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We analyze transport on a graph with multiple constraints and where the weight of the edges connecting
the nodes is a dynamical variable. The network dynamics results from the interplay between a nonlinear
function of the flow, dissipation, and Gaussian, additive noise. For a given set of parameters and finite noise
amplitudes, the network self-organizes into one of several metastable configurations, according to a
probability distribution that depends on the noise amplitude α. At a finite value α, we find a resonantlike
behavior for which one network topology is the most probable stationary state. This specific topology
maximizes the robustness and transport efficiency, it is reached with the maximal convergence rate, and it is
not found by the noiseless dynamics. We argue that this behavior is a manifestation of noise-induced
resonances in network self-organization. Our findings show that stochastic dynamics can boost transport on
a nonlinear network and, further, suggest a change of paradigm about the role of noise in optimization
algorithms.
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The ability to extract information from large databases
has become essential to modern science and technologies.
This quest is central to foundational studies, such as in
astronomy, for shedding light on the constitution of
our Universe [1], and in particle physics, for efficiently
identifying relevant events in high-energy physics experi-
ments [2], as well as to applications, such as the design of
efficient power grids [3] and the sustainable exploitation of
water supplies [4]. A question lying at the core of these
efforts is, what are the key ingredients and dynamics at the
basis of an efficient search in a generic database? This
question encompasses a large number of physically rel-
evant situations, including the determination of the ground
state of a quantum many-body problem [5–7], the transport
of excitons [8,9] and cells [10,11], and the search for food
by living organisms [12,13]. The latter is a precious source
of insights because of organisms’ capability to extract
information from and adapt to a dynamically changing
environment [12,14]. One example is the food search of
Physarum polycephalum and of ant colonies, that have
inspired optimization algorithms successfully applied to
real-world optimization problems [12,13,15–17].
One relevant aspect of biological systems is the

capability to efficiently extract relevant information for
their survival in a noisy environment, where parameters
fluctuate and the amount and location of food sources can
change over time. For instance, models simulating excit-
able systems, such as forest fires [18] and neurons [19],
show that noise can lead to qualitatively different effects.
These include phenomena such as stochastic and coher-
ence resonance [19–21], synchronization [22,23], and

noise-induced phase transitions [24,25]. A systematic
understanding of the role of noise in a search problem
would shed light on its role in cooperative dynamics,
including neural networks, and might initiate novel
applications to optimization problems.
In this work, we analyze the self-organization dynamics

of a network in the presence of additive noise and with
multiple constraints to be satisfied. The constraints are two
pairs of source and sink nodes, as illustrated in Fig. 1(a), at
which a constant flow is injected and extracted, respec-
tively. In computer science, it is a multicommodity prob-
lem: each pair of source and sink is a demand to be satisfied
and the path satisfying the demand is a flow of commodity
[26,27]. Examples are a city transport network, where each
commodity is the passengers traveling between two sta-
tions, or an electrical circuit, where the commodity is the
electrical current satisfying a given potential difference
between two nodes. The optimal path is a network topology
obtained by integrating a set of equations for the graph’s
nodes and edges, where the strength of the edges, deter-
mining the edge capacity [26], is a dynamical variable
subject to the competition between dissipation and an
activation force depending on the total flow across the
edge [12,15,26,27]. In the absence of noise, the dynamics
tends to identify the optimal path satisfying the constraints
according to a rule that promotes transport along shared
routes and instead inhibits it when the flow along one edge
is below a chosen threshold. Differing from the typical
settings, in this work, we assume that the edge capacity can
also fluctuate due to a Langevin force [28]. We show that
the introduction of stochasticity has a dramatic impact on
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the convergence to the optimal path. Among several
noteworthy features, the solutions follow a multistable
distribution that undergoes discontinuous transitions as a
function of the noise amplitude. Remarkably, the distri-
bution exhibits a resonant type of behavior as a function of
the noise strength. In fact, for a finite range of noise
amplitudes the network self-organizes into a topology that
maximizes its robustness and that is not found by the
noiseless dynamics.
Model.—In the following, we will refer to the multi-

commodity problem in terms of currents in an electrical
circuit, keeping in mind that this is just one possible
example. The edge capacity is determined by the conduc-
tivity, which is a dynamical variable. The circuit consists of
a spatial grid composed of 31 × 31 nodes. Each node,
labeled u, can connect to a number of nearest and next-
nearest neighbors, described by the set Eu [see the inset of
Fig. 1(a)]. The emerging networks need to serve two
demands i ¼ 1, 2, each represented by a source node siþ
and a sink node si−, where a current is injected (þIi) and
extracted (−Ii), respectively. Each demand generates a flow
across the network: The flow of the demand i is composed
of the contributions Qi

u;v at the edge connecting nodes
ðu; vÞ. The flow of each demand is conserved at each node
u,

P
v∈Eu

Qi
u;v ¼ 0 (Kirchhoff’s law) except for the source

and sink where
P

v∈Es�
i

Qi
s�i ;v

¼ �Ii. The flow of the

demand i along the edge ðu; vÞ is proportional to the edge
conductivity Du;vðtÞ and to the difference between the
potentials of the two nodes pi

uðtÞ and pi
vðtÞ:

Qi
u;vðtÞ ¼

Du;vðtÞ
Lu;v

½pi
uðtÞ − pi

vðtÞ�; ð1Þ

where Lu;v is the edge length and is constant. The edge
dynamics is described by the coupled dynamical variables
pi
u and Du;v. The potential pi

u is determined for each
demand i as a function of Du;vðtÞ by solving the linear set
of equations in Eq. (1) with Kirchhoff’s law, as detailed in

Ref. [26] and in the Supplemental Material (SM) [29].
The conductivity Du;vðtÞ obeys the stochastic nonlinear
equation [30,31]:

∂tDu;v ¼ fðQu;vÞ − γDu;v þ
ffiffiffiffiffi
2γ

p
αξu;vðtÞ: ð2Þ

Here, fðxÞ is the activation function with sigmoidal form:
fðxÞ ¼ xn=ðκn þ xnÞwithn > 0 (inwhat followswe choose
n ¼ 1.2), the argument is the total flow along the edge,
Qu;v ¼

P
i jQi

u;vj, and f saturates when Qu;v exceeds the
threshold κ. Hence, fðxÞ gives rise to an effective interaction
between demands that favors the sharing of transport routes
between commodities. The activation is counteracted by
dissipation at rate γ. Fluctuations in the conductivity are
simulated by the stochastic force ξðtÞ, whose amplitude is
scaled by the parameterα. The force is statistically defined by
the average over an ensemble of trajectories: it has no net
drift, hξu;vðtÞi ¼ 0, and simulates Gaussian white noise,
hξu;vðtÞξu0;v0 ðt0Þi ¼ δu;u0δv;v0δðt − t0Þ [28,32].
Our model shares analogies with resistor networks [33]

but is essentially different in that the edge conductivities
(the metric) are dynamical variables. Equations (1) and (2),
in the absence of noise, were used in Ref. [15] for modeling
the structures built by a unicellular organism for food
search in a maze [34] and on a graph simulating the Tokyo
railroad system [35]. These equations set the basis for
optimization algorithms [12] and have been applied to
multicommodity problems [26,27] using other classes of
activation functions than the sigmoidal functions. The
studies of Refs. [26,27] showed that the dynamics con-
verges toward networks optimizing between the sharing of
transport routes, favored by the activation function, and the
total cost of the network (here given by the total length of
the edges of the closed paths) that is controlled by
dissipation. In Refs. [30,31], stochastic forces were added
to the model for one single demand connected by two paths
of the same length but different, periodically varying,
dissipation rates. In Ref. [31], the resulting flow was
analyzed as a function of the frequency of the dissipation

FIG. 1. (a) Network self-organization is simulated on a grid of 31 × 31 nodes with two demands. The demands are indicated by the
pairs of red and yellow nodes, the sources are labeled by siþ, the sinks by si−; the inset shows that the nodes are connected by horizontal,
vertical, and diagonal edges. The network design results from the dynamics of the edges, which are modeled by time-varying
conductivity Du;v on an electrical network and in the presence of additive noise according to Eqs. (1) and (2). Panels (b) and (c) display
the networks reached after a sufficiently long integration time in the noiseless case (α ¼ 0) and for α ¼ 0.002, respectively. The widths
of the edges are proportional to the corresponding amplitude ofDu;v. Panel (d) displays the multiscale backbone extracted from (c) using
a filtering procedure (see text). See Fig. 2 for details on the numerical simulations.
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rates and amplitude of the noise, manifesting the character-
istic features of stochastic resonance and noise-induced
limit cycles. In this work, we analyze, for the first time, a
multicommodity problem in the presence of noise. The
relatively simple geometry of our problem allows us to
single out the essential features and visualize the manifold
of topologies as a function of the noise amplitude.
Results.—We integrate Eqs. (1) and (2) with the static

boundary conditions of Fig. 1(a) after initializing the
conductivities on all edges to the same value (see also
SM [29]). The system evolution thus initially consists of
redirecting the flow along edges by modifying the con-
ductivities. For α ¼ 0, the dynamics is noiseless and
converges to the configuration of Fig. 1(b): the flow
satisfying both demands is routed along the vertical
connection. The system tends to generate parallel routes.
In fact, the transport along one edge is bound to a maximal
value due to the saturation of the sigmoidal function.
For α > 0, we integrate stochastic differential equations.
Figure 1(c) displays a network configuration obtained by
integrating the stochastic dynamics for one trajectory and
after a sufficiently long simulation time. It is evident that
noise leads to a fluctuating distribution of weak connec-
tions. In order to be able to perform a classification, we
apply a filter mechanism to each trajectory as follows. We
level out the fluctuations by taking the time average of the
configurations in the regime where the simulation has
converged. We then account for the statistical relevance
of the links by means of the disparity filter of Ref. [36]
(see SM [29]). Figure 1(d) displays the network topology
extracted from Fig. 1(c) after applying the disparity filter to
the time-averaged configuration. For each value of α, we
evaluate 5000 trajectories.
Figure 2 shows the typical network topologies ordered by

increasing noise amplitude, starting from the noiseless case
(A). Each is unique in terms of connectivity of the hubs and is
characterized by a different set of values of the measures we
apply, as we detail later. The networks (B) and (C) are found
for small α > 0 and are similar to the noiseless case with
the tendency to decrease the shared routes. In addition,
(C) decreases the number of connections. Configurations
(B)–(E) are multistable and generally break the point

symmetry of the configuration. For larger values of α, the
topologies converge to one of the two configurations (F) and
(G), with a bistable region about α ∼ 3 × 10−3. Topologies
(F) and (G) are point symmetric but qualitatively different
from (A). Note that (A)–(G) are fixed points of the noiseless
dynamics. Noise dramatically modifies the respective basin
of attraction as visible by analyzing the network measures as
a function of α.
The network measures are determined on the backbone

of each trajectory. (i) The robustness r provides information
on the quality of the connections: it increases by adding
paths connecting two nodes, which in turn makes the
network more robust against edge failures. It is defined by
r ¼ 1=ðP2

i¼1 Ri=2Þ, with Ri ¼ ðpi
siþ

− pi
si−
Þ=Ii as the effec-

tive resistance between the source node siþ and the sink
node si− of each demand i; see Ref. [38] and the SM [29].
(ii) The transport efficiency σ is given by 1=σ ¼ P

2
i¼1 di=2,

where di is the length of the shortest path connecting sþi
and s−i [35]. (iii) Finally, the cost of the network c is the
total length, found by summing over the ensemble E of
segments Lu;v of the backbone where the conductivity is
nonzero [35], c ¼ P

ðu;vÞ∈E Lu;v. The measures ðr; σ; cÞ are
displayed in Figs. 3(a)–3(c) as a function of the noise
amplitude α. The white lines indicate their mean values.
The slope of the mean robustness and cost at α ¼ 0 is
negative, showing that—on average—for small noise
amplitudes the dynamics converges to topologies with
worse robustness and lower cost than for the noiseless
case. After this transient, they all reach a maximum for an
interval of noise amplitudes centered about α ∼ 2 × 10−3

that is qualitatively above the noiseless value. For each
value of α the distribution of x ¼ r, σ, c about the mean is
encoded in the color scale. The distribution is clustered
about the topologies of Fig. 2 with probabilities depending
on α. One striking feature is that (A) disappears for α > 0,
indicating that it is unstable against fluctuations. As α is
increased, the system jumps to different configurations,
undergoing discontinuous, noise-induced transitions. The
topologies (B)–(E) occur at low, nonvanishing values of α
and are generally multistable. Remarkably, for a nonzero
interval of values α (in the range 0.001–0.003) the

FIG. 2. Network topologies for increasing values of the noise amplitude α (from α ¼ 0 to α ¼ 0.005). (A) is the noiseless case,
(B)–(G) are the typical backbones for α > 0; the probability of their occurrence depends on α and is shown in Fig. 3 [for (D) and (E) we
report one of the two symmetric configurations]. The networks are the result of the time evolution of Eqs. (1) and (2) for a time
t ¼ 250γ−1 imposing I1 ¼ I2 ¼ 0.45 and κ ¼ 1. Initially, we set Du;v ¼ 0.5 on all edges. The integration of Eq. (2) is performed using
the Euler-Maruyama scheme [37] with step size Δt ¼ 0.1γ−1. In the SM movies are reported which show how the dynamics at different
noise amplitudes leads to each of the topologies [29].
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distribution narrows and becomes single peaked and the
dynamics converges to (F). This topology optimizes both
robustness and transport efficiency, with a qualitative
improvement over (A). At even larger amplitudes α, first
(F) coexists with (G), then (G) becomes the most probable
configuration. Network (G) has the same robustness as (A).

Its worse transport efficiency and lower cost are due to
noise: the number of statistically relevant edges decreases
with α. The distribution about (G) is broader according to
the common expectation that noise increases the variance.
Instead, the narrowing at α ∈ ½0.001 − 0.003� about the
topology (F) contradicts this intuition.
The trajectories converge relatively fast toward one of

the topologies of Fig. 2. Figure 4(a) displays the average
convergence rates to a stationary value of r, σ, c as a
function of α. The rates are not monotonous functions of α
and exhibit a local maximum corresponding to the network
topology (F). In this regime the corresponding variances,
Fig. 4(b), are minimal. This behavior provides further
evidence that noise substantially modifies the basin of
attraction of the individual topologies. The faster conver-
gence rate to the topology (F) at α ∈ ½0.001–0.003�,
together with the corresponding narrowing of the distribu-
tion of trajectories visible in Fig. 3, supports the conjecture
that network self-organization into the topology (F) is a
noise-induced resonance [19]. We have verified that this
behavior also occurs (i) for a relatively wide range of the
input and output flows, (ii) for different exponents n of the
activation function, and (iii) for a substantially larger
number of demands. In general, increasing the flow leads
to a larger number of redundant connections. Instead,
increasing the value of the exponent n in the activation
function f enforces the use of shortest-path connections.
Interestingly, we find noise-induced phenomena for all
considered values of these parameters. This also holds true
when analyzing larger networks, with respect to both the
grid size and the pairs of source and sink nodes, i.e., of
demands (see SM [29]). An extensive characterization will
be reported in Ref. [39].
Discussion.—The noiseless equations at the basis of this

study were developed in Ref. [15] for describing the food
search of a slime mold [40,41]. From the biological point of
view, this model is oversimplified (it discards key features
such as the oscillatory flow through the tubes [42,43]),
yet it qualitatively reproduces the patterns observed in

FIG. 3. Network measures as a function of the noise amplitude α: (a) robustness r, (b) transport efficiency σ, and (c) network cost c.
Each measure is in units of the respective value r0, σ0, and c0 for α ¼ 0 (dashed line in the plot). The white solid line is the mean value
taken over 5000 trajectories at each value of α, the color scale gives the fraction of trajectories for each value of r, σ, c: dark blue is
statistically irrelevant, dark red corresponds to 60%. The distribution clusters about a set of the topologies (the labels follow the legend of
Fig. 2) and undergoes discontinuous transitions as α is varied. For α ∈ ½0.001–0.003�, it narrows about a single topology (F) with
optimal robustness and transport efficiency.

FIG. 4. (a) Average convergence rate γx as a function of the
noise amplitude α (in units of the respective value γ0x for the
noiseless case). γx is the inverse of the time that a trajectory needs
to reach a stationary value of the cost (blue), of the robustness
(red), and of joint cost and robustness (yellow); see SM for the
definition [29]. Panel (b) displays the corresponding variance σγx
(in units of γ0x). The averages are taken over an ensemble of 5000
trajectories. About α ∼ 0.002, the dynamics converges to (F).
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Refs. [34,35]. Moreover, it provides a powerful framework
for network design and optimization algorithms [12,16]. Our
work shows that the addition of noise to thismodel provides a
qualitative improvement of the algorithmic efficiency by
means of noise-induced resonances. This is a change of
paradigm with regard to simulated annealing and random-
ized algorithms [44,45] and calls for a theoretical framework
for stochastic nonlinear network dynamics [46,47].
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