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Exceptional points (EPs) are special spectral singularities at which two or more eigenvalues, and their
corresponding eigenvectors, coalesce and become identical. In conventional wisdom, the coalescence of
eigenvectors inevitably leads to the loss of completeness of the eigenbasis. Here, we show that this scenario
breaks down in general at nonlinear EPs (NEPs). As an example, we realize a fifth-order NEP (NEP5)
within only three coupled resonators with both a theoretical model and simulations in circuits. One stable
and another four auxiliary steady eigenstates of the nonlinear Hamiltonian coalesce at the NEP5, and the
response of eigenfrequency to perturbations demonstrates a fifth-order root law. Intriguingly, the
biorthogonal eigenbasis of the Hamiltonian governing the system dynamics is still complete, and this
fact is corroborated by a finite Petermann factor instead of a divergent one at conventional EPs.
Consequently, the amplification of noise, which diverges at other EPs, converges at our NEP5. Our finding
transforms the understanding of EPs and shows potential for miniaturizing various key applications
operating near EPs.
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Introduction.—The exotic physics at singularities is
always under the scrutiny of theoretical and experimental
investigations. Exceptional points (EPs) are unique singu-
larities in non-Hermitian systems [1–3] where two or more
eigenvalues and their corresponding eigenvectors coalesce
[3–5]. After being experimentally demonstrated in micro-
wave cavities [6], EPs were subsequently observed in
various systems [7–18]. Many exciting physics and novel
phenomena related to EPs have been elucidated [19–26].
For example, the spectra exhibit algebraic singularities at
the EPs, which are responsible for amplifying a detected
signal [13,16]. Meanwhile, a dynamic loop near an EP
leads to chiral state transfer [19–22], and this unique feature
enables various nontrivial functionalities [21–25].
These EP-related advances have enriched our under-

standing of complex systemswith nonconservative elements
(gain, loss, and nonreciprocal coupling) and brought many
fascinating potential applications. However, some funda-
mental challenges remain, especially when considering
miniaturizing the device in practical schemes. On the one
hand, previous studies mainly focused on linear systems,
where system parameters are independent of the fields’
amplitudes. The detectable signal dissipates rapidly in a
passive system. Including gain elements increases the
system’s complexity in structural optimization and noise
control. Meanwhile, a proper description of systems with
gain elements unavoidably involves nonlinear effects such
as gain saturation and Kerr nonlinearity [27,28]. Then the
outcome deviates from the prediction of the linear model
[29–34]. Nevertheless, research combining nonlinearity,

parity-time symmetry, and EPs is rare [35–39]. On the other
hand, signal amplification [13,16–18] and chiral states
transfer [19–22] require operations pretty close to the
EPs, which demands tedious and precise parameter control,
especially when higher-order EPs get involved [13,40–42].
Moreover, the unavoidable noise is dramatically increased
near conventional linear EPs due to the loss of the com-
pleteness of eigenbasis [43–46]. The above conflicts seem
irreconcilable and generally require brilliant schemes for
EP-related operations [22,47]. It is thus natural to ask: Can
the completeness of the eigenbasis be revived while the key
features of EPs are still preserved?.
Here in this work, we present a nonlinear route to over-

come this dilemma. In analogy with laser theory [29,48], a
Hamiltonian with nonlinear saturable gain has some steady
eigenmodes whose frequencies satisfy a polynomial equa-
tion with real coefficients. Thus, the solutions of this
polynomial equation are either real or come in complex
conjugate pairs. This nonlinear Hamiltonian can be mapped
into a higher dimensional parity-time (PT) symmetric linear
Hamiltonian [31,49]. Under this mapping, the phase tran-
sition point, EP, of the PT-symmetrical linear Hamiltonian
corresponds to a unique singularity of the nonlinear
Hamiltonian. Corresponding to the coalescence of the
PT-symmetrical linear Hamiltonian eigenmodes at the
EPs, some (auxiliary) steady eigenmodes of the nonlinear
Hamiltonian become identical at this singularity. Therefore,
we name it nonlinear exceptional point (NEP) with an
additional “N” denoting nonlinearity. Across the NEPs, the
number of steady eigenmodes with real frequency can
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change. Meanwhile, the dynamical evolution of the non-
linear system is governed by the instantaneous Hamiltonian,
whose eigenstates are generally different from the steady
eigenmodes to form the NEP. (Note that as the nonlinear
Hamiltonian depends on the instantaneous state of the
system, different eigenmodes can correspond to different
instantaneous Hamiltonians.) Remarkably, this fact allows
us to design a NEP while the instantaneous Hamiltonian
exhibits a complete basis in dynamics.
To illustrate the physics discussed above, we propose a

general scheme to construct a NEP with a complete basis in
dynamics. However, to keep our formulas and text neat and
concise, we choose a fifth-order NEP (NEP5) as an example
and leave the general form to the Supplemental Material,
Sec. 1 [50]. We construct this NEP5 based on three coupled
resonators combined with a nonlinear saturable gain, and
verify our conclusions with both a model Hamiltonian and
circuit simulations. At the NEP5, one steady stable and four
auxiliary eigenmodes become identical, and the response of
eigenfrequencies demonstrates a fifth-order root law. Owing
to the feedback mechanism of the saturable gain, the system
can fall back to one of the stable eigenmodes in a short time
and remains at that eigenmode thereafter. Consequently,
the temporal dynamics of the system at the NEP5 is go-
verned entirely by the instantaneous Hamiltonian anchored
by the stable eigenmode. Intriguingly, this instantane-
ous Hamiltonian is diagonalizable, i.e., the eigenbasis is
complete. The Petermann factor (PF), which measures
the nonorthogonality of the eigenbasis in an experimen-
tally friendly manner, converges. Thus, the adverse ef-
fects of noise are largely suppressed from a fundamental
perspective.
Hamiltonian exhibiting NEP5.—Our system is sketched

in Fig. 1(a). The nonlinear Schrödinger equation is

HjψRijψRi ¼ ωjψRi; ð1Þ

whereω is the eigenfrequency. jψRi≡ ðψA;ψB;ψCÞT is the
right eigenstate with superscript T short for transpose, and
ψA, ψB, and ψC representing the field amplitude of the red
(left), blue (middle), and light red (right) resonators A, B,
and C, respectively. And the tight-binding Hamiltonian
HjψRi can be written as

HjψRi ¼

0
B@

ωA þ igAðjψAjÞ κ1 0

κ1 ωB − ilB κ2

0 κ2 ωC þ igC

1
CA; ð2Þ

whereωA,ωB, andωC represent the corresponding resonant
frequencies, respectively. gAðjψAjÞ denotes a nonlinear
saturable gain which decreases with the increasing of
jψAj. In optics, a commonly used gain saturation model is
gAðjψAjÞ ¼ Γ=ð1þ jψAj2Þ − γ0 with Γ representing the
pump strength and γ0 representing the intrinsic loss. lB

and gC represent the linear loss in resonator B and the linear
gain in resonatorC, respectively. Here the nonlinearity of the
gain gC is ignored, which is appropriate when the stable
value of jψCj is much smaller than the saturation amplitude
of the gain profile in resonator C. κ1 and κ2 are the corres-
ponding coupling strength. All the parameters are normal-
ized by κ1, and we set ωA to 0 since any global frequency
shift is irrelevant. Focusing on the stable state reached, the
eigenfrequency ω satisfies a fifth-order equation

pðωÞ ¼ ωjDetðHB−C − ωIÞj2
þ Im½DetðHC − ωIÞ� � Im½DetðHB−C − ωIÞ�
þ Re½DetðHC − ωIÞ� � Re½DetðHB−C − ωIÞ�

¼ ω5 þ x4ω4 þ x3ω3 þ x2ω2 þ x1ωþ x0 ¼ 0; ð3Þ

and the corresponding saturated gain value gs is deter-
mined by

gsRe½DetðHB−C − ωIÞ� − ωIm½DetðHB−C − ωIÞ�
− Im½DetðHC − ωIÞ� ¼ 0; ð4Þ

here I is the identity matrix.

HB−C ¼
�
ωB − ilB κ2

κ2 ωC þ igC

�
ð5Þ

represents the tight-binding Hamiltonian of a subsystem
consisting of the resonators B and C; HC ¼ ðωC þ igCÞ
denotes the on site term of the resonator C. fx0;…; x4g are

(a) (b)

(c)

FIG. 1. (a) Schematic of our model. The nonlinear gain
gAðjψAjÞ depends on jψAj. (b) Eigenvalues versus the external
perturbation ϵ, where the solid red line and four dashed (cyan,
blue, purple, and green) lines represent the stable and four
auxiliary modes, respectively. (c) The critical behavior of the
stable mode near the NEP5. Here the circles are from the red line
in (b), and the solid line represents a straight line with a slope 1=5.
The parameters used are ωB ¼ 1.18, ωC ¼ 1.53, lB ¼ 2.87,
gC ¼ 1.25, κ2 ¼ 2.
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real functions in the ðωB;ωC; lB; gC; κ2Þ space. Their explicit
forms are provided in the Supplemental Material, Sec. 2
[50]. Here, the gain saturation form is irrelevant to the order
of pðωÞ. We analyze all the possible fifth-order multiple
roots of pðωÞ and choose the combination of parameters
where the roots are stable. Let ϵ represent the external
perturbation of the system parameters to those at the fifth-
order multiple roots ω0. Near ω0, the response of eigen-
frequency Δω≡ ω − ω0 for ϵ is proportional to

ffiffiffi
ϵ5

p
if ∂ϵpðωÞ ≠ 0. (Detailed proof is provided in the
Supplemental Material, Sec. 2 [50].) The improved respon-
sivity, ∂ϵΔω, is highly desirable in amplifying a detected
perturbation ϵ [13,16]. In the main text, ϵ is imposed on ωA

for demonstration purposes, i.e., ωA þ ϵ. We note that
single-mode systems with Kerr nonlinearity can improve
the sensing in noisy environments [51]. In addition to
extraordinary sensitivity enhancement, our approach based
on NEPs with multimode systems is robust and flexible to
achieve various applications explored in conventional linear
EPs [19–25].
To understand the underlying physics, we extend the

solutions search of the polynomial [Eq. (3)] to the complex
plane. In Fig. 1(b), the solid red lines correspond to stable
modes and the other lines to the other four auxiliary modes.
Figure 1(c) shows the critical component of theΔω versus ϵ
for the stable mode (open circles), which fits well with

ffiffiffi
ϵ5

p
(the red line). Substituting the ω obtained above and the
corresponding gain gs into Eq. (1), the eigenstates can be
obtained (see Fig. S3 of the Supplemental Material [50]). It
is clear that one stable eigenmode and four auxiliary
eigenmodes become identical at this special singularity
NEP5. The five eigenvalues in Fig. 1(b) are either real or
come in complex conjugate pairs. These eigenvalues and
the corresponding eigenstates can be mapped into a PT-
symmetric linear Hamiltonian [31,49]. Compared with the
conventional linear systems, the parameters required to
reach an EP5 are reduced from 12 in conventional systems
to five in our system. Note that, for the four auxiliary
eigenmodes in Fig 1, the corresponding gs are complex. In
contrast, gAðjψAjÞ for most of the common gain models
[29–31] is purely real. Thus, the four auxiliary eigenvalues
(eigenstates) are unphysical, but their presence is crucial to
understanding the NEP5.
In conventional wisdom, the orthogonality of eigenstates

gradually diminishes as one approaches the EPs, and the
eigenbasis is incomplete. The loss of orthogonality can be
captured with [46]

χ ¼ 1 − fjhψR
α jψR

β ijg; ð6Þ

where each eigenstate is prenormalized as hψR
α jψR

α i ¼ 1,
f•g represents the algebraic average of the set f•g, and the
subscript α; β ¼ f1;…; ng denote different eigenstates

with α > β and n denoting the dimension. All eigenstates
are orthogonal to each other for Hermitian Hamiltonians,
i.e.,hψR

α jψR
β i ¼ δα;β, and thus χ ≡ 1 as depicted by the

purple dot-dashed line in Fig. 2(a). In contrast, all eigen-
states become identical, i.e., hψR

α jψR
β i ¼ hψR

α jψR
α i ¼ 1 at

conventional EPs in linear systems. As a result, χ ¼ 0 at a
linear EP5 as shown by the gray dashed line in Fig. 2(a).
The loss of orthogonality in the vicinity of EPs dramatically
increases the adverse effects of noise and has triggered
an ongoing debate in the EP-related sensing proto-
cols [13,16,43–46,56]. The enhancement of noise for an

(c)

(a) (b)

(e)(d)

FIG. 2. (a) Orthogonality function χ for a Hermitian system
(dot-dashed purple line), a PT-symmetric Hamiltonian in
Eq. (S11) (dashed gray line), and our system (solid red line).
Here, χ does not reach 1 as the parameters are not far enough
from all the possible EPs in the parameter space. (b) PF of the
stable state (solid red line) at the NEP5 is finite, contrasting
sharply with a divergent one for the linear system (dashed gray
line). (c) Evolution of ReðψAÞ (red line) and gAðjψAjÞ (dark green
line) starting from a small initial state ð10−3; 10−3; 10−3ÞT . In a
short time, the nonlinear system will reach a stable state. The
gAðjψAjÞ (dark green) matches gs obtained from Eq. (4) (dark
green circles). (d) The real part of the eigenvalues of Hs. (e) The
amplitude and phase distribution of the stable state. The param-
eters for the linear system are provided in the Supplemental
Material, Sec. 2 [50]. Parameters of the nonlinear system in (a),
(b),(d),(e) are the same as those in Fig. 1. The parameters used in
(c) are ωA ¼ 2.9, ωB ¼ 4.18, ωC ¼ 4.53, lB ¼ 2.87, gC ¼ 1.25,
κ2 ¼ 2, and gA ¼ 5=ð1þ jψAj2Þ − 3.
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eigenmode jψRi is conventionally characterized by the
PF [43–45], a measure of nonorthogonality:

PF≡ 1=jhψLjψRij2: ð7Þ

The corresponding left eigenstate hψLj is also prenormal-
ized. Since the left and right eigenstates are self-orthogonal
at conventional linear EPs, the PF diverges when approach-
ing a conventional linear EP as shown by the dashed gray
line in Fig. 2(b).
The above scenario for conventional linear EPs can

break down at NEPs. The (auxiliary) steady eigenmodes of
Eq. (1) can correspond to different Hamiltonians as HjψRi
depends on jψRi. Hence the (auxiliary) steady eigenmodes
becoming identical at NEPs does not necessarily lead to the
coalescence of the eigenmodes of the instantaneous
Hamiltonian, which governs the system dynamics. More
specifically, each solution of Eq. (3) can correspond to a
different gain value as given by Eq. (4). However, the
nonlinear system will reach one of the steady stable modes
(if it exists) in a short time due to the feedback mechanism
[29–31,57], and the nonlinear gain coefficient gAðtÞ is
anchored by the stable mode at a stable value gs. Thereafter,
the temporal dynamics is governed by a 3 × 3 instanta-
neous Hamiltonian Hs with the saturable gain replaced by
gs and subjected to noise-imposed fluctuations. Generally,
Hs does not exhibit an EP point though (auxiliary) steady
eigenmodes coalesce at the NEPs. Hence, the PF factor,
which characterizes the noise dynamics within the space
governed by Hs, does not diverge.
To unveil this fact more explicitly, we still use the three-

resonator system in Fig. 1(a). The red and dark green
lines in Fig. 2(c) show the ReðψAÞ and gA by solving the
time-dependent nonlinear Schrödinger equation i∂tjψRi ¼
HjψRijψRi starting from a small initial state. After a short
time, the gain stays at a stable value gs (green circles) as
defined in Eq. (4). We emphasize that the stable state
reached is also an eigenstate ofHs. Besides the stable state,
there are another two eigenstates of Hs. Figure 2(d) shows
the real part of the eigenvalues ofHs, with the solid red line
representing the same stable mode as shown in Fig. 1(b)
and the dot-dashed and dashed gray lines denoting the other
two eigenvalues of Hs. Figure 2(e) shows the normalized
field amplitudes fjψAj; jψBj; jψCjg and relative phases
fθA; θB; θCg of the stable mode. The fields of the other
two eigenstates are provided in Fig. S5. It is clear that the
three eigenstates of Hs do not coalesce at the NEP5.
Substituting the three eigenstates into Eq. (6), we see that
χ is nonzero at the NEP5 [the red line in Fig. 2(a)]. In other
words, the eigenbasis of Hs is still complete at the NEP5,
which is in stark contrast to linear Hamiltonians at conven-
tional EPs. We also calculate the PF factor for the stable
state as shown with the red line in Fig. 2(b). These results
verify our core conclusion that the completeness of the
eigenbasis can be recovered and the PF is finite with a

nonlinear saturable gain. We note that there have been a few
delicate schemes to compensate for the adverse conse-
quence due to the loss of complete basis: shifting from EPs
to transmission peak degeneracies in accelerometers [47]
and stabilizing noise at a nonlinear exceptional nexus [31].
Here, the NEP5 with a complete basis offers a way out of
the dilemma from its fundamental origins, i.e., noise is
converged. Meanwhile, χ and the PF of NEPs can be
further tuned by including nonreciprocal coupling (see
Fig. S6 of the Supplemental Material [50]).
Another promising potential application of EPs is the

chiral state transfer during the dynamical encirclement of
EPs. Given the same initial state, the final state does not
depend on the details of the trajectory but on the direction of
the winding (clockwise or anticlockwise) [19–25,58].
Dynamical encirclement of a NEP5 in the parameter space
can also lead to chiral state transfer similar to conventional
linear EPs. For demonstration purposes, the trajectory of
encirclement (loop) is defined as lB þ δxðtÞ andωB þ δyðtÞ.
We set δxðtÞ ¼ r cosðτ2πt=TÞ and δyðtÞ ¼ r sinðτ2πt=TÞ
with r representing the radius of the loop, T denoting the
cycle period, and τ ¼ �1 for the winding direction.
Figures 3(a) and 3(b) show the steady-state frequencies
versus δx and δy in the parameter space. The light red and
light blue regions represent stable and unstable states,
respectively. The system starts at a higher-frequency stable
state, as marked by the bold green arrows. If τ ¼ 1 [see
Fig. 3(a)], the state can adiabatically evolve to the lower
frequency state, provided the circling process is slow

(a) (c) (e)

(b) (d) (f)

FIG. 3. Steady-state frequencies (a),(b) and the corresponding
amplitudes (c),(d) around the NEP5 (marked by the black star). In
(c),(d), the solid green, dot-dashed blue, and dashed purple lines
represent the cases without noise, and the corresponding light
lines represent one typical simulation with noises. The chirality
function Λ (e) and the corresponding standard deviations σ (f) are
shown as a function of the encircling radius r. In (e),(f), the open
cyan circles and gray aplstars are obtained from simulations of
over 200 independent noises, and the red and blue lines are
for eye guiding. The parameters are ωB ¼ 1.25, ωC ¼ 1.59,
lB ¼ 3.06, gC ¼ 1.40, κ2 ¼ 2.18, r ¼ 0.01, T ¼ 20000, and
gA ¼ 5=ð1þ jψAj2Þ − 3. The amplitude of the noise is given
by D ¼ 0.2.
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enough. In contrast, the state experiences a nonadiabatic
transition at p1 and evolves to the same state when winding
in the clockwise direction [see Fig. 3(b)]. To quantify
the chirality of a parametric path, we adopt [20] and extend
the definition of chirality function as Λ ¼ ρCWρCCW, where
the subscripts CW and CCW denote the clockwise and
counterclockwise directions, respectively. Here the eigen-
state population ρ describes the relative weight of the
occupation coefficients and is defined as ρðtÞ ¼ ½jcuðtÞj2−
jclðtÞj2�=½jcuðtÞj2 þ jclðtÞj2�, where cu;lðtÞ represents the
projection of the instantaneous state jψðtÞi on the upper
or lower energy state. Figures 3(c) and 3(d) show the
evolution of instantaneous amplitudes in the presence of
noise (light lines), which are bounded around the casewhere
there is no noise (bold lines). Different from circling other
linear EPs, wherein thewave amplitude either exponentially
increases or decreases (for passive systems) with time, here
thewave amplitudemaintains almost at the same order since
the evolution is on the stable state surface. Figures 3(e)
and 3(f) show the chirality functionΛ and the corresponding
standard deviations σ with a fixed noise as a function of the
encircling radius r. Ideally,Λ should be−1 independent of r;
in the presence of noise,Λ deviates from−1. Comparedwith
circling an EP in a typical linear system [the blue line in
Fig. 3(e)], the chirality functionΛ [the red line in Fig. 3(e)] is
muchmore robust against noise as it remains around−1 for a
much smaller r. Moreover, the standard deviation σ con-
verges [red line in Fig. 3(f)] as we approach theNEP5.When
r is large, the feedbackmechanism is the dominant factor for
the robustness of the chiral state transfer against noise; when
r is small enough, both the feedback mechanism and the
reviving of the complete basis contribute to the robustness.
A more detailed analysis is provided in the Supplemental
Material, Sec. 4 [50]. Here, the parametric steering
process with an ultrasmall r enables the miniaturization
of various key applications based on the chiral state transfer
[21–25].
Conclusions.—In summary, we propose NEPs with the

critical features of EPs. It is remarkable to find that the
completeness of the eigenbasis at the NEP recovers in
temporal dynamics, and this fact is also corroborated by a
finite PF. The adverse consequences due to the loss of
completeness are largely degraded from a fundamental
aspect. Since nonlinearity fundamentally changes the
dimension and dynamics of the system, we name it NEP
to distinguish it from conventional EPs. Our model can be
implemented within diverse classical and quantum systems,
and we show their existence in the circuits in the
Supplementary Material, Sec. 5. Besides the circuit system,
other promising platforms include microwave cavities
[6,16], exciton-polariton billiards [11], optical micro-
cavities [8], coupled atom-cavity systems [9], cold atoms
[59,60], nitrogen-vacancy centers [61], superconduc-
ting circuits [62], etc. [7,10,12,63]. The nonlinear EPs
discussed in our work exhibit great potential in EP-related

applications such as (quantum) sensing [13,16,31,47,63],
chiral state transfer [19–22], etc. [64,65]. In addition, our
findings will enrich the physics of the EPs of Bloch
Hamiltonians under continuous deformations [66–68]
and provide new insights into the nonlinear non-
Hermitian systems [69].
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