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Liquid structure carries deep imprints of an inherent thermal invariance against a spatial transformation
of the underlying classical many-body Hamiltonian. At first order in the transformation field Noether’s
theorem yields the local force balance. Three distinct two-body correlation functions emerge at second
order, namely the standard two-body density, the localized force-force correlation function, and the
localized force gradient. An exact Noether sum rule interrelates these correlators. Simulations of Lennard-
Jones, Yukawa, soft-sphere dipolar, Stockmayer, Gay-Berne and Weeks-Chandler-Andersen liquids, of
monatomic water and of a colloidal gel former demonstrate the fundamental role in the characterization of
spatial structure.
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It is a both surprising and intriguing phenomenon that the
liquid phase occurs in the phase diagram at and off
coexistence with the gas or the solid phase. Famously it
has been argued [1,2] that it needs relying on observations
rather than mere theory alone to predict the existence of
liquids, as neither the noninteracting ideal gas nor the
Einstein crystal form appropriate idealized references. The
liquid state [3–6] comprises high spatial symmetry against
global translations and rotations, together with the correlated
and strongly interacting behavior of the dense constituents,
whether they are atoms, molecules, or colloids.
Among the defining features of liquids are the ability to

spontaneously form an interface when at liquid-gas coex-
istence, the viscous response against shearing motion, and
the rich pair correlation structure. While the one-body
density distribution is homogeneous in bulk (in stark contrast
to the microscopic density of a crystal), the joint probability
of finding two particles at a given separation distance r is
highly nontrivial in a liquid. The pair correlation function
gðrÞ [4], as accessible, e.g., via microscopy [7–10] and
scattering [4,11–14] techniques, quantifies this spatial struc-
ture on the particle level. At large distances r, the asymptotic
decay of gðrÞ falls into different classes [15–18] with much
current interest in electrolytes [19]. The spatial Fourier
transform of gðrÞ yields the static structure factor [4,11–14].
It is a common strategy to exploit the symmetries of a

given physical system via Noether’s theorem of invariant
variations [20,21]. From symmetries in the dynamical
description of the system one systematically obtains con-
servation laws. Typically the starting point is the action
functional, as generalized to a variety of statistical mechani-
cal settings [22–30]. In contrast, we have recently applied
Noether’s concept directly to statistical mechanical func-
tionals, such as the free energy [31–34]. This allows us to
exploit a specific thermal invariance property ofHamiltonian
many-body systems against shifting as performed globally
[31–33] or locally resolved in position [34,35].

In this Letter we demonstrate that at the local second-
order level the thermal Noether invariance leads to exact
identities (“sum rules” [4,36–43]) that form a comprehen-
sive statistical two-body correlation framework. We use
simulations to demonstrate the relevance for the inves-
tigation of the structure of simple, beyond-simple, and
gelled liquids.
We consider systems of N classical particles in three

dimensions with positions r1;…; rN ≡ rN and momenta
p1;…;pN ≡ pN . The Hamiltonian consists of kinetic,
interparticle, and external energy contributions,

H ¼
X
i

p2
i

2m
þ uðrNÞ þ

X
i

VextðriÞ; ð1Þ

where the indices i ¼ 1;…; N run over all particles, m
indicates the particle mass, uðrNÞ is the interparticle
interaction potential, and VextðrÞ is a one-body external
potential as a function of position r.
We consider a canonical transformation [44], where

coordinates and momenta change according to the follow-
ing map [35]:

ri → ri þ ϵðriÞ; ð2Þ

pi → ½1þ∇iϵðriÞ�−1 · pi: ð3Þ

Here ϵðrÞ is a spatial “shifting” field that parametrizes the
transform, 1 indicates the 3 × 3-unit matrix, the superscript
−1 of a matrix is its inverse, and ∇i indicates the derivative
with respect to ri, such that ∇iϵðriÞ is a 3 × 3 matrix. The
transformation (2) and (3) preserves both the phase space
volume element and the Hamiltonian [35,44]; its self-
adjoint version is applicable to quantum systems [34].
The form of the vector field ϵðrÞ must be such that the
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transformation between original and new coordinates is
bijective [34].
We consider the shifting field and its gradient to be small

and hence Taylor expand. The coordinate transformation (2)
is already linear in the displacement field and is hence
unaffected. The momentum transformation (3), when
expanded as a geometric (Neumann) series to second
order, is

½1þ∇iϵðriÞ�−1 ¼ 1 −∇iϵðriÞ þ ½∇iϵðriÞ�2 −…; ð4Þ

where the exponents on the right-hand side imply matrix
products such that ½∇iϵðriÞ�2 ¼ ½∇iϵðriÞ� · ½∇iϵðriÞ�, etc.
When expressed in the new variables, the Hamiltonian
acquires a functional dependence on the shifting field, i.e.,
H → H½ϵ�. It is then straightforward to show [34,35] that the
locally resolved one-body force operator F̂ðrÞ follows from
functional differentiation according to

−
δH½ϵ�
δϵðrÞ

����
ϵ¼0

¼ F̂ðrÞ; ð5Þ

where δ=δϵðrÞ indicates the functional derivative with
respect to the shifting field ϵðrÞ. As indicated, ϵðrÞ is set
to zero after the derivative has been taken. Similar to the
structure of the Hamiltonian (1), the one-body force
operator F̂ðrÞ contains kinetic, interparticle, and external
contributions:

F̂ðrÞ ¼ −∇ ·
X
i

pipi

m
δðr − riÞ þ F̂intðrÞ − ρ̂ðrÞ∇VextðrÞ:

ð6Þ

Here δð·Þ indicates the (three-dimensional) Dirac distribu-
tion, F̂intðrÞ¼−

P
iδðr−riÞ∇iuðrNÞ is the interparticle one-

body force operator [45], and ρ̂ðrÞ ¼ P
i δðr − riÞ is the

standard one-body density operator [4,5]. All considerations
so far are general and hold per microstate.
We complement this deterministic description by the

statistical mechanics of the grand ensemble at chemical po-
tential μ and temperature T. The grand potential is Ω ¼
−kBT lnΞ, with the grand partition sum Ξ ¼ Tr e−βðH−μNÞ.
Here kB indicates the Boltzmann constant, β ¼ 1=ðkBTÞ
denotes inverse temperature, and the classical “trace”
operation in the grand ensemble is given by Tr·¼P∞

N¼0ðN!h3NÞ−1R dr1…drN
R
dp1…dpN ·, where h denotes

the Planck constant. The corresponding grand probability
distribution is Ψ ¼ e−βðH−μNÞ=Ξ and thermal averages are
defined via h·i ¼ TrΨ·, as is standard.A primary example of
a thermal average is the density profile being the average of
the one-body density operator, i.e., ρðrÞ ¼ hρ̂ðrÞi.
Via the transformed Hamiltonian H½ϵ�, the grand parti-

tion sum acquires functional dependence on the shifting
field [34,35], i.e., Ξ½ϵ�, and so does the grand potential, i.e.,

Ω½ϵ�. Noether invariance [31,32], however, implies that the
grand potential does not change under the transformation,
and hence

Ω½ϵ� ¼ Ω; ð7Þ
irrespectively of the form of ϵðrÞ. The first functional
derivative of Eq. (7) with respect to the shifting field ϵðrÞ
then yields [34,35] the locally resolved equilibribum force
density balance relation FðrÞ ¼ hF̂ðrÞi ¼ 0 [4,45].
Here we work at the second-order level and hence

consider the second derivative of Eq. (7), which yields

δ2Ω½ϵ�
δϵðrÞδϵðr0Þ

����
ϵ¼0

¼ 0: ð8Þ

Evaluating the functional derivative on the left-hand side
gives

δ2Ω½ϵ�
δϵðrÞδϵðr0Þ ¼ −βcov

�
δH½ϵ�
δϵðrÞ ;

δH½ϵ�
δϵðr0Þ

�
þ
�

δ2H½ϵ�
δϵðrÞδϵðr0Þ

�
;

ð9Þ
where the covariance of two observables (phase space
functions) Â and B̂ is defined in the standard way as
covðÂ; B̂Þ ¼ hÂ B̂i − hÂihB̂i. Rewriting the derivative
δH½ϵ�=δϵðrÞ as the negative force density operator via
Eq. (5), inserting Eq. (9) into Eq. (8), and rearranging gives
the following locally resolved two-body Noether sum rule:

βhF̂ðrÞF̂ðr0Þi ¼
�

δ2H½ϵ�
δϵðrÞδϵðr0Þ

�����
ϵ¼0

: ð10Þ

We have replaced covðF̂ðrÞ;F̂ðr0ÞÞ¼hF̂ðrÞF̂ðr0Þi, because
hF̂ðrÞi ¼ 0 in equilibrium [4,45]. The sum rule (10)
relates the force-force correlations at two different posi-
tions (left-hand side) with the mean curvature of the
Hamiltonian with respect to variation in the shifting field
(right-hand side). That such physically meaningful aver-
ages are related to each other, at all positions r and r0, is
highly nontrivial.
We can bring the fundamental Noether two-body sum

rule (10) into a more convenient form by multiplying by β,
splitting off the trivial kinetic contributions, and introduc-
ing the potential energy force operator F̂UðrÞ, which
combines interparticle and external forces according to
F̂UðrÞ ¼ F̂intðrÞ − ρ̂ðrÞ∇VextðrÞ. Furthermore we focus on
the distinct contributions (subscript “dist”) such that
only pairs of particles with unequal indices are involved
and double sums reduce to

P
ijð≠Þ≡P

N
i¼1

P
N
j¼1;j≠i. This

allows us to identify from Eq. (10) the following exact
distinct two-body Noether identity:

hβF̂UðrÞβF̂Uðr0Þidist ¼ ∇∇0ρ2ðr; r0Þ

þ
�X

ijð≠Þ
δðr − riÞδðr0 − rjÞ∇i∇jβuðrNÞ

�
: ð11Þ
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Here the two-body density is defined as is standard:
ρ2ðr;r0Þ¼ hρ̂ðrÞρ̂ðr0Þidist¼hPijð≠Þδðr−riÞδðr0−rjÞi. The
relationship between the different correlators, as graphi-
cally illustrated in Fig. 1, holds in general inhomogene-
ous situations with no need for specific simplifying
symmetries.
We demonstrate that this framework has profound

implications already for a bulk liquid, where ρðrÞ ¼ ρb ¼
const and VextðrÞ ¼ 0, such that F̂UðrÞ ¼ F̂intðrÞ. In view
of the form of the distinct sum rule (11), we use the pair
correlation function gðjr − r0jÞ ¼ ρ2ðr; r0Þ=ρ2b, and intro-
duce both the force-force pair correlation function
gffðjr − r0jÞ ¼ β2hF̂intðrÞF̂intðr0Þidist=ρ2b, and the force gra-
dient correlator g∇fðjr−r0jÞ¼−hPijð≠Þδðr−riÞδðr0−rjÞ
∇i∇jβuðrNÞi=ρ2b, which is also the negative mean po-
tential curvature. The identity (11) can then be written
succinctly as

∇∇gðrÞ þ g∇fðrÞ þ gffðrÞ ¼ 0; ð12Þ

where r ¼ jr − r0j denotes the separation distance
between the two positions. Both gffðrÞ and g∇fðrÞ
have tensor rank two, i.e., they are 3 × 3 matrices.
Given the central role that gðrÞ plays in the theory of
liquids [4], Eq. (12) is highly remarkable as it allows us
to express gðrÞ via spatial integration of two seemingly
entirely different (force-gradient and force-force) cor-
relators. Because of the rotational symmetry of the
bulk liquid, the only nontrivial tensor components are

parallel (k) and transversal (⊥) to r − r0, such that
Eq. (12) reduces to

g00ðrÞ þ g∇fkðrÞ þ gffkðrÞ ¼ 0; ð13Þ

g0ðrÞ=rþ g∇f⊥ðrÞ þ gff⊥ðrÞ ¼ 0; ð14Þ

with the prime(s) denoting the derivative(s) with respect
to r. In the chosen coordinate system the matrices are
diagonal, diagðk;⊥;⊥Þ, with the first axis being parallel
to r − r0. For molecular liquids of particles with orienta-
tional degrees of freedom [4,46–48] our theory, includ-
ing Eqs. (13) and (14), remains valid upon equilibrium
orientational averaging.
For simple fluids, where the particles interact mutually

only via a pair potential ϕðrÞ, the force gradient correlator
reduces to g∇fðrÞ ¼ βgðrÞ∇∇ϕðrÞ such that

g∇fkðrÞ¼ βgðrÞϕ00ðrÞ; g∇f⊥ðrÞ¼ βgðrÞϕ0ðrÞ=r: ð15Þ

This simplification is due to the reduction of the mi-
xed derivative ∇i∇juðrNÞ ¼ ∇i∇j

P
klð≠Þ ϕðjrk − rljÞ=2 ¼

∇i∇jϕðjri − rjjÞ, for i ≠ j. This allows us to rewrite the
curvature correlator in Eqs. (13) and (14), which attain
the form g00ðrÞ þ βϕ00ðrÞgðrÞ þ gffkðrÞ ¼ 0 and g0ðrÞ=rþ
βϕ0ðrÞgðrÞ=rþ gff⊥ðrÞ ¼ 0. In the gas phase the validity
can be analytically verified on the second virial level, where
gðrÞ ¼ exp½−βϕðrÞ� and the force-force correlations are
due to the antiparallel direct forces between a particle pair:
gffkðrÞ ¼ −gðrÞ½βϕ0ðrÞ�2. Furthermore gff⊥ðrÞ ¼ 0 due to
the absence of a third particle at ρb → 0 that could mediate
a transversal force.
We substantiate this Noether correlation framework with

computer simulations using adaptive Brownian dynamics
[49], which is an algorithm that is both fast and allows for
tight control of force evaluation errors. We first investigate
the Lennard-Jones (LJ) liquid, the purely repulsive Weeks-
Chandler-Andersen (WCA) liquid, monatomic water
[50,51], and a three-body colloidal gel former [52,53].
The results are summarized in Fig. 2; the top line gives the
respective values of T and ρb ¼ N=V with box volume
V ¼ ð10σÞ3; the LJ potential is truncated at r=σ ¼ 2.5 with
σ denoting the respective particle size. We first discuss the
two simple liquids. Both the LJ and the WCA liquid feature
pair correlation functions gðrÞ that display the familiar
strongly structured, damped oscillatory form [4,15,16],
with a prominent first peak indicating a nearest neighbor
correlation shell and subsequent, increasingly washed out
oscillations at larger distances. In stark contrast, both the
force-gradient (potential curvature) correlator g∇fðrÞ and
the force-force correlator gffðrÞ have very different forms
than gðrÞ itself. The curvature correlator has very strongly
localized positive (k) and negative (⊥) peaks near r ¼ σ.
This feature is due to the strong first peak of gðrÞ combined

i
j

k

FIG. 1. Illustration of the three different correlation functions
that are constrained by thermal Noether invariance. The particles
(spheres) exert forces (arrows) onto each other. Particles i and j
interact directly with each other (black arrows). The total force
(white arrow) on each particle is also determined by the forces
that all other particles k; k0; k00 exert (pink arrows). The force-
force correlations are balanced by the potential energy curvature
∇i∇jβuðrNÞ (orange surface) and by the two-body density
Hessian ∇∇0ρ2ðr; r0Þ (black curve).
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with the properties of ϕ0ðrÞ and ϕ00ðrÞ, as is evident via
Eq. (15), which we find to be satisfied to high numerical
accuracy. Our results confirm the expectation [16] that gðrÞ
is hardly affected by interparticle attraction. In contrast the
force gradient g∇f⊥ðrÞ has a clear and significant peak in
the attractive region of the LJ potential with no such feature
occurring in the purely repulsive WCA liquid.
The force-force correlator gffðrÞ has a similar first peak

structure as the curvature correlator, but oscillations extend
much further out to larger distances r. Hence gffðrÞ
captures also the indirect interactions that are mediated
by surrounding particles; we recall Fig. 1. The strong
negative double peak of the parallel component indicates

anti-correlated force orientations, which reflect the direct
interactions between pairs of particles. Both tensor com-
ponents of gffðrÞ satisfy the Noether sum rules (13) and
(14) to excellent numerical accuracy.
To go beyond simple liquids, we first turn to the

monatomic water model by Molinero and Moore [50],
which includes three-body interparticle interactions in
uðrNÞ that generate the tetrahedral coordination of liquid
water. The monatomic water model gives a surprisingly
accurate description of the properties of real water, see
Ref. [51] for very recent work, while the particles remain
spherical and there is no necessity to explicitly invoke
molecular orientational degrees of freedom. Hence our

FIG. 2. Simulation results for the two-body correlation functions of the Lennard-Jones liquid (first column), the WCA liquid (second
column), monatomic water (third column), and the three-body gel (fourth column). Results are shown as a function of the scaled
interparticle distance r=σ, S is a vertical scale factor given in the upper left corner of each panel, and ε denotes the energy scale of the
respective model fluid. Shown is the pair correlation function gðrÞ (top row), the potential curvature correlator g∇fðrÞ (middle row) and
the force-force correlator gffðrÞ (bottom row); the latter two correlators have a transversal (⊥) and a parallel (k) tensor component. The
results for g∇fðrÞ for the LJ and WCA liquids are numerically identical to those from the analytical expressions (15) (dashed lines). The
directly sampled results for gffðrÞ are numerically identical to those obtained from the Noether sum rules (13) and (14) (dashed lines)
for all four systems. Vertical gray lines indicate the position of the first maximum of gðrÞ as a guide to the eye.
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framework (13) and (14) applies. The third column of Fig. 2
demonstrates at ambient conditions that while the shape of
gðrÞ is similar to that in the LJ liquid, both the potential
energy curvature and the force-force correlator differ
markedly from those of the LJ model. Notably the shape
of the double negative peak of gffkðrÞ differs and the sign
of gff⊥ðrÞ does not turn negative for distances towards the
second shell, as is the case in the LJ liquid. Consistently, the
magnitude of the k component is much larger than the ⊥
component, as direct interparticle interactions are promi-
nent in the former, whereas mediation by third particles is
required for the latter.
The three-body gel former by Kob and coworkers

[52,53] alters the preferred angle of the three-body inter-
action term from tetrahedral to stretched (we use
180 degrees [54]). This change induces an affinity for
the formation of chains while retaining an ability for their
branching and thus the model forms networks in equilib-
rium. The results shown in the fourth column of Fig. 2
indicate markedly different behavior as compared to the
above liquids. While gðrÞ has the generic long-range decay
that one expects of network-forming systems, both the
curvature and the force-force correlator are much more
specific indicators. In particular we attribute the striking
shape of the transversal (⊥) tensor component to the
network connectivity. Again the sum rules are satisfied
to very good numerical accuracy which we take (i) as a
demonstration that the gel state is indeed equilibrated,
which distinguishes this model [52,53] from genuine
nonequilibrium gel formers, and (ii) as a confirmation of
the fitness of the Noether correlators to systematically
quantify complex spatial structure formation. This holds
beyond the presented model fluids; see the Supplemental
Material [55] for results for screened long-ranged inter-
particle forces of Yukawa type, as well as for dipolar
[56–60], Stockmayer [60], and (isotropic and nematic)
Gay-Berne fluids [60–62]. For the LJ model, we also
contrast the behaviour in the liquid against both the gas and
the crystal, where the identities (13) and (14) remain valid
[55]. Our equilibrium theory requires proper thermal
averaging for the presented identities to hold. A trivial
counterexample is a precipitous temperature quench where
the distribution of microstates remains instantaneously
intact, but β has acquired a new value. Then the sum rule
(12) is immediately violated, due to the respective scaling
of the correlators ∇∇gðrÞ, g∇fðrÞ, and gffðrÞ with powers
β0, β1, and β2.
In conclusion, we have formulated and tested a system-

atic two-body correlation framework based on invariance
against an intrinsic symmetry of thermal many-body
systems. Formal similarities exist with sum rules for
interfacial Hamiltonians [63], as used for studies of wetting
[64], and with Takahashi-Ward identities [65,66] of quan-
tum field theory. Future work could relate to the effective
temperature [67], to one-dimensional systems [68–70], the

structure of crystals [71–73], gels [52,53,74], glasses
[75–77], and the hexatic phase [78], to force-sampling
simulation techniques [79–81], and to force-based classical
[35,82] and quantum density functional theory [83,84].
Testing sum rules in charged systems is valuable, but can be
technically subtle [85]. Connections to three-point [77] and
four-point [86,87] correlation functions are interesting, as
for a simple fluid gffðrÞ is given via two position integrals
over the four-body density. We have checked that for
molecular liquids the general force correlation sum rules
(10) and (11) remain valid upon supplementing the
dependence on positions r; r0 with dependence on the
molecular orientational degrees of freedom; an analogous
structure holds for mixtures of different components.
Deriving torque correlation sum rules requires using a
local version of the Noether rotational invariance [31].
A particularly exciting prospect is to apply the general

identity (11) to the study of interfacial phenomena
[38–41,43,51], where the connections with the existing
body of sum rules [4,36–43] and the constraints that follow
on the allowed correlation function structure at complete
drying [88–90] and wetting transitions are worth exploring.
Besides measurements of gðrÞ [7–13], position-resolved
forces have recently become accessible by direct imaging
in colloidal systems [91], which can facilitate experimental
investigations of Noether correlators.
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