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High-dimensional quantum steering can be seen as a test for the dimensionality of entanglement, where
the devices at one side are not characterized. As such, it is an important component in quantum
informational protocols that make use of high-dimensional entanglement. Although it has been recently
observed experimentally, the phenomenon of high-dimensional steering is lacking a general certification
procedure. We provide necessary and sufficient conditions to certify the entanglement dimension in a
steering scenario. These conditions are stated in terms of a hierarchy of semidefinite programs, which can
also be used to quantify the phenomenon using the steering dimension robustness. To demonstrate the
practical viability of our method, we characterize the dimensionality of entanglement in steering scenarios
prepared with maximally entangled states measured in mutually unbiased bases. Our methods give
significantly stronger bounds on the noise robustness necessary to experimentally certify high-dimensional
entanglement.
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Introduction.—Controlling increasingly higher-dimen-
sional quantum systems is one of the keys that can unlock
the advantage of quantum technologies over classical
predecessors. Indeed, a central promise of quantum com-
puting is an improved scaling of the required qubits in
comparison to classical bits, with a similar perspective
applying, e.g., for quantum metrology or the capacity of
quantum communication channels. On the other side,
employing high-dimensional systems can improve the
noise robustness of quantum information protocols and
experiments [1–8], and by this the central bottleneck for
applications like quantum cryptography or a quantum
network can be removed.
In any of the above applications, the genuine use of high-

dimensionality demands the ability of creating and con-
trolling entangled quantum states with a high Schmidt
number. In operational terms, this number asks for the
minimal local Hilbert space dimension k that two parties,
Alice and Bob, have to possess for holding shares of an
entangled state ρAB.
Certifying this number in the context of the one-side

device-independent setting of a steering experiment [see
Fig. 1(a)] is a task that recently gained a significant amount
of attention [9–12]. Here we assume a situation in which
only one party, say Bob, has the ability to fully characterise
his local quantum system. The specifics of the other party,
Alice, are kept hidden. The only way in which Alice can
interact with her system is by applying black-box mea-
surements, of which she can only control an input x and
observe a corresponding output a.
Alice’s task in this situation is to find suitable black-box

measurements and an initial shared quantum state ρ that

allows her to convince Bob that they hold a state with a
Schmidt number at least k. This task can be seen as a
fundamental building block for the verification of quantum
hardware, since a successful Alice will in the same run also

FIG. 1. In a steering experiment, Alice performs local mea-
surements on a bipartite quantum state ρ shared between her and
Bob. This results in a set of conditional states on Bob’s side [a so-
called state assemblage σ, see Eq. (1)], which can only be
steerable if the shared state ρ were entangled. The central task in
high-dimensional steering is to use an assemblage not only to
witness entanglement in ρ, but to also quantify it. We say an
assemblage is a k-preparable assemblage (and write that σ ∈ Ak)
if it can be prepared from a state ρ with Schmidt number smaller
or equal to k.
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prove her ability to control and nontrivially manipulate
quantum states on a k-dimensional Hilbert space.
Despite its fundamental importance, the certification of

high-dimensional steering can currently only be done for a
very restricted set of cases. The usual tools employed here
are linear steering witnesses, which typically come with the
drawback that they are always designed around a given set
of scenarios and resources that one aims to characterize.
They usually only perform well when the corresponding
black-box setting is applied, but tend to fail otherwise. For
example, albeit in Ref. [9] tight witnesses are derived, they
are limited to pairs of measurements. Their methods were
later extended to more settings, but the obtained witnesses
are quite weak [10,11].
In this Letter, we provide a general and complete

hierarchy of semidefinite programs for high-dimensional
steering certification. Our approach differs from the pre-
vious literature [9–11] in two important aspects. First, our
starting point is the description of high-dimensional steer-
ing assemblages, while the previous methods were focused
on optimizing a specific witness. Most importantly, our
hierarchy holds for any number of measurement outcomes
and measurement settings and it is always complete,
meaning that for a given state assemblage on Bob’s side
one can, in principle, exactly determine the dimension of
the entanglement that the assemblage certifies. Although
this completeness is only guaranteed if all levels are tested,
we demonstrate its usefulness in practice by obtaining
significantly improved bounds on the noise robustness of
assemblages that certify entanglement dimension k > 2.
High-dimensional steering.—In a steering experiment,

Alice attempts to “steer” Bob’s system by performing local
measurements on her share of a quantum state ρ. Her
measurements are uncharacterized, and her only input to
the experiment is a label x ∈ f1;…; Xg, indicating a
measurement choice. We denote her measurements by
Mx ¼ fMajxg, where Majx ≥ 0 are the effects andP

a Majx ¼ 1. After Alice measures and announces her
outcome to Bob, Bob’s state ends up being

σajx ¼ trA½ρðMajx ⊗ 1BÞ�: ð1Þ

The collection of subnormalized states σ ¼ fσajxg is called
an assemblage. Since Alice cannot communicate with Bob,
we require the assemblages to be nonsignaling:P

a σajx ¼
P

a σajx0 , for any choice of measurements x
and x0. An assemblage is said to demonstrate steering if it
cannot be explained by means of a local hidden state (LHS)
model [13]

σajx ¼
Z
Λ
dλpðλÞpðajx; λÞσλ; ð2Þ

where the states σλ ∈ BðHBÞ are local to Bob, and λ is a
latent, classical variable correlating Alice’s and Bob’s

devices. Whenever the shared state ρ is separable, that
is, whenever it can be written as ρ ¼ P

λ pðλÞρAλ ⊗ ρBλ for
some local states ρAλ and ρBλ , all assemblages σ prepared
from ρ admit a LHS model. Therefore, any steerable σ
certifies entanglement of the shared state.
Entanglement, though, comes in many forms. In

particular, it can be quantified [14], but steerability does
not provide insights into how entangled ρ is. An object
of recent discussion is whether, and how, can we use
steering experiments to not only certify, but also
quantify entanglement. The Schmidt number [15] is a
popular quantifier in this and other correlation scenarios
because it naturally leads to a notion of entanglement
dimension (but other concepts also exist [16]). So, for
example, if a bipartite state of local dimension d has
Schmidt number 3, one can say it is only entangled in 3
of its d degrees of freedom and at the same time also
certify that d > 2.
To properly define the Schmidt number, recall that a pure

bipartite state jψi has Schmidt rank k if its Schmidt
decomposition has k terms, jψi ¼ P

k
i¼1 νiji; ii.

Extending this definition to mixed states, we say that a
state ρ has Schmidt number snðρÞ ¼ k if (i) for any
decomposition ρ ¼ P

i pijψ iihψ ij, at least one of the
vectors jψ ii has Schmidt rank at least k, and (ii) there
exists a decomposition of ρ with all vectors jψ ii having
Schmidt rank at most k. We define the sets
Sk ¼ fρjsnðρÞ ≤ kg, and notice that they are convex, their
extremal points are pure states, and Sk−1 ⊂ Sk for all k ≥ 2,
where S1 is the set of separable states.
Building on top of it, we say that an assemblage σ is k

preparable if it can be prepared by local measurements on a
state ρ ∈ Sk and we use the notation snðσÞ ≤ k to mean so,
i.e., snðσÞ ≤ k if and only if σajx ¼ trA½ρðMajx ⊗ 1BÞ� for
some ρ ∈ Sk. Furthermore, we defineAk ¼ fσjsnðσÞ ≤ kg
as the set of all assemblages that can be prepared with states
in Sk. The setsAk exhibit a nested structureAk−1 ⊂ Ak, for
any k ≥ 2 [9].
Naturally, the central question in high-dimensional steer-

ing is how to characterize these sets. In practice, given an
assemblage, we want to be able to certify that it is not k
preparable.
Main result.—Suppose σ ¼ fσajxg is an assemblage in

Ak. Then, it can be obtained by means of a state ρ with
Schmidt number k. Any such state can be seen as coming
from a separable operator in an extended space, where an
entangling projection was made. More precisely, we extend
Alice’s (A) and Bob’s (B) subsystems with k-dimensional
auxiliary spaces A0 and B0 and define the projection
Πk ¼ 1 ⊗

P
k
i¼1 ji; iiA0B0 . We call Πk an entangling pro-

jection since it can be seen as an unnormalized maximally
entangled state jϕþ

d i ¼ ð1= ffiffiffi
d

p ÞPd
i¼1 ji; ii. Then, any pure

state jψi ¼ P
k
i¼1 ηijiA; iBi can be expressed as jψi ¼

Π†
kðji0AA0 ; i0B0BiÞ if we set
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ji0AA0 i ¼
Xk
i¼1

jiA; iA0 i; ji0B0Bi ¼
Xk
i¼1

ηijiB0 ; iBi: ð3Þ

Consequently, for mixed states,

ρ ¼ Π†
k

�X
i

piρ
i
AA0 ⊗ ρiB0B|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ω

�
Πk: ð4Þ

Therefore, any state ρ with Schmidt number k can be
associated with an operator Ω which is separable w.r.t. the
AA0=B0B partition, at the expense of an entangling projec-
tion Πk between A0 and B0 (Fig. 2). This fact has already
been noted [17] and used to derive a Schmidt number
certification hierarchy for entanglement [18].
With this in mind, when ρ has Schmidt number k we can

recast the r.h.s. of Eq. (1) as

Π†
k

�X
i

pitrAðρiAA0 ½Majx ⊗ 1A0 �Þ ⊗ ρiB0B

�
Πk

¼ Π†
k

�X
i

piτ
i;a;x
A0 ⊗ ρiB0B

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ωajx

Πk: ð5Þ

Here, the set of τi;a;xA0 operators has the structure of an
assemblage and, in particular, the nonsignaling conditionP

i;a τ
i;a;x
A0 ¼ P

i;a τ
i;a;x0
A0 , ∀ x ≠ x0 holds.

By this construction, an assemblage fσajxg is k prepar-
able if and only if there are operators Ωajx ∈
BðHk ⊗ Hk ⊗ HBÞ such that σajx ¼ Π†

kΩajxΠk, where
Ωajx ¼

P
i piτ

i;a;x
A0 ⊗ ρiB0B and fτi;a;xA0 g is nonsignaling.

Although this provides an insight into the structure of
high-dimensional steering assemblages, it does not evi-
dence a way of determining the existence of the Ωajx. As it
turns out, this can be solved by means of a complete
hierarchy of semidefinite tests, which can be seen as a

generalization of the symmetric extensions criterion for
entanglement certification [19].
Given N ≥ 1, Ωajx is said to have a nonsignaling

symmetric extension of order N if there exists an operator
Ξajx ∈ BðHA0 ⊗ H⊗N

B0BÞ such that

trðB0BÞi∶ i≠mðΞajxÞ ¼ Ωajx; ∀ m ∈ f1;…; Ng; ð6aÞ
X
a

Ξajx ¼
X
a

Ξajx0 ; ∀ x; x0: ð6bÞ

Here, the first condition ensures that when all but one of the
systems in B0B are traced out, Ωajx is recovered, while the
second condition enforces nonsignaling in the extensions.
With the following theorem, we link the existence of

symmetric extensions with that of the Ωajx operators
described in Eq. (5).
Theorem 1.—An assemblage fσajxg is k preparable if

and only if there are corresponding operators Ωajx ∈
BðHA0 ⊗ HB0BÞ such that HA0 , HB0 are of dimension k
and Ωajx has a nonsignaling symmetric extension [Eq. (6)]
to any order N.
Proof.—The “only if” condition, essential for the appli-

cations described ahead, is easily seen to be satisfied by
taking Ξajx ¼

P
i piτ

i;a;x
A0 ⊗ ðρiB0BÞ⊗N , where we, without

loss of generality, assumed that trðρiB0BÞ ¼ 1. We postpone
the other direction of the proof to the Supplemental
Material [20]. ▪
Theorem 1 tells us that, to test if an assemblage fσajxg is

not k preparable, we can check whether there exists a
nonsignaling symmetric extension of Ωajx to some order N.
Thus, for some given assemblage fσajxg, Schmidt number
k, and hierarchy level N, we must search for extensions
fΞajxg that satisfy the constraints in Eq. (6)

with σajx ¼ Π†
kΩajxΠk.

This can be done with semidefinite programming. If the
program is unfeasible (i.e., the symmetric extension does
not exist), then fσajxg is not k preparable. Otherwise, the
test is inconclusive and we can proceed to test a higher N.
This hierarchy is complete in the sense that unfeasibility
will eventually occur for all assemblages which are not k
preparable, but never for k-preparable ones.
Certifying high-dimensional steering with maximally

entangled states and MUB measurements.—Consider, as
an example, the assemblage arising from a set of X d-
dimensional mutually unbiased bases (MUB) measure-
ments [21] acting on the maximally entangled state
jϕþ

d i ¼ ð1= ffiffiffi
d

p ÞPd
i¼1 ji; ii,

σ ¼ fftrA½jϕþ
d ihϕþ

d j · ðMajx ⊗ 1BÞ�gda¼1
gXx¼1: ð7Þ

By mixing σ with the white noise assemblage σ1 (the one
with elements 1=d2) at a visibility η, we get a new
assemblage with elements σajxðηÞ ¼ ησajx þ ð1 − ηÞ1=d2.

FIG. 2. Any state ρ with Schmidt number k acting on BðHA ⊗
HBÞ is equivalent to some separable operator

P
i piρ

i
AA0 ⊗ ρiB0B

in an extended Hilbert space, which is then projected with Πk ¼
1 ⊗

P
k
i¼1 ji; iiA0B0 according to Eq. (4).
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Since σ1 is always a feasible point in the program described
above, one may rewrite it as a maximization on η. Any
solution η� < 1 to this maximization problem certifies that
the assemblage fσajxg does not have nonsignaling sym-
metric extensions and therefore that snðσÞ > k.
However, even for reasonable values of the putative

Schmidt number k and hierarchy level N, the size of the
program increases superexponentially. To mitigate this
blow up, one can make use of the symmetries in the
problem.
First, observe that if the extension is of the form Ξajx ¼P
i piτ

i;a;x
A0 ⊗ ðρiB0BÞ⊗N then we can, without loss of gen-

erality, assume that ρiB0B are pure states and thus Ξajx acts on
S ¼ HA0 ⊗ SymNðB0BÞ, where SymNðB0BÞ is the symmet-
ric subspace of BðH⊗N

B0BÞ. This space is of dimension dS ¼
dA0 × ðkdBþN−1

kdB−1
Þ [22], considerably reducing the number of

variables in our problem. To put this observation to use,
notice that, from the projector

ΠS ¼ 1A0 ⊗
1

n!

X
π∈Sn

Pπ; ð8Þ

where SN is the N elements permutation group, one may
construct a matrix PS whose dS rows span the symmetric
subspace. With that in hand, we can start the whole ordeal
with a dS × dS matrix Ξ0

ajx and substitute Ξajx for P
†
SΞ0

ajxPS

in all constraints. More than that, due to the permutational
symmetry, all partial traces need only be evaluated on one
of the B0B subsystems. Therefore, we not only reduce the
dimension on the optimization variables, but also decrease
the number of constraints.
Figure 3 shows numerical results obtained with an

implementation of the method hereby described. We addi-
tionally made use of positive partial transpose constraints—
which are known to accelerate convergence in the sym-
metric extensions hierarchy [23]—and explicitly enforced
that trðΞajxÞ ¼ ktrðσajxÞ, which also leads to better results.
The results shown in Fig. 3 were computed for the lowest

hierarchy level (N ¼ 2), and even though Theorem 1 only
guarantees convergence in the limit N → ∞, they are
already of practical significance. Remarkably, this lowest
level already provide better bounds than the known values
for high-dimensional steering witnesses with X > 2 mea-
surements [ [10], Table III], except for the d ¼ 5, X ¼ 3
case. In comparison to the previous results for X ¼ 2
measurements [9], level N ¼ 2 of our hierarchy provides
slightly worse visibilities, but moving to levelN ¼ 3makes
up for it. For example, while they find a visibility of 0.886
(0.838) for dimension 3 (4), our method improves it to
0.844 (0.811).
Although most of these results [with the exception of

ðd ¼ 5; X ¼ 5Þ] were computed in a standard computer,
increasing the desired Schmidt number k or the dimension
d rapidly leads to instances that are too large to compute

with standard methods. For particular applications, how-
ever, it is possible to significantly reduce the computational
cost by, for instance, exploiting symmetries of the assemb-
lages. One example is described in the Supplemental
Material [20]. It can be used when the measurements in
the assemblage preparation have unitary symmetry (as is
the case for MUBs), and effectively reduces the number of
variables we must consider by a factor of X (the number of
measurements).
Robustness of high-dimensional steering.—The optimal

value η�, as described above, can be interpreted as the
distance between the assemblage and the set Ak, measured
along the line segment connecting σ to the white noise
assemblage. A particularly interesting alternative choice of
noise model to be considered is that of all k-preparable
assemblages. Borrowing ideas from the entanglement and
steering robustnesses [24,25], we define the k-preparability
robustness w.r.t. noise model N as the real number
RN ðσ; kÞ ¼ t� resulting from the following program, in
the limit N → ∞.

min t ð9aÞ

s:t:

σajx þ tπajx
1þ t

¼ σkajx ð9bÞ

Π†
kðtrðBB0Þi∶ i≠m½Ξajx�ÞΠk ¼ σkajx; ð9cÞ
X
a

Ξajx ¼
X
a

Ξajx0 ; ∀ x; x0 ð9dÞ

FIG. 3. Schmidt number (k) certification for assemblages
prepared with maximally entangled states and X measurements
on MUBs. The assemblages were mixed with the white
noise assemblage and an upper bound on the minimum visibility
such that 2-preparability can be falsified was computed. All
results were computed with two copies of the B0B system (i.e.,
N ¼ 2). Increasing N can lead to smaller bounds. For instance, in
the d ¼ 3, X ¼ 3 case, by setting N ¼ 3 we were able to certify
that k > 2 for all η ≥ 0.789. For comparison, we also show
analogous bounds for the entanglement scenario, obtained
through a similar procedure: To certify the Schmidt number in
an entanglement scenario, the standard symmetric extensions
hierarchy can be directly applied to the observation illustrated in
Fig. 2 (see also [18]).

PHYSICAL REVIEW LETTERS 131, 010201 (2023)

010201-4



Since the minimization ranges over Ξa;x, t and the noise
operators πajx ∈ N , this is not a semidefinite program.
Nevertheless, when N is any set defined by a linear matrix
inequality (LMI), it can be turned into one, as shown in the
Supplemental Material [20].
We have already shown that the set of Schmidt number k

assemblages (Ak) can be approximated by means of a
similar hierarchy of semidefinite programs. Thus, any
choice N for the hierarchy level will provide an upper
bound RN

N ðσ; kÞ ≥ RN ðσ; kÞ. By taking N ¼ Ak, we can
interpret RAk

ðσ; kÞ as the minimal distance between the
assemblage σ and the set of Schmidt number k
assemblages.
Conclusions.—We have provided a complete set of

criteria for the certification of high-dimensional steering.
The criteria are formulated as a sequence of semidefinite
programs, such that any kind of high-dimensional steering
will be detected at one point of the sequence. Moreover, we
have demonstrated the practical implementation of our
method and it has turned out that it improves existing
results significantly.
In the context of known results in quantum steering, our

results have further consequences. To start with, steering is
known to be in one-to-one correspondence with measure-
ment incompatibility [26,27], a connection which was
recently extended to high-dimensional steering and k-
simulatability of measurements [12], in the sense defined
in [28]. Thus our results also solve the problem of
quantifying measurement incompatibility in terms of a
dimension. On a more practical side, it is also possible to
use our method to optimize high-dimensional steering
witnesses (or its dual to obtain them), which might be a
fruitful way of constructing tighter witnesses than possible
with the current approaches [7,10].
Although our hierarchy for Schmidt number certification

can be stated by means of semidefinite programs, it leads to
a formidable computational problem. Ultimately, the size of
the problem is dictated by the number of measurements and
outcomes, the tentative Schmidt number k and the hier-
archy level N. In particular, the Hilbert space dimension
grows exponentially with k and N. A natural further step is
thus to find cheaper relaxations or to adapt the formulation
to specific problems by making use of further symmetries,
as done in Refs. [29–32].
Another possible extension comes from the key elements

in our proposal, which are the lifting of the state ρ by means
of the ancillary spaces HA0 and HB0 [cf. Eq. (4)], and the
reformulation of the symmetric extension criterion to the
operators Ωajx. In light of recent extensions of the sym-
metric extensions hierarchy for general cones [2], it should
be possible to extend the ideas herein presented to Bell
nonlocality and other correlation scenarios.
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