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Some antiferromagnets under a magnetic field develop magnetization perpendicular to the field as well
as more conventional ones parallel to the field. So far, the transverse magnetization (TM) has been
attributed to either the spin canting effect or the presence of cluster magnetic multipolar ordering. However,
a general theory of TM based on microscopic understanding is still missing. Here, we construct a general
microscopic theory of TM in antiferromagnets with cluster magnetic multipolar ordering by considering
classical spin Hamiltonians with spin anisotropy that arises from the spin-orbit coupling. First, from general
symmetry analysis, we show that TM can appear only when all crystalline symmetries are broken other
than the antiunitary mirror, antiunitary twofold rotation, and inversion symmetries. Moreover, by analyzing
spin Hamiltonians, we show that TM always appears when the degenerate ground state manifold of the spin
Hamiltonian is discrete, as long as it is not prohibited by symmetry. On the other hand, when the degenerate
ground state manifold is continuous, TM generally does not appear except when the magnetic field
direction and the spin configuration satisfy specific geometric conditions under single-ion anisotropy.
Finally, we show that TM can induce the anomalous planar Hall effect, a unique transport phenomenon that
can be used to probe multipolar antiferromagnetic structures. We believe that our theory provides a useful
guideline for understanding the anomalous magnetic responses of the antiferromagnets with complex
magnetic structures.
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Introduction.—Spin-orbit coupled antiferromagnets are a
promising playground to study novel correlated topological
states and anomalous transport phenomena [1,2]. The
complex spin structures of spin-orbit coupled antiferro-
magnets are characterized by their cluster magnetic multi-
pole (CMM) reflecting the symmetry of the magnetic
ground state [3,4]. Especially, those with higher-rank
CMMs exhibit anomalous transport phenomena including
various types of anomalous Hall effects [3–16]. The distinct
magnetic symmetry of higher-rank CMMs underlies their
unconventional physics, unexpected in simple spin systems
with magnetic dipoles only.
Normally, when a magnetic field B is applied to an

antiferromagnet, the magnetization develops along B.
However, transverse magnetization (TM) is also observed
in anisotropic antiferromagnets including Gd2Ti2O7,
CsMnBr3, and Eu2Ir2O7 [17–22]. In Gd2Ti2O7 and
CsMnBr3, TM was observed when B was along certain
directions and was attributed to the spin canting. More
recently, TM was also observed in Eu2Ir2O7 where the
magnetic octupolar ordering, not the spin canting, was
proposed as the origin of TM using phenomenological
theory, and the resultant TM was dubbed the orthogonal
magnetization (OM) [21]. Common features of these three
systems are that the antiferromagnetic ground state has
higher-rank CMMs and the relevant spin Hamiltonian has

spin anisotropy arising from spin-orbit coupling. Thus, to
understand the fundamental origin of TM, the relation
between the spin anisotropy and the complex magnetic
structure with higher-rank CMMs should be clarified.
In this Letter, we construct a general microscopic theory

of TM. First, through symmetry analysis, we derive the
general symmetry condition to have TM. Explicitly, we
show that TM emerges only when every crystalline
symmetry is broken, except for twofold antiunitary rotation
C2T, antiunitary mirror σT, and inversion P. Here, C2, σ, T
indicate twofold rotation, mirror, and time-reversal sym-
metries, respectively. Based on the symmetry, we tabulate
the information about whether TM is allowed or not under
various field directions for all possible antiferromagnetic
structures relevant to Mn3Ir, CsMnBr3, and pyrochlore
systems including Gd2Ti2O7 and Eu2Ir2O7.
We also examine the microscopic origin of TM by

studying the classical spin Hamiltonian on the pyrochlore
lattice with spin anisotropy represented by single-ion
anisotropy (SIA), Dzyaloshinskii-Moriya interaction
(DMI), and dipolar interaction (DI). Depending on the
nature of spin anisotropy, the antiferromagnetic ground
state has distinct CMMs, and the degenerate ground state
manifold (DGSM) is either discrete or continuous under
spin rotation. We find that when the DGSM is discrete, TM
always appears unless forbidden by symmetry. On the other
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hand, when DGSM is continuous, TM is generally not
allowed. However, when DGSM is constrained in easy
planes by SIA, TM can appear when the magnetic field
direction and spin configuration satisfy certain geometric
conditions. As a result of TM, we show that TM induces a
unique transport phenomenon called the anomalous planar
Hall effect (APHE) [23]. Although we focus on the
pyrochlore lattice, our theory can be readily generalized
to any antiferromagnets on any lattice system.
Global symmetry constraints.—Let us first consider the

symmetry constraint on the TM (M⊥) under B. First, any
n-fold rotation symmetry Cn (n ¼ 2, 3, 4, 6) along the
direction of B prohibits TM because M⊥ is canceled by its
rotated counterparts

P
n−1
i¼1 C

i
nM⊥. Similarly, a mirror sym-

metry σ with the normal direction parallel to B forbids TM.
The only unitary symmetry compatible with TM is spatial
inversion P.
In the case of antiunitary symmetries, there are two

symmetries compatible with M⊥ ≠ 0. One is C2T, whose
rotation axis is perpendicular toB. In this case,M⊥ appears
perpendicular to both the B and C2 axis. The other is σT
whose mirror plane is parallel to B. Then, M⊥ appears on
the mirror plane. As the combination of C2T and σT is P,
M⊥ emerges even when both symmetries exist simulta-
neously. In summary, every symmetry except for C2T, σT,
and P must be broken for M⊥ ≠ 0.
Using this symmetry condition, one can judge whether

M⊥ is forbidden or not in any antiferromagnetic (AFM)
system under various field directions. In the pyrochlore
lattice with a tetrahedral magnetic unit cell, shown in Fig. 1,
the AFM structures can be classified by group theory. The
resulting irreducible representations (IRREPs) can be
described in terms of CMMs [3,4] including the A2 octupole
(Â2), T1 octupoles ðT̂1x; T̂1y; T̂1zÞ, T2 octupoles ðT̂2x; T̂2y;
T̂2zÞ, and E dotriacontapoles ðÊ1; Ê2Þ [3,4,21,24–28]. In the
case of Â2, shown in Fig. 1, for example, its magnetic point
group −403m0 contains an identity I, three twofold rotations
C2, eight threefold rotations C0

3, six antiunitary mirrors σT,
and six fourfold antiunitary inversionS4T. ForBk½001�, every
symmetry, except I, C2z, and two σTs, is broken. Because
there isC2z,M⊥ ¼ 0. On the other hand,whenBk½110�, only
I and a σT remain, thusM⊥ can be nonzero. We extend this

analysis to theD3h point group relevant to CsMnBr3 [17] and
to the Oh point group relevant to Mn3Ir [3,16,29–32] [see
Supplemental Material (SM) [33] ].
The analysis of the magnetic point group under B

determines the direction of M⊥ and its general B depend-
ence. For instance, let us consider an AFM ordering with
the magnetic point group P, which is described by the
Hamiltonian HðfSagÞ where a indicates the lattice site.
When B is applied, most symmetries in P are broken but
they strongly constrain the spin canting directions. More
explicitly, for an element Op ∈ P, we have

UðOpÞHðfSag;BÞUðOpÞ−1 ¼ HðfSag;BpÞ; ð1Þ

where Bp ¼ OpB and UðOpÞ is the matrix representation
of Op. Namely, Op effectively changes the direction of B
while keeping the spin structure. For example, let us recall
Â2 under Bk½110�. Among the symmetries in P, P1 ¼
fI; σ½11̄0�Tg indicates the symmetry that leaves B invariant.
Here I denotes the identity and σ½11̄0� is the mirror symmetry
with ½11̄0� normal vector. On the other hand, P2 ¼
fC2z; σ½110�Tg denotes the symmetries which invert the
direction of B. Here σ½110� is the mirror symmetry with
[110] normal vector. Applying P1 and P2 symmetries to the
constraint equation in Eq. (1), we obtain M⊥ ∝
½bB2 þOðB4Þ�ẑ with a constant b. A similar analysis
can also be applied to other CMMs. In the case of Ê2

under Bk½111�, we find that P1 ¼ fIg leaves B invariant
while P2 ¼ fσ½11̄0�g inverts the B direction, which gives
M⊥ ¼ ðbB2 þ…Þê11̄0 þ ðdBþ fB3 þ…Þê112̄ where b,
d, f are constants. Detailed B dependence of TM is
determined by microscopic spin interactions as discussed
below. The cases of E1 and T2y CMMs under Bk½111� are
analyzed in the SM.
Microscopic Hamiltonian.—The classical Heisenberg

antiferromagnet on the pyrochlore lattice has macroscop-
ically degenerate ground states [43,44]. Under B, the
Hamiltonian becomes

H0 ¼ HJ þHB ¼ J
X
habi

Sa · Sb −
X
a

B · Sa;

¼ 8JNcM2 − 4NcB ·M −
JNc

2

X4
a¼1

S2
a; ð2Þ

where HJ with J > 0 indicates the isotropic antiferromag-
netic exchange between nearest-neighboring spins, and HB
is the Zeeman coupling. Nc is the number of tetrahedral
unit cells, M ¼ 1

4

P
4
a¼1 Sa is the average magnetization of

the four spins in a tetrahedron. From S2
a ¼ 1, we obtain

H0 ¼ 8JNc½M − ðB=4JÞ�2. Then, the minimum energy
condition gives M ¼ ðB=4JÞ. Namely, TM vanishes when
spin anisotropy is absent.

(a)

B=(Ir, Ti)
A=(Gd, Eu)

(c)(b) A2 (Eu2Ir2O7) E2 (Gd2Ti2O7)

Ir
Gd

FIG. 1. (a) Structure of the pyrochlore lattice relevant to
Gd2Ti2O7 and Eu2Ir2O7. (b),(c) Spin configurations of (b) the
A2 octupole in Eu2Ir2O7 and (c) E2 dotriacontapole in Gd2Ti2O7.
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Single-ion anisotropy (SIA).—Let us consider H1 ≡
H0 þHSIA that includes HSIA ¼ A

P
aðSa · naÞ2. When

A > 0, HSIA forces Sa to lie on its easy plane: Sa · na ¼ 0
[see Fig. 2(a)]. The energy minimum condition of H1 is

M ¼ B
4J

; Sa · na ¼ 0ða ¼ 1; 2; 3; 4Þ: ð3Þ

When B ¼ 0, the ground state is antiferromagnetic with
either the E dotriacontapole or T2 octupole, in which all
spins are lying on their easy planes. As the E dotriaconta-
pole belongs to a two-dimensional (2D) IRREP, it is
composed of two basis states, the Ê1 and Ê2 orders.
Similarly, the T2 octupole belonging to a three-dimensional
(3D) IRREP is composed of three basis states, the T̂2x, T̂2y,
and T̂2z orders (see SM).
Specifically, in the Ê1 order, the four spins Sa¼1;2;3;4 in a

unit cell are aligned along the directions x̂1 ¼ ½11̄0�,
x̂2 ¼ ½110�, x̂3 ¼ ½1̄ 1̄ 0�, x̂4 ¼ ½1̄10�, respectively, while
for the Ê2 order, the spins are along ŷ1 ¼ ½112̄�,
ŷ2 ¼ ½11̄2�, ŷ3 ¼ ½1̄12�, ŷ4 ¼ ½1̄ 1̄ 2̄�, respectively. Then, a
general E dotriacontapole is represented by ÊðαÞ ¼
Ê1 sin αþ Ê2 cos α, which spans a continuous DGSM
parametrized by 0 ≤ α ≤ 2π [see Fig. 2(a)]. As α varies,
the spins continuously rotate on their easy planes. Similar
to [Ê1; Ê2] orders, ½Êðα ¼ π=6Þ; T̂2x� orders, ½Êðα ¼
5π=6Þ; T̂2y� orders, and ½Êðα ¼ π=2Þ; T̂2z� orders form pairs
of basis states which span continuous DGSM where spins
are lying on their easy planes.
WhenB ≠ 0, the energy minimum condition in Eq. (3) is

satisfied in most cases, thus TM vanishes. But there are

some exceptional cases with nonzero TM. For example, for
a given ÊðαÞ order atB ¼ 0, the spin configuration at small
B can be parametrized as

Sa ¼ cos θa½cosðαþ ϕaÞx̂a þ sinðαþ ϕaÞŷa� − sin θaẑa;

ð4Þ

where ϕa (θa) indicates the rotation within (away from) the
easy plane ofSa because ofB ≠ 0. At smallB, we expandSa
up to the first order of (θa,ϕa) and put it in Eq. (3), which
gives Sa ·na ¼−θa ¼ 0, Mx¼ð1=4 ffiffiffi

6
p Þ½ðcosα− ffiffiffi

3
p

sinαÞ×
ðϕ1þϕ2−ϕ3−ϕ4Þ�,My ¼ð1=4 ffiffiffi

6
p Þ½ðcosαþ ffiffiffi

3
p

sinαÞðϕ1−
ϕ2þϕ3−ϕ4Þ�, Mz¼ð−1=2 ffiffiffi

6
p Þ½cosαðϕ1−ϕ2−ϕ3þϕ4Þ�.

Note that when tan α ¼ 1=
ffiffiffi
3

p
, Mx ¼ 0. Then, Mx ¼

Bx=ð4JÞ in Eq. (3) cannot be satisfied if Bx ≠ 0. Similar
situations occur when tan α ¼ −1=

ffiffiffi
3

p
and By ≠ 0, or

cos α ¼ 0 and Bz ≠ 0.
Interestingly, these are exactly the conditions to have

nonzero TM [see Fig. 2(b)]. For instance, for the Êðα ¼
π=6; 7π=6Þ order with tan α ¼ 1=

ffiffiffi
3

p
, when Bk½100�, the

projection ofB onto the easy plane of each spin is parallel to
the corresponding spin direction, thus B cannot rotate each
spinwithin its easy plane. Instead,B forces the spins tomove
away from their easy planes, violating Eq. (3) and inducing
nonzero TM. Similar situations happen for Êð5π=6; 11π=6Þ
order with By ≠ 0, and Êðπ=2; 3π=2Þ order with Bz ≠ 0.
The spin configuration with nonzero TM can be obtained

by the stationary condition ∂H1=∂θa ¼ ∂H1=∂ϕa ¼ 0.
For instance, for Êðπ=2Þ order under Bk½111� described in
Fig. 2(b), the stationary condition gives θ1 ¼ θ4 ¼−θ2 ¼
−θ3 ¼ ½B=ð6Aþ4JÞ�, ϕ1¼ϕ4¼ 0, ϕ2¼−ϕ3¼−ðB= ffiffiffi

6
p

JÞ,
from which we obtain M⊥ ¼ ½ ffiffiffi

2
p

=4ð2þ 3A=JÞ�×
ðA=JÞðB=JÞê112̄. As θ1;2;3;4 are nonzero, all spins move
away from their easy planes. InFig. 2(c),we computeM⊥ for
ÊðαÞ order under Bk½111� varying α. In Fig. 2(d), we plot
M⊥ for various ÊðαÞ orders by continuously rotatingB from
[010] to [011], and then to [111] in sequence.M⊥ becomes
nonzero only when the special conditions between B
and α described above are satisfied (see SM for further
discussions).
When A < 0, on the other hand, each spin Sa aligns

along its easy-axis direction na, leading to the all-in-all-out
ground state with an A2 octupole shown in Fig. 2(e). Two
degenerate ground states, the all-in or all-out state, related
by time-reversal symmetry form a discrete manifold in
which the states are separated by an energy barrier, contrary
to the A > 0 case. In this situation, we find that TM
generally appears unless it is forbidden by symmetry. We
compute TM by changing B from [010] to [101], and then
to [111] continuously, and represent the result in Fig. 2(f).
Considering symmetry, TM vanishes for Bk½001� and
[111]. For other directions, TM is nonzero and exhibits
jM⊥j ∝ ðA=JÞðB=JÞ2 consistent with magnetic space

 (a)

(c) (d) (f)

(b) (e)

FIG. 2. (a) ÊðαÞ order when A > 0. The spins (red arrows) are
lying on their easy planes (yellow planes). (b) Green lines denote
the spin directions of Êðπ=6þ nπ=3Þ orders (n ¼ 0;…; 5).
(c) M⊥ for ÊðαÞ order as a function of α when Bk½111�. M⊥ ≠
0 only at α ¼ π=6þ nπ=3. (d) M⊥ for ÊðαÞ order with various α
computed by changingB from [010] to [011], and to [111]. (e) Â2

order when A < 0. (f) M⊥ for Â2 order computed by changing B
from [100] to [110], and to [111]. In (c),(d),(f), we choose
jAj=J ¼ B=J ¼ 1.
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group analysis. All these results are further confirmed by
numerically solving H1 (see SM).
Dzyaloshinskii-Moriya interaction (DMI).—Next, we

consider H2 ≡H0 þHDMI that includes HDMI ¼
D
P

habi D̂ab · ðSa × SbÞ. Generally, DMI forces two spins
Sa andSb to lie in their planes perpendicular to theDMvector
D̂ab so that Sa × Sb is antiparallel (parallel) to D̂ab when
D > 0 (D < 0).
Let us first consider the D > 0 case [27]. In the

pyrochlore lattice, DMI forces each spin to be
perpendicular to its six neighboring DM vectors, and the
intersection between the planes normal to those DM vectors
is uniquely determined, which leads to the Â2 order as
shown in Fig. 3(a). As in the case of SIAwith A < 0, since
DGSM is discrete, TM generally arises unless prohibited
by symmetry. For example, in Fig. 3(b), we compute the
TM by changing B from [100] to [110], and then to [111].
When Bk½100� and [111], TM vanishes because of rotation
symmetries. Otherwise, TM is nonzero. From the stationary
condition of H2, we obtain jM⊥j ∝ ðD=JÞðB=JÞ2 (see SM
for more details).
On the other hand, when D < 0, the relative angle

between neighboring spins is inverted compared to theD >
0 case to minimize the energy. To find the ground state for
D < 0, we rewrite H2 by adding some constants as

H2 ¼−12D
�X

a

Sa · v̂a=4

�
2

− 8D
X3
r¼1

��X
a

Sa ·Tr
a=4

�
2
�

þ 8ðJ−D=2Þ
�
M−

B
4ðJ−D=2Þ

�
2

; ð5Þ

where v̂a is the unit vector along the local z axis of Sa, and
Tr
a (r ¼ 1, 2, 3) indicates the spin direction relevant to the

T2 octupole. The explicit forms of v̂a and Tr
a are given in

the SM. Since D < 0, all coefficients of squared terms in
H2 are positive, thus H2 can be minimized when the
following seven equations are satisfied:

M¼ B
4J−2D

;
X4
a¼1

Sa · v̂a ¼ 0;
X4
a¼1

Sa ·Tr
a ¼ 0: ð6Þ

When B ¼ 0, one can show that [Ê1; Ê2] orders span the
continuous DGSM as in the case of SIA with A > 0.
Similarly, ½Êðα ¼ 0Þ; T̂1z� orders, ½Êðα ¼ π=3Þ; T̂1y� orders,
and ½Êðα ¼ −π=3Þ; T̂1x� orders form pairs of basis states
which span continuous DGSM where spins are lying on the
xy, zx, and yz planes, respectively [see Fig. 3(c)].
Since DGSM is continuous, one can generally expect TM

to vanish. To check possible exceptional situations as in the
SIA casewithA > 0, let us consider ÊðαÞ order atB ¼ 0 and
examine the spin configuration at small B by introducing
angular variation ðθa;ϕaÞ as in Eq. (4). Plugging the para-
metrized formof spins in Eq. (4) into Eq. (6), we obtain, up to
the linear order in B ¼ jBj, θa ¼ −3ẑa · ½B=4ðJ −D=2Þ�,
ϕa ¼ q½B=4ðJ −D=2Þ� where q is an arbitrary constant.
Contrary to the SIA case with A > 0 in which θa ¼ 0 is
always required to minimize the SIA term irrespective ofB,
here, both θa andϕa can continuously vary underBwhile the
energy minimum condition is satisfied. As spins can rotate
continuously in three-dimensional space under B while
satisfying Eq. (6), TM vanishes. This is generally true for
arbitrary ÊðαÞ under arbitrary B, as shown in Fig. 3(d). The
same results can be obtained from the stationary conditions
∂H2=∂θa ¼ ∂H2=∂ϕa ¼ 0. All these results can be further
confirmed by numerical calculation of H2 (see SM). Other
Êþ T̂1-type ground states with continuous DGSM exhibit
similar behaviors as discussed in the SM.
Similar relations also hold in systems with dipolar

interactions as shown in the SM.
Anomalous planar Hall effect (APHE).—In metallic

antiferromagnets with CMMs, TM can induce APHE
[23], i.e., simultaneous appearance of the anomalous Hall
effect (AHE) and planar Hall effect (PHE) [34,45,46]. This is
because an applied in-planeB generates both in-planeM⊥;in
and out-of-plane M⊥;out TM, which give PHE and AHE,
respectively [see Fig. 4(a)].
Motivated by the recent observation of AHE and PHE in

pyrochlore iridates [22,25], we examine APHE in this
system with Â2 order. Assuming x̂k½11̄0�, ŷk½112̄�, and
ẑk½111�, we apply an electric field Ekx̂, and rotate Bwithin
the x̂ ŷ plane. Considering the symmetry of the pyrochlore
lattice, we find M⊥;out ¼ ða0 þ a1 cos 3θ þ b1 sin 3θÞẑ,
M⊥;in ¼ ðc1 cos 3θÞp̂where a0, a1, b1, and c1 are constants,
and p̂ ¼ ð− sin θ; cos θ; 0Þ is the in-plane unit vector

(a)

(b)

(c)

(d)

FIG. 3. (a) Â2 order when D > 0, where all spins (red arrows)
are perpendicular to the surrounding DM vectors (yellow arrows).
(b)M⊥ for Â2 order computed by changingB from [100] to [110]
and to [111]. (c) Schematic description of continuous DGSM
when D < 0. There are four distinct planes; yellow planes are for
ÊðαÞ order, blue planes are for Êð−π=3Þ þ T̂1x order, green
planes are for Êðπ=3Þ þ T̂1y order, and cyan planes are for
Êð0Þ þ T̂1z order. (d) M⊥ for ÊðαÞ order with various α
computed by changing B from [010] to [011] and to [111]. In
(b),(d), we assume jDj=J ¼ B=J ¼ 1.
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perpendicular to B [see Fig. 4(a)]. Using the phenomeno-
logical model for anomalous Hall conductivity (AHC)
and planar Hall conductivity (PHC) [35,47] given by
σAHExy ¼ σ0M⊥;out, σPHExy ¼σ1BxByþσ2ðBxM⊥;yþByM⊥;xÞþ
σ3M⊥;xM⊥;y, we obtain

σAHExy ∝ β0 þ β1 cos 3θ þ β2 sin 3θ;

σPHExy ∝ γ1 cos θ þ γ2 cos 5θ

þ δ1 sin 2θ þ δ2 sin 4θ þ δ3 sin 8θ; ð7Þ

where β0;1;2, γ1;2, and δ1;2;3 are constants. γ1, γ2 terms come
from the σ2 term while δ1, δ2, δ3 come from the σ3 term
in σPHExy .
To confirm the prediction of the phenomenological

theory, we perform self-consistent mean-field calculations
of the Hubbard model describing pyrochlore iridates with
Â2 order [24,36], and numerically compute the AHC [37]
and PHC [34] (see SM for details). For AHC, we consider
only the intrinsic Berry curvature contribution while for
PHC, we assume constant relaxation time. The resulting
AHC (PHC) is plotted using black dots in Fig. 4(b) [Fig. 4(c)]
which can be fitted by σAHExy ∝ β0 þ β2 sin 3θ and
σPHExy ∝ γ1 cos θ þ δ1 sin 2θ, respectively, consistent with
Eq. (7). Note that experimental data can contain additional
terms due to rare-earth ions and strain, etc. [22]. As APHE
probes multipolar AFM structures through its relation with
TM, it can be further applied to the systems where conven-
tional methods like neutron scattering do not work [18–20].
Discussion.—Our theory can explain the experiments on

CsMnBr3, Gd2Ti2O7, Eu2Ir2O7 which are well described
by classical spin Hamiltonians because of the large spin in
Gd2Ir2O7 (S ¼ 7=2) and CsMnBr3 (S ¼ 5=2), and stable
AFM ordering in Eu2Ir2O7 [27]. First, in CsMnBr3, M⊥ ∝
B is observed when B is in the xz plane unless Bkx̂; ẑ [17].
WhenBkx̂ðẑÞ, σxðσz; C3zÞ forbids TM. WhenB is in the xz
plane, C2y, which inverts B, enforces M⊥ ∝ B. In
Gd2Ir2O7, M⊥ ¼ 0 for Bk½001�; ½110� and M⊥ ≠ 0 for
Bk½111�; ½112� were observed [18–20]. ForBk½001�ð½110�Þ,
C2zðσ½110�Þ forbids TM. For other B, as all symmetries are
broken, TM appears. Finally, in Eu2Ir2O7, M⊥ ∝ B2 sin 2θ
was observed [21]. When Bkx̂; ŷ, twofold rotation forbids
TM, whereas when B is within the xy plane, S4T, which

invertsB, enforcesM⊥ ∝ B2. S4 denotes fourfold improper
rotation. Thus, M⊥ ∝ B2 sin 2θ. All these experiments are
consistent with our symmetry analysis and numerical
results (see SM).
Considering that TM was also observed in fluctuating

spin models [48], we believe that understanding the
influence of quantum fluctuations on TM is one important
direction for future study.
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