmark to demonstrate quantum computational
advantage from sampling problems, such as random circuit sampling using superconducting qubits and
boson sampling (BS). We present a heuristic classical algorithm that attains a better XE than the current BS
experiments in a verifiable regime and is likely to attain a better XE score than the near-future BS
experiments in a reasonable running time. The key idea behind the algorithm is that there exist distributions
that correlate with the ideal BS probability distribution and that can be efficiently computed. The
correlation and the computability of the distribution enable us to postselect heavy outcomes of the ideal
probability distribution without computing the ideal probability, which essentially leads to a large XE. Our
method scores a better XE than the recent Gaussian BS experiments when implemented at intermediate,
verifiable system sizes. Much like current state-of-the-art experiments, we cannot verify that our spoofer
works for quantum-advantage-size systems. However, we demonstrate that our approach works for much
larger system sizes in fermion sampling, where we can efficiently compute output probabilities. Finally, we

provide analytic evidence that the classical algorithm is likely to spoof noisy BS efficiently.
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Quantum computers are believed to efficiently solve
problems that classical counterparts cannot, such as integer
factoring [1] and quantum simulation [2]. Whereas scal-
ability and fault tolerance are required to solve hard and
practical problems, currently available devices are of noisy
intermediate-scale quantum (NISQ) type. Hence, much
attention has been paid to demonstrating quantum advan-
tage by exploiting NISQ devices. Sampling problems are
particularly promising for the demonstration thanks to
rigorous evidence that classical computers cannot effi-
ciently solve them [3-6]. Indeed, we have recently seen
the first claims of quantum advantage using random circuit
sampling (RCS) with superconducting qubits [7-9] and
Gaussian boson sampling (GBS) [10-13]. However, the
apparent limitation of current experiments is that they are
not scalable because uncorrected noise decays quantum
signals as the system size grows [14-29]. Thus, finding
appropriate-size experiments is crucial, where the system
size is sufficiently large so that classical computers cannot
efficiently simulate them, but not too large for noise to
annihilate quantum signals.

Finding an appropriate regime is also important to enable
classical verification because verification techniques such
as cross-entropy benchmarking (XEB) cost exponential
time [30]. The state-of-the-art method is XEB, which is
sample efficient for RCS and GBS [31]; scoring a large
cross entropy (XE) is considered evidence of quantum
advantage. The premise behind the benchmarking is that
appropriate-size experiments maintain sufficient quantum
signals so that the experimental score cannot be attained by
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classical devices within reasonable costs due to the remain-
ing quantum signals. For RCS [7,8], there have been
extensive studies to support the premise [7,30,32,33].
While we have some limited understanding of what XE
measures in RCS [7,30,32-35], with many interesting
debates of XEB [34,35], our understanding of XE in boson
sampling (BS) is much more limited than RCS. Crucially,
there is no theoretical evidence that attaining a high XE is
classically hard, to the best of our knowledge. Despite this,
the XEB has been used in many state-of-the-art quantum
advantage experiments [10-13]. XEB is particularly attrac-
tive since the benchmark does not depend on an adversarial
mock-up distribution. This “adversary independence” fea-
ture allows us to use XEB to benchmark noisy experiments
in situations in which we are ignorant of the best possible
classical spoofing algorithm, as is the case with GBS
experiments [36].

In this Letter, we provide a heuristic classical algorithm
that scores better than the current intermediate-scale GBS
(in a verifiable regime) and is likely to score better than the
near-future BS experiments for XEB. First, we numerically
demonstrate, using a small-scale GBS, that our algorithm
selectively generates heavy outcomes of BS and scores
better than the ideal distribution. For larger systems in a
quantum advantage regime, due to the inefficiency of
estimating XE and a large computational cost, the fre-
quently used method is to analyze an intermediate-size
experiment in a classically verifiable regime, instead of the
largest experiment. Following this, we demonstrate that the
XE of the proposed sampler achieves a significantly larger
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XE score than the intermediate-size GBS of the most recent
experiments in Refs. [11,12]. To predict its behavior for
large system sizes, we analyze its performance for fermion
sampling (FS), which is efficiently simulable and verifi-
able, and provide analytical evidence of efficient spoofing
of noisy BS. Therefore, our classical algorithm is expected
to score better than the near-future BS experiments in a
reasonable time. We finally discuss other existing spoofing
methods and benchmarking.

XE.—The (log) XE of g (x) with respect to the ideal
probability py(x) is defined and estimated as [7,30]

1 & .
XE =Y qy(x)log py(x) zm;mg pu®), (1)

where N is the number of samples from g (x), gy (x) is an
experimental probability distribution or a mock-up prob-
ability distribution, and the sum is taken over all measure-
ment outcomes x. Since there are exponentially many
different outcomes for BS, the XE of an experimental or
a mock-up distribution with respect to an ideal probability
distribution cannot be efficiently computed; thus it is
estimated by sampling {x<i)}?21 from ¢y (x) in practice
(even estimation is inefficient because the cost for comput-
ing probabilities is exponential in the system size.). Unlike
RCS, due to the lack of understanding of the ideal score of
BS, the XE was used as a relative quantity against mock-up
distributions [12]. Specifically, if an experimental XE is
larger than the mock-up distribution’s, it implies that the
former generates heavier outcomes, considered as evidence
of quantum advantage for BS. Such a method was used as
evidence of quantum computational advantage in the recent
GBS experiment [12].

Heavy outcome generation.—Now, we present a
classical algorithm attaining a large XE. For BS, there
are probability distributions that can be efficiently sampled
and correlated with the ideal probability distribution. For
example, fully distinguishable BS has nonzero correlation
[37]. Another example is a probability distribution having
the same low-order marginal distributions, which was used
to spoof a GBS experiment [25]. Nevertheless, the corre-
lations are too small to obtain a larger XE than the
experiments [12]. We now provide how to increase the
XE from the small correlation. Note that our scheme is not
limited to BS in principle.

Let us denote a probability distribution for sampling as
qu(x) and a distribution for postselection as hy(x). We
now present the algorithm, illustrated in Fig. 1. Step 1:
Choose an efficient classical sampler gy (x). Step 2:
Generate k x N samples from g (x). Step 3: Compute
hy(x) for each sample. In this procedure, we require /iy (x)
efficiently computable and correlated to py(x). Step 4:
Postselect and output N samples whose /;(x)’s are largest
out of k x N, samples [38].

Sampling
qu ()

correlation to py(x) not necessary

Postselection
{z € §: Top N; elements from hy(z)}

correlation to py(x) necessary

FIG. 1. Proposed algorithm for spoofing XEB. The blue curve
represents the ideal distribution p;(x). See the main text for the
detailed procedures.

The principle behind the postselection is that, due to the
correlation between py(x) and hy(x), we obtain samples
likely to have a larger probability with respect to the ideal
distribution py(x) by selecting the samples with larger
hy(x). Thus, the most crucial step is to find Ay (x) correlated
with the ideal distribution, but easy to compute. Together
with our numerical result below, the existence of such
indicators might be related to hardness of heavy outcome
generation in that the indicators enable us to generate heavy
outcomes, where the heaviness means that its probability is
larger than the median of probabilities [39]. Note that we do
not compute the ideal probability in the entire procedure for
sampling. We provide more discussions about the choice of
qu(x) and hy(x) in the Supplemental Material [40].

Spoofing XEB in GBS experiments.—To illustrate how
the spoofing procedure operates in practice, we analyze the
method for a small-size GBS circuit with the number of
modes M = 16 and the number of photons N =4 [12].
Here, we choose uniform distribution g, (x) and first-order-
marginal-based distribution hy(x) =¥, py(x;), where
pu(x;) is the ideal marginal probability of the ith mode.
Here, the marginal probabilities can be easily computed
since the reduced state is a single-mode Gaussian state
whose covariance matrix is a submatrix of the full covari-
ance matrix [46]. Because the chosen hy(x) perfectly
recovers the first-order marginals of the ideal distribution
pu(x) by definition, it correlates with the ideal distribution.
After computing all the ideal probabilities p(x), we sort
the outcomes in descending order. We also compute g (x)
and Ay (x) and sort them in the same order as the ideal case.
Although we use log XE for comparison with experiments
in Refs. [11,12], a similar result using linear XE is provided
in the Supplemental Material [40].

As shown in Figs. 2(a) and 2(b), the ideal probability
pu(x) is likely to be large if hy(x) is large, which clearly
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FIG. 2. (a) Ideal distribution p;(x) and (b) the distribution

hy(x) are obtained by computing all probabilities of N photon
outcomes, where hy (x) and g (x) are sorted in the same order of
py(x). Here, XE,, and XE,, represent the XE of i, (x) and g (x),
respectively. (c)—(f) The spoofing with different k with N, = 10*.

shows their correlation, while each XE of g, (x) and iy (x) is
smaller than the ideal distribution. However, as the post-
selection rate k increases, the samples are concentrated on
large probabilities of the ideal distribution, which clearly
shows that our procedure selectively generates heavy out-
comes. Especially for k = 10> and 10°, the samples are
highly concentrated on the heavy outcomes. Consequently,
the spoofer’s XE is larger than the ideal probability.
Therefore, one can attain a large XE by sampling heavy
outcomes without directly simulating the desired circuit.
Here, the XE might not monotonically increase as the
postselection rate because one might end up selecting less
heavy outcomes. We also analyze the same procedure for
Fock-state BS (FBS) using different /;; in Ref. [40].

Now, we consider intermediate-size circuits used for
demonstrating quantum advantage in Ref. [12], where the
experimental samples attain a larger XE than various mock-
up distributions. Since XE is not an efficient verification
method, the result based on the intermediate-scale circuits is
claimed to be evidence of the quantum advantage of their
largest circuit. Following Ref. [12], we normalize as XE =
3o loglpy (x7) /NN, where NV =Pr(N) /(**)/~") and
Pr(N) is the probability of obtaining N photons from p(x).

We emphasize that the XEB we employ is applied for each
photon number sector instead of the entire sample set,
consistent with the previous methods in experiments
[10-12]. Therefore, it is not sensitive to the total photon
number distribution. If we conduct the benchmarking for the

(a) Spoofing GBS with M=216 Spoofing GBS with M=72
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FIG. 3. (a) 216 modes with 216 squeezed states with r = 0.89.
(b) 72 modes with 72 squeezed states with r ~ 0.53. The error bar
represents the standard deviation of log py(x) of obtained
samples divided by /N, and N, = 10°.

entire set, the trivial way can spoof it is by manipulating the
total photon number distribution of a mock-up sampler so that
the sampler generates samples from a particular sector, having
a larger probability of each outcome than other sectors on
average. Meanwhile, we show in the Supplemental Material
[40] that we can adjust our spoofer’s total number distribution
to be consistent with the ideal case.

Figure 3 again shows that without postselection, the XE
is much smaller than the experimental samples’ XE from
Ref. [12]. Meanwhile, for k = 10, the spoofer’s XE is much
larger than the experiment for the wide range of photon
numbers. Additionally, as the postselection rate increases
further, the difference becomes more significant. Based on
the trend, we expect that such a gap may not close for the
large photon number sectors. Similar results for different
experiments [11] are provided in Ref. [40].

Prediction for larger systems.—Since XEB is computa-
tionally inefficient, it is demanding to check if the spoofer
works even for larger systems. To predict its performance
for large-size circuits and how the postselection overhead
scales, we consider a particular type of FS [47], a variant of
FBS (see Ref. [37] and the Supplemental Material [40]).
Since the FS is easy to simulate and its probabilities are
easy to compute [37], it does not provide quantum
advantage. Nevertheless, its similar structure to BS may
enable us to predict a larger BS, since the key idea of our
algorithm is to postselect heavy outcomes without comput-
ing the probability of the ideal distribution; thus it does not
directly rely on the easiness of FS.

Figure 4 shows the result. We implement the same
spoofer for FS with larger system sizes with postselection
rate k differently to analyze the postselection overhead and
investigate the XE difference: AXE = XE, oer — XEiq-
Although the XE from different choices of the postselection
rate varies, all the different cases’ XE difference gradually
become negative as the system size grows. Such a trend
may be caused because the first-order marginals’ correla-
tion to the ideal distribution is not sufficiently large for
larger system sizes. It implies that, as the system size
increases, the postselection rate might have to increase,
superpolynomially at worst. Even if this is true, since we
are comparing the XE score against the ideal case and noise
significantly decreases the XE of experiments (see below),
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FIG. 4. XE of FS. N, = 10° for N <90 and N, = 10> for
N > 10?. We used 10° different random unitary matrices for
circuit configuration. The error bar represents the standard
deviation of XE difference.

it would be extremely difficult to surpass the score from our
spoofer in the near future.

Evidence of efficiency of spoofing noisy BS.—We now
provide evidence that our algorithm can efficiently spoof
noisy BS experiments. To this end, we study the linear XE,
XE =), qy(x)py(x), of ideal and noisy FBS, assuming a
collision-free regime, i.e., M = w(N?). For the ideal case,

ie., qy(x) = py(x) = |PerU,|*> [3], the average XE for
Haar-random unitary U is given by
E PerZ N+1)!
XEld Z[EU |PerU | Z)C ZH | ] ( MN) .

(2)

Here, we approximated submatrices of large Haar-random
unitary matrices by random Gaussian matrices, U, =
Z/+/M with Z following the complex normal distribution,
and used E[[PerZ|*] = N!(N + 1)! [3] and (%) ~ MV /N!.
Meanwhile, the XE of g;; independent of py is given by
Ey[XEig,) = N!/M" [40], where one can clearly see the
additional factor (N + 1) for the ideal case.

We now analyze the behavior of the XE under partial
distinguishability [40,49,50], one of the most important
noise models in practice, describing partial overlaps of
wave functions of different photons (see the Supplemental
Material [40] and Refs. [49,50] for more details of the
model). The XE of BS under partial distinguishability 0 <
p < 1 with respect to the ideal distribution, normalized by
the XE of an independent distribution, is bounded by [40]

lEU[XE } 2(1 _pNJH) (3)
EXEgl = 1-p

Observe that even for constant p, the normalized XE
converges to 2 /(1 — p), which only provides an additional
constant factor e*/(1 — p), while the ideal score’s factor
increases as (N + 1). Clearly, the XE significantly

decreases under experimental noise, suggesting that the
experimental XE will be much smaller than the ideal case.

We now provide analytical evidence that the noisy XE
might be attainable using our method. Since analyzing our
algorithm’s output probability distribution is difficult due to
postselection, we consider a different probability distribu-
tion o [hy(x)]*, which contains our algorithm’s core idea,
as it tends to generate heavy outcomes from pg(x).
Effectively, a similar effect to postselection is expected
for s > 1, because the resulting probability favors large-
probability outcomes from Ay (x) (we do not expect that we
can sample from the distribution). Thus, the power s is
associated with postselection overhead k. We show for
linear XE that the distribution with a multinomial distri-

bution Ay (x) = NN, 32N, U ,,|* provides [40]
Ey[XE(py. hy)l _ 1 Ey {pru(x)h‘b(x)] ~ o5
[EU [XEidp] [E [XEldp] thil (x ) ’

(4)

where the approximation holds for small s and large N.
Since it suffices to achieve a constant factor due to noise
from Eq. (3) and there are other types of noise, such as loss
[40], we expect that choosing a constant power s, which
may be interpreted as constant postselection overhead k,
might be sufficient to spoof noisy BS unless the noise can
be highly suppressed.

Comparison to existing spoofing methods.—Most
existing methods for spoofing GBS work by attempting
to model noisy experiments. It is often the case that noisy
experiments converge to classically easy distribution
[15,18,23-25,50,51]. These algorithms exploit this by
sampling from this easy distribution. For example, Kalai
and Kindler claimed that noisy experimental boson sam-
pler’s probabilities are approximable by low-degree poly-
nomials [15]. Since then, there have been many subsequent
proposals to take advantage of noise [18,50]. Similarly, the
algorithm in Ref. [25] aims to reproduce low-order margin-
als without recovering high-order marginals. Another
method is to use the classical state because noise often
transforms the output state to be close to classical states
[20,23,51,52].

Unlike the existing methods, our method’s goal is
spoofing XEB instead of approximate simulation. Since
XE increases by generating heavy outcomes, a large XE
can be achieved without simulation. Thus, our approach
does not necessarily work for other benchmarking that does
not rely on heavy outcome generation, such as the Bayesian
test and correlation functions [53]. The Bayesian test
employed in current GBS experiments as another evidence
of quantum advantage [10-12] defines the score as

LS o220 5
SCOre = — og vl
N, i—1 CIU(xm)
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FIG. 5. Bayesian test using M =16 and N =4 case in
Ref. [12]. The green curve is the experimental data from Ref. [12].
The XE score is different from Fig. 2 because the probability is
normalized over the sector for this figure.

where {x()}":, is a sample set from experiment. A positive
score implies that the experimental samples are more likely to
be sampled from the ideal distribution p(x) than the mock-
up distribution g (x). Because the test requires the profile of
the mock-up distribution and computing the postselected
distribution’s probability is difficult, it is not easy to perform
Bayesian testing against our method. Nevertheless, because
our method favorably generates heavy outcomes, the output
distribution may be highly concentrated. Thus, even if we can
compute the probability distribution, our method is unlikely
to pass the Bayesian test.

As an example that generates heavy outcomes but fails to
pass the Bayesian test, consider a mock-up distribution
qu(x) « py(x)?* (without postselection). Thus, g, (x) gen-
erates heavier outcomes than p(x) with respect to py(x),
which guarantees to spoof the XE test, as shown in Fig. 5.
However, since the mock-up distribution is farther than the
ideal distribution to empirical experimental distribution, the
Bayesian score becomes positive, implying that g, (x) fails to
pass the Bayesian test, although it generates heavy outcomes.

Finally, our results spoofing the XE test do not imply that
the experiments in Refs. [10-12] are easy to simulate
because our algorithm’s goal is to spoof the test without
simulation. Instead, the implication is that the XE scores
may not be a proper measure as evidence of quantum
advantage of BS. Our results open many questions about
the verification of sampling tasks. First, making our method
analytical is crucial to predict the asymptotic behavior of
the method precisely. Second, it would also be interesting
to apply the same method to other sampling tasks.
Especially for RCS, finding a distribution that is correlated
with the ideal distribution and easy to compute would be an
important first step to applying the presented method. We
emphasize again that although we chose A relying on
marginals, other various possible quantities may not
necessarily rely on marginals. Also, since our algorithm
is specialized to spoof the XE test, we do not expect it to
pass other tests, such as the Bayesian test. Hence, it would
also be interesting to analyze the Bayesian test to see if it
can be spoofed.
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