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The rigidity transition occurs when, as the density of microscopic components is increased, a disordered
medium becomes able to transmit and ensure macroscopic mechanical stability, owing to the appearance of
a space-spanning rigid connected component, or cluster. As a second-order phase transition it exhibits a
scale invariant critical point, at which the rigid clusters are random fractals. We show, using numerical
analysis, that these clusters are also conformally invariant, and we use conformal field theory to predict the
form of universal finite-size effects. Furthermore, although connectivity and rigidity percolation are usually
thought to be of fundamentally different natures, we provide evidence of unexpected similarities between
the statistical properties of their random clusters at criticality. Our work opens a new research avenue
through the application of the powerful 2D conformal field theory tools to understand the critical behavior
of a wide range of physical and biological materials exhibiting such a mechanical transition.
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Introduction.—Symmetries are the cornerstone to under-
stand and to model physical phenomena [1] and their
identification, a powerful guiding principle for deriving
physical laws. Indeed, the compatibility between sym-
metries often results in constraints on the physical proper-
ties of the system: for example, the compatibility of discrete
translations and rotations in crystals leads to the crystallo-
graphic restriction theorem, which classifies all patterns of
periodic discrete lattices one can encounter in nature [2].
However, symmetries are not only deterministic: second-
order phase transitions are a paradigmatic example of
systems possessing a random symmetry, where the long-
range statistical fluctuations are invariant in law under
change of scale. For a host of systems exhibiting critical
behavior—as diverse as linear polymers [3], graphene
membranes [4], and disordered systems [5]—a larger
symmetry emerges and fluctuations are also invariant under
local rescalings, i.e., under all geometrical transformations
that preserve angles and rescale distances, called conformal
transformations [6]. The emergence of this enhanced
symmetry is a powerful tool: exploiting the compatibility
constraints on the physical observables allows us to under-
stand and predict the universal features of phase transitions
[7] and even, in some cases, to fully characterize the scaling
limit [8]. Conformal invariance has also been successful in
establishing deep connections between apparently unre-
lated critical phenomena, e.g., in turbulence [9,10] and in
nonequilibrium growth processes [11–13]. The origin of
conformal symmetry is, however, still not systematically
understood [14], even in two dimensions. Indeed, while in
2D unitary systems conformal invariance is automatically
implied by scale invariance [15,16], this is not true anymore
for nonunitary phenomena, of which percolation is maybe

the most representative and versatile example. Still, perco-
lation in its various forms (Bernoulli percolation [17], the
random Q-states Potts model [18], percolation of random
surfaces [4,19], etc.) is conformally invariant, and to our
knowledge there is no equilibrium percolation model that
has been shown to be scale, but not conformal, invariant.
In this context, rigidity percolation (RP) is an ideal

model to study the possible emergence of conformal
symmetry. Indeed, on the one hand, it is the first time that
conformal invariance is studied in a percolation phenome-
non of mechanical nature [a priori distinct from the
“connectivity percolation” (CP) models mentioned above],
and this might shed some light on which features of a
percolation model make its scaling limit conformally
invariant. On the other hand, establishing the conformal
invariance of this second-order phase transition, of promi-
nent importance in soft matter, may allow us to better
characterize its still poorly known universality class.
Rigidity percolation in central force random springs models
indeed provides a generic theoretical and simple framework
to study how a system transitions from a liquid to a solid
phase, where the underlying building blocks assemble into
a percolating cluster, able to transmit stresses to the
boundary and sustain external loads. It has been success-
fully used to highlight the structural and mechanical
properties of many soft materials, such as living tissues
[20], biopolymer networks [21,22], molecular glasses [23],
stability of granular packings [24–26], or colloidal gela-
tion [27–29]. Several critical exponents, characterizing the
long-distance critical behavior, have been numerically deter-
mined, such as the correlation length exponent ν ¼ 1.21�
0.06 and the order parameter exponent β ¼ 0.18� 0.02,
defining anapriori newuniversality class [30].Hyperscaling
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relations also give the fractal dimension of the rigid cluster as
df ¼ 2 − β=ν ¼ 1.86� 0.02, a value that was confirmed by
direct measurement [27].
In this Letter, we show that (i) the rigidity percolation

clusters exhibit conformal invariance right at the critical
point, (ii) we use conformal field theory to predict the form
of universal finite-size effects and, interestingly, find that
(iii) the fine statistical properties of the RP clusters and of
the CP clusters share surprising similarities, despite belong-
ing to distinct universality classes.
Model and methods.—We perform three independent

numerical tests to show conformal invariance, based on the
study of a standard geometrical observable of percolation
clusters, their so-called n-point connectivity [31],

p12;…;nðz1;…; znÞ ¼def Prob½z1;…; zn ∈ RC�; ð1Þ

where zi are points in the plane and RC denotes a rigid
cluster. Equation (1) gives therefore the probability that n
points are connected by paths inside the same rigid cluster.
These quantities have been very useful to understand
connectivity percolation [32–36]. We make the central
assumption that, in the scaling limit, the connectivities
(1) can be described by a field theory and, more precisely,
that they are given by correlation functions of a scaling field
that we denote Φc, of scaling dimension Δc [37],

p12;…;nðz1;…; znÞ ⟶
scaling

lim
aðnÞ0 hΦcðz1Þ � � �ΦcðznÞi; ð2Þ

where aðnÞ0 is a nonuniversal constant that depends on the
microscopic details of the model. Our tests rely on the fact
that, if the percolation model under study is conformally
invariant, the form of the correlation functions (2) is
constrained in a precise way, which can be derived from
conformal field theory (CFT). We use a lattice model of
rigidity percolation to measure numerically the rigid cluster
connectivities (1) on specific geometries. Comparing their
scaling limit to the corresponding CFT predictions, we
conclude about the conformal invariance of RP clusters.
The model is a site-diluted triangular lattice with local

spatial correlations. It has been recently introduced to model
the rigidity percolation of soft solids [27]. At each step,
particles are drawn randomlyone byone to populate a doubly
periodic triangular lattice of sizeL1 × L2 (L1 ≥ L2), accord-
ing to the following probability p ¼ ð1 − cÞ6−Nn, where 0 ≤
c < 1 represents the degree of correlation and Nn is the
number of occupied nearest neighbors. c ¼ 0 corresponds to
the uncorrelated case and for c ≠ 0 the introduced correla-
tions are local, since the filling probability depends only on
the occupation of the first neighbors. They are therefore
irrelevant to the large-scale behavior, so that the transition for
c > 0 belongs to the same universality class as uncorrelated
RP [27]. In practice, the larger the c, the smallest the critical
probability threshold pRP

c ; we take c ¼ 0.3, at which

pRP
c ðc ¼ 0.3Þ ∼ 0.66. To identify rigid clusters on a discrete

lattice,weuse the so-called pebblegame, a fast combinatorial
algorithm [30,38], based on Laman’s theorem for a graph’s
rigidity [39], which uses Maxwell’s constraint counting
argument to detect overconstrained clusters. Figure 1 shows
an example of cluster decomposition while increasing p.
Connectivity percolation arises atpCP

c and is characterized by
a space-spanning percolating cluster (in blue). The system is
macroscopically liquid and cannot sustain external loads.
Figures 1(b) and 1(c) show the largest rigid cluster (in red)
that percolates at pRP

c > pCP
c , leading to macroscopic

elasticity.
In the following, we analyze the statistical structural

properties of the rigid clusters right at the critical point. We
first obtain a direct measurement of the anomalous dimen-
sion exponent η, then move on to test conformal invariance,
using the three- and two-point connectivities. Finally, we
highlight the similarities of these observables in CP and RP.
Anomalous dimension.—We measure the two-point con-

nectivity p12ðr; θÞ on the lattice, i.e., the probability that
points ði; jÞ and ðiþ r cosðθ þ π=3Þ; jþ r sinðθ þ π=3ÞÞ
are in the same rigid cluster. θ is the angle with respect to
the short cycle of the doubly periodic lattice, and r is the
distance between the two points. We use translation
invariance to average over the L1 × L2 positions ði; jÞ,
as well as symmetry by reflection about θ ¼ 0, so that p12

is an average over 2L1L2N measurements with N the
number of samples (N ¼ 1200 for the largest sizes). The
inset in Fig. 3 shows the data points in log-log scale, which
follow a power law in the scaling region 1 ≪ r ≪ L2=2 as
expected from scale invariance: the two-point connectivity
decays as p12ðz1; z2Þ ∼ jz12j−η, where η is the so-called
anomalous dimension, satisfying the hyperscaling relations
η ¼ 2β=ν ¼ 4 − 2df [40]. Using assumption (2) and the

scale invariance property hΦcðz1ÞΦcðz2Þi ¼ z−2Δc
12 [41]

gives the scaling dimension of Φc as Δc ¼ η=2.
Expected deviations in the region r ∼ L2=2 are due to
universal finite-size effects coming from the doubly
periodic boundary conditions. Fitting the data points

Geometr ic percolation Rigidity percolation

(a) (b)

Rigid cluster

Liquid Solid

(c)

Geometr ic percolation Rigidity percolation

(a)(a) (b)(b)

Rigid cluster

Liquid Solid

(c)(c)

i i S lS lidid

FIG. 1. Examples of lattice configurations showing (a) the
connectivity percolation transition at pCP

c , (b) the largest rigid
cluster at pCP

c < p < pcRP, and (c) the rigidity percolation
transition at pRP

c .
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corresponding to the angle that minimizes such effects
[θ ¼ arccos½2= ffiffiffi

7
p �] we obtain the value of the nonuniversal

constant að2Þ0 ¼ 0.448� 0.002 and of the anomalous
dimension η ¼ 0.307� 0.002, in agreement with the
values of the critical exponents in the literature [30] via
hyperscaling.
Global conformal invariance.—In two dimensions, con-

formal transformations are all the analytic maps of the
Riemann sphere (complex plane plus point at infinity).
They can be distinguished into a finite set of globally
defined (everywhere invertible) transformations (transla-
tion, rotation, scaling, special conformal transformation)
and an infinite set of local transformations [41]. It is a
standard result that imposing invariance under the global
transformations fixes completely the form of three-point
correlations, so that, using (2), one expects the three-point
connectivity of globally invariant clusters to be [41]

p123ðz1; z2; z3Þ ¼ að3Þ0

CΦc
ΦcΦc

jz12z23z13jη=2
; ð3Þ

where CΦc
ΦcΦc

is an universal constant called operator
product expansion (OPE) coefficient [42]. In Fig. 2, we
show the connectivity (inset) and the rescaled connectivity
measured on six inequivalent configurations of points, as a
function of jz12z13z23j=L3

2. In the scaling region, a clear
collapse of the data points is observed (inset), while the
rescaled connectivity tends to a configuration-independent
constant (dashed line), showing the validity of (3). Micro-
scopic and configuration-dependent finite-size effects do-
minate at small and large separation, respectively.
Local conformal invariance.—We now use the universal

finite-size effects induced by the torus geometry (also

known as periodic boundary condition) to probe the local
conformal invariance. In particular, we put the system on a
cylinder, conformally equivalent to the plane through the
map z → iL2=2π log z. For a CFT, the expression of a two-
point correlation function on this geometry is a well-known
result [41] and in polar coordinates it reads

p12ðr; θÞ ¼
að2Þ0 ð2π=L2Þη

½2 coshð2πL2
r cos θÞ − 2 cosð2πL2

r sin θÞ�η=2 : ð4Þ

This prediction is drawn in Fig. 3 for different angles θ,

using the values of η and að2Þ0 found previously, along with
the corresponding numerical data points measured on a
torus with large aspect ratio L1=L2 ¼ 6 to reproduce the
cylinder limit. The remarkable agreement confirms that the
two-point connectivity of rigid clusters transforms correctly
under this local conformal transformation. In more tech-
nical terms, the data are consistent with the connectivity
fieldΦc being a Virasoro primary, so that one can expect all
connectivities to be conformally invariant as well.
Finite-size corrections and comparison with CP.—On a

torus of finite aspect ratio, one can write generically a so-
called OPE expansion [42], for r ≪ L2, of the two-point
connectivity as [43]

rηp12ðr; θÞ
að2Þ0

¼
X
Φα

CΦα
ΦcΦc

hΦαiqð2 − δsα;0Þ cosðsαθÞ
�

r
L2

�
Δα

:

ð5Þ

The sum is a (potentially infinite) sum over an a priori un-
known set of fields Φα with dimension Δα and spin sα ≥ 0.
Each field contribution gives a r=L2 correction of order Δα

FIG. 2. Rescaled three-point connectivity measured on the six
inequivalent triangles shown in the inset, on a 384 × 128 lattice.
Inset: unrescaled three-point connectivity; the black line has
slope η=2.

FIG. 3. Rescaled two-point connectivity measured on a
576 × 96 lattice along different angles. The black curves give
the CFT prediction (4). Inset: same data points, not rescaled, in
log-log scale. The black line has slope η ¼ 0.307.
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to the plane limit (corresponding to Δα ¼ 0), encoding the
universal finite-size effects. They depend on the ellip-
tic nome of the torus q ¼ e−2πL1=L2 sin π=3e2πiL1=L2 cos π=3,
through the expectation value hΦαiq, and on θ for nonscalar
fields which have sα > 0. On a square torus (L1 ¼ L2), p12

is independent of θ and hΦαiq must vanish for nonscalar
fields. We find that, for RP, the first terms in expansion (5)
are the following:

rηp12ðr; θÞ
að2Þ0

¼ 1þ CΦν
ΦcΦc

hΦνiq
�

r
L2

�
2−1=ν

þ 2CT
ΦcΦc

hTiq cosð2θÞ
�

r
L2

�
2

þ � � � : ð6Þ

The dominant finite-size correction is given by the “ther-
mal” field Φν of dimension Δν ¼ 2 − 1=ν, and the first
nonscalar contribution comes from the so-called stress-
energy tensor T. This latter field is the tensor of conserved
currents and from dimensional analysis has dimension 2
and spin 2. The dots account for the higher-order unknown
contributions. In Fig. 4(a), we show the dominant finite-
size correction: by measuring p12 on a square torus, we

eliminate the nonscalar contributions to (6), so that rηp12 −
að2Þ0 is directly proportional to the dominant scalar con-
tribution, up to subleading corrections. The gray area
corresponds to a term ∼ðr=L2Þ2−1=ν with ν in the con-
fidence interval of [30], ν ¼ 1.21� 0.06. Fitting in the
range 1 ≪ r ≪ L2=2 gives ν ¼ 1.19� 0.01.
The dominant nonscalar field contribution is instead

obtained by measuring p12 in two directions θ1, θ2 to

cancel the scalar terms and is consistent with a dimension-
two field, namely,

rη½p12ðr; θ1Þ − p12ðr; θ2Þ�

¼ að2Þ0 2CT
ΦcΦc

hTiq½cosð2θ1Þ − cosð2θ2Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≡c2ðq;θ1;θ2Þ

�
r
L2

�
2

þ � � � :

ð7Þ

We extracted the order-two coefficients c2ðq; θ1; θ2Þ of
rη½p12ðr; θ1Þ − p12ðr; θ2Þ�, measured for different aspect
ratios and different angles, and plotted them in Fig. 4(b)
as a function of cosð2θ1Þ − cosð2θ2Þ. The straight lines
confirm that we are measuring the contribution of a
dimension-two and spin-two field, i.e., of T. From (7)

their slopes correspond to að2Þ0 2CT
ΦcΦc

hTiq and are plotted
as a function of the elliptic nome q in Fig. 4(c). Fitting these
points, we find that

hTiq→0 − hTiq ∼ jqjΔ0 ; Δ0 ∼ 0.11: ð8Þ

First, this form is consistent with CFT, which gives hTiq
as [41]

hTiq ¼ −ð2πÞ2q∂q logZðqÞ; ð9Þ

where ZðqÞ is the partition function on the torus, ZðqÞ≡P
Φα

nαqðΔαþsαÞ=2−c=24q̄ðΔα−sαÞ=2−c=24, with c as the so-
called central charge—an important parameter character-
izing a CFT—and nα as the multiplicity of field Φα.
Equation (9) is one of the most direct consequences, at
the level of observables, of conformal invariance, coming
from the holomorphicity of T (∂T ¼ 0). Expanding for
small q gives

hTiq ∼q≪1ð2πÞ2
�
c
24

− n0
Δ0

2
jqjΔ0 þ � � �

�
: ð10Þ

The constant term corresponds to the cylinder limit
hTiq→0 ¼ ð2πÞ2c=24. From (8) the value of the smallest
dimension Δ0 in (10) is compatible with the scaling
dimension of Φc, Δc ¼ η=2 ¼ 0.15� 0.02 and so com-
patible with the connectivity field Φc being the field with
smallest nonzero dimension in the theory.
It has been established that the expansion (6) of the torus

two-point connectivity holds in correlated CP models (the
Q-state Potts model [43], percolation of random surfaces
[19]), namely, that the dominant terms in the Φc ×Φc OPE
are the conformal families of the identity and thermal fields.
For these models, it was also found that the field with
smallest scaling dimension entering the partition function is
the connectivity field. Therefore, our results indicate that,
within our numerical range, the structures of the OPE and
of the partition function are identical for RP and CP.

(a)

(c)

(b)

FIG. 4. (a) Dominant finite-size effects: data points are obtained
on a 256 × 256 lattice. The line gives the best fit corresponding to
ν ¼ 1.19� 0.01. The gray area corresponds to ν in the con-
fidence interval of [30]. (b) Coefficients c2 for different aspect
ratios. The gray lines are best fits, whose slopes give the points of
(c). (c) Behavior of hTiq with q, the line gives the fit ∼jqj0.11.
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In other words, at the level of random clusters, we find no
more difference between RP and CP than between two
different CP universality classes. In this respect, it would be
useful to characterize more precisely the CFTof RP clusters
by determining, in particular, its central charge c. These
data are not accessible in our study as it cancels in (7),
given that CT

ΦcΦc
¼ Δc=c [44].

Conclusion.—In this Letter, we have investigated a
second-order rigidity percolation transition. Through a
series of three original and independent tests, we have
shown—for the first time—that the statistical properties of
the critical random clusters, encoded in the connectivity
functions, are conformally invariant and that the universal
finite-size effects can be predicted by CFT. These results
hold independent of the nature of the microscopic details,
provided that the model belongs to the same universality
class. Given that RP exhibits highly nonlocal interactions,
where the removal of a single bond might destroy the
rigidity of an arbitrary large region, it is quite remarkable
that invariance under local rescalings holds and that one can
predict the cluster’s connectivities using correlations of
local fields. We can presume that conformal symmetry
remains unbroken for rigidity transitions arising in gel-like
systems [28,29,45], granular media [25,46], biological
tissues [20], or subisostatic biopolymer networks where
the emergence of such a transition is driven by external
deformations [47,48]. Surprisingly, we found that the
structure of the connectivities in RP and CP are identical,
albeit with a priori different values of the universal data
(critical exponents and OPE coefficients). Therefore,
although it is widely believed that the rigidity and the
connectivity percolation phenomena are of fundamentally
different natures, our Letter provides evidences of the
similarity of their clusters at criticality. These findings
support the suggestion of [49], that the geometrical proper-
ties of rigidity might be physically independent from the
elastic properties. Recent work on RP for granular media
near the jamming transition [46] also points toward a
possible superuniversality of RP and CP critical exponents.
Many questions remain open, in particular, concerning

the relations between structural properties and mechanical
response. Indeed, away from the transition, growing
evidence points toward universal features for the stress
propagation in gels and granular media [50], and recent
field theories have been very successful in predicting the
elastic response of disordered amorphous materials [51,52].
The vicinity of the transition remains much less under-
stood. Whether signatures of conformal invariance can be
found, e.g., in the stress propagation at the verge of rigidity,
remains a tantalizing possibility that may open a new
avenue of thinking to build a unified framework to describe
the mechanical properties of a wide range of materials, right
at and close to their mechanical stability.
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