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Accidental ground state degeneracies—those not a consequence of global symmetries of the
Hamiltonian—are inevitably lifted by fluctuations, often leading to long-range order, a phenomenon
known as “order-by-disorder” (ObD). The detection and characterization of ObD in real materials currently
lacks clear, qualitative signatures that distinguish ObD from conventional energetic selection. We show that
for order by thermal disorder (ObTD) such a signature exists: a characteristic temperature dependence of
the fluctuation-induced pseudo-Goldstone gap. We demonstrate this in a minimal two-dimensional model
that exhibits ObTD, the ferromagnetic Heisenberg-compass model on a square lattice. Using spin-
dynamics simulations and self-consistent mean-field calculations, we determine the pseudo-Goldstone gap,

Δ, and show that at low temperatures it scales as the square root of temperature,
ffiffiffiffi
T

p
. We establish that a

power-law temperature dependence of the gap is a general consequence of ObTD, showing that all key
features of this physics can be captured in a simple model of a particle moving in an effective potential
generated by the fluctuation-induced free energy.

DOI: 10.1103/PhysRevLett.130.266702

Strongly competing interactions, or frustration, enhance
quantum and thermal fluctuations, and undermine the
development of conventional magnetic order. The latter
can even be prevented entirely down to zero temperature,
leading to classical [1–3] or quantum spin liquids [4–10].
However, additional perturbative interactions can relieve
the frustration and favor the development of long-range
order (LRO). Accordingly, the majority of spin liquid
candidates ultimately evade fate as a spin liquid [8,11].
The ability of such perturbative interactions, largely incon-
sequential without frustration, to dictate the ground state
and low-temperature properties of a system is at the root
of the plethora of exotic phenomena displayed by highly
frustrated magnetic materials [10,12–18].
This relief of frustration is not always complete. Instead

of an extensively degenerate manifold, a system can
possess a subextensive accidental ground state degeneracy,
unprotected by symmetry. Classically, this degeneracy can
be robust to a range of realistic interactions including
symmetry-allowed two-spin exchange [19]. Here, the role
of fluctuations is dramatically changed: instead of being
detrimental, they can lift the classical degeneracy and
stabilize order—this is the celebrated phenomenon of
order-by-disorder (ObD) [20–22]. While numerous theo-
retical models have been proposed [20–33], there is a
paucity of real materials that unambiguously harbor
ObD [19,34–37]. The standard strategy for experimental
confirmation of ObD is indirect, relying on parametrizing a
theoretical model of the material, establishing ObD within

that model, and then validating its predictions for the
ordered state experimentally.
While this program has been applied somewhat success-

fully to a handful of materials [19,34–37], the inability to
evince ObD directly, without relying on detailed modeling,
highlights something lacking in our understanding of ObD.
Clear, qualitative, and model-independent signatures are
needed; for example, experimental observation of charac-
teristic power laws in heat capacity or transport can
diagnose the character of low-energy excitations, such as
exchange statistics, dimensionality, or their dispersion
relations [9,11,38,39]. Does the presence of ObD exhibit
a “smoking-gun” experimental signature? This can be
difficult or subtle to discern. For ObD from quantum
fluctuations [21], the formation of an ObD spin-wave
gap is generally not distinguishable from one induced
energetically by multispin interactions [40–42].
In this Letter, we identify a clear signature of order by

thermal disorder (ObTD): a dynamically generated gap
growing as the square root of temperature. We investigate
this gapped “pseudo-Goldstone” (PG) mode [43–45] in a
minimal 2D classical spin model exhibiting ObTD,
the ferromagnetic Heisenberg-compass model on a square
lattice, belonging to a class of models relevant to Mott
insulators with strong spin-orbit coupling [46–54].
Through spin-dynamics simulations, we determine the PG
gap Δ and show it varies with temperature as Δ ∝

ffiffiffiffi
T

p
, in

quantitative agreement with the self-consistent mean-field
theory (SCMFT) that we present. This mode is well

PHYSICAL REVIEW LETTERS 130, 266702 (2023)

0031-9007=23=130(26)=266702(8) 266702-1 © 2023 American Physical Society

https://orcid.org/0000-0002-5439-7504
https://orcid.org/0000-0003-2632-0400
https://orcid.org/0000-0002-5961-0300
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.266702&domain=pdf&date_stamp=2023-06-26
https://doi.org/10.1103/PhysRevLett.130.266702
https://doi.org/10.1103/PhysRevLett.130.266702
https://doi.org/10.1103/PhysRevLett.130.266702
https://doi.org/10.1103/PhysRevLett.130.266702


defined, with its linewidth Γ due to thermal broadening,
Γ ∝ T2 ≪ Δ. We further demonstrate that our key results
can be captured by an effective description of a particle
moving in a potential generated by the fluctuation-induced
free energy. Using this picture, we argue that the tempera-
ture dependence of the PG gap,

ffiffiffiffi
T

p
(T) for type-I (II) PG

modes, which have dispersion ω ∝ jkj and ω ∝ jkj2,
respectively [55], is universal and applicable to any
system exhibiting ObTD. Finally, due to the low dimen-
sionality [56] of the 2D model considered, ObTD faces a
subtle competition against potentially infrared-divergent
fluctuations [57,58]. While ObTD ultimately prevails and
true LRO develops, the magnetization displays logarithmic
corrections at low temperatures, a remnant of the diverging
infrared fluctuations.
Model.—We consider the classical ferromagnetic

Heisenberg-compass model on a square lattice

H ¼
X
r

�
−J

X
δ¼x; y

Sr · Srþδ − KðSxrSxrþx þ SyrS
y
rþyÞ

�
; ð1Þ

where Sr ≡ ðSxr ; Syr ; SzrÞ is a unit vector at site r, and
δ ¼ x; y denote the nearest-neighbor bonds. We consider
ferromagnetic Heisenberg and compass interactions with
J > 0, K > 0 [see Supplemental Material (SM) [59] for a
discussion of other signs] and with J the unit of energy,
setting J ≡ ℏ≡ kB ≡ 1 throughout.
For K ¼ 0, the model [Eq. (1)] is the well-known

Heisenberg ferromagnet with uniform ferromagnetic
ground states of arbitrary direction, Sr ¼ n̂, related by
global spin-rotation symmetry. For K > 0, this symmetry
is absent and H in Eq. (1) is minimized by any uni-
form magnetization in the x̂-ŷ plane. These ground
states are characterized by an angle ϕ ∈ ½0; 2πÞ with
Sr ¼ cosϕ x̂þ sinϕ ŷ. Unlike the pure Heisenberg ferro-
magnet, these are only accidentally degenerate, as con-
tinuous in-plane spin rotations do not preserve the
anisotropic compass term. However, a discrete C4 sym-
metry about the ẑ axis and C2 symmetries about the x̂ and ŷ
axes still remain.
Simulations.—We first demonstrate that this model

exhibits ObTD via Monte Carlo (MC) simulations on a
lattice with N ¼ L2 sites. To expose the state selection, we
construct a probability distribution for the magnetization
orientation ϕ, PðϕÞ, using a sample of thermalized states
(see SM [59]). As shown in Fig. 1(a), PðϕÞ exhibits
maxima at ϕ ¼ 0, π=2, π, 3π=2, corresponding to ferro-
magnetic ground states with n̂ along the �x̂, �ŷ directions.
At low temperatures, fluctuations thus select four discrete
ground states via ObTD from a one-parameter manifold of
states.
We now consider the classical dynamics to examine

the associated PG mode. The equation of motion for
the classical spins is the Landau-Lifshitz equation [76],

dSr=dt ¼ Br × Sr, describing precession about the
exchange field Br produced by neighboring spins

Br ≡ −
X

δ¼�x;�y

½JSrþδ þ KSδrþδδ�: ð2Þ

Starting with states drawn via MC sampling at temperature
T, we numerically integrate the Landau-Lifshitz equations,
and compute the dynamical structure factor, Sðk;ωÞ ¼
hjSkðωÞj2i, where SkðωÞ is the Fourier transform of the
spins, and h� � �i denotes averaging over the initial states
[59]. Results for Sðk;ωÞ at a representative T and K [59]
are shown in Fig. 1(b), exhibiting sharp spin waves with a
nearly gapless mode at k ¼ 0. Closer examination reveals a
well-defined gap, as highlighted in the top right inset of
Fig. 1(b)—this is the PG gap.
To determine the PG gap quantitatively, we consider a

cut of the structure factor at k ¼ 0, i.e., Sð0;ωÞ. As the PG
gap is much smaller than the bandwidth of the spectrum
[see Fig. 1(b)], a significantly higher frequency resolution
is required to accurately compute the gap [59], so a much
longer integration time window is necessary. Cuts, Sð0;ωÞ,
for several temperatures are presented in Fig. 1(c), with
the peak location indicating the PG gap (see SM [59]).
The temperature dependence of Δ is shown in Fig. 2. The
leading contribution to the PG gap scales as the square root
of temperature, vanishing as T → 0, being well described
by the fit Δ ∼ 2.46

ffiffiffiffi
T

p
.

The thermal broadening of the spectrum induces a finite
width to all excitations, including the PG mode. The PG
mode linewidth, Γ, can be obtained from the full-width at
half maximum of Sð0;ωÞ [see Fig. 1(c)] as a function of
temperature. The inset in Fig. 2 shows that Γ ∝ T2 at low
temperatures (see SM [59]). Since Γ ≪ Δ as T → 0, this
PG mode is well defined.
Spin-wave analysis.—The simulations reveal that the

system displays LRO and hosts a PG excitation, where the
PG gap and linewidth scale with temperature as

ffiffiffiffi
T

p
and T2,

respectively. To understand how these scaling laws arise,
we consider a spin-wave analysis about the ordered
state [60]. Since tackling spin-wave interactions is difficult
within a purely classical approach [77–79], we follow the
more widely used and computationally convenient quan-
tum spin-wave analysis [61,62,80], taking the classical
limit only at the end.
We first discuss the spectrum and state selection due to

ObTD in linear spin-wave theory (LSWT). Expanding about a
classical ground state (parametrized by ϕ) using the Holstein-
Primakoff (HP) transformation [60], we obtain to OðSÞ

H
2
¼

X
k

�
A
k
a†
k
a
k
þ 1

2!
ðB

k
a†
k
a†−k þ H:c:Þ

�
; ð3Þ

where ak denotes the bosonic annihilation operator at
wave vector k, and Ak and Bk depend on ϕ, J, and K
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(see SM [59]). H2 in Eq. (3) can be diagonalized by a
Bogoliubov transformation [60], giving spin-wave energies

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
k − B2

k

q
.As the spectrumdependson thegroundstate

angle ϕ, fluctuations can lift the accidental classical degen-
eracy. To examine state selection due to ObTD,
we search for the ground states for which the free energy is
minimal. Starting with the quantum free energy FQ ¼
1
2

P
k
ωk þ T

P
k
ln ð1 − e−ωk=TÞ, the classical limit, T ≫ ωk

yields FQ → F ¼ T
P

k
lnωk [81]. This classical free energy

has four minima at ϕ ¼ 0, π=2, π, 3π=2—establishing
selection by ObTD, in agreement with the MC results.
Within LSWT, quantum and classical calculations give

the same spectrum, ωk [22]. This spectrum, calculated
about ϕ ¼ 0, exhibits a gapless mode at k ¼ 0 as shown in
Fig. 1(d). To obtain a PG gap, spin-wave interactions must
be included, as we next discuss.
Interacting spin waves.—Performing the HP expansion

to next order in 1=S, the LSWT Hamiltonian [Eq. (3)] is
augmented by interaction terms. Three-boson interactions
are absent due to a C2 symmetry about the ordering

direction, leaving only terms quartic in the bosons at
OðS0Þ (see SM [59]). To treat this interacting problem,
we adopt a mean-field approach [61,62], decoupling the
quartic terms into products of quadratic terms and thermal
averages of two-boson operators. Following this procedure,
the new effective quadratic Hamiltonian mirrors Eq. (3), but
with Ak and Bk replaced with (Ak þ δAk) and (Bk þ δBk).
These corrections are

δAk ¼
1

N

X
q

�
Vk;q;0ha†qaqi þ

1

2
ðDq;−q;kha†qa†−qi þ c:c:Þ

�
;

δBk ¼
1

N

X
q

�
Dk;−k;qha†qaqi þ

1

2
Vq;−q;k−qhaqa−qi

�
; ð4Þ

where Vk1;k2;k3
and Dk1;k2;k3

are the coefficients for the 2-2

and 3–1 magnon scattering terms atOðS0Þ [59], and h� � �i is
a thermal average. When these averages are computed
using LSWT [Eq. (3)], the corrections [Eq. (4)] reproduce
the results obtained from leading order perturbation

FIG. 1. (a) Probability distribution, PðϕÞ, of the angle, ϕ, characterizing the direction of the net magnetization obtained using MC
simulations with K ¼ 5 at T ¼ 0.4 for several system sizes L. Because of C4 symmetry, PðϕÞ is shown for ϕ ∈ ½−π=4; π=4�.
(b) Dynamical structure factor, Sðk;ωÞ obtained from spin-dynamics simulations for L ¼ 100 with K ¼ 5 at T ¼ 0.4 along a path
through the Brillouin zone (see left inset). The overall intensity is arbitrary. (Right inset) Spectrum near ½00� showing the PG gap [75].
(c) Dynamical structure factor at k ¼ 0, Sð0;ωÞ, obtained from spin-dynamics simulations for L ¼ 40 at various temperatures with
K ¼ 5. As above, the overall intensity is arbitrary. (d) Excitation spectrum along the same path as in panel (b) from the LSWT, SCMFT,
and spin-dynamics simulations with K ¼ 5 for L ¼ 100 at T ¼ 0.4. The spin-dynamics spectrum tracks the frequencies of maximum of
Sðk;ωÞ. The inset highlights a small region near ½00�, showing the PG mode.
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theory [63,64]. However, because of the gapless mode,
these δAk and δBk individually diverge in the (T ≫ ωk)
classical limit and perturbation theory breaks down [59].
To resolve these divergences, we compute the averages

in Eq. (4) using SCMFT, obtaining a renormalized spec-
trum Ωk (see SM [59]). Explicitly, ha†kaki and haka−ki are,
classically, computed self-consistently (until convergence)
using Eq. (4) and

ha†kaki¼
TðAkþδAkÞ

Ω2
k

; haka−ki¼−
TðBkþδBkÞ

Ω2
k

; ð5Þ

where Ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAk þ δAkÞ2 − ðBk þ δBkÞ2

p
and haka−ki ¼

ha†ka†−ki.
The SCMFT spectrum Ωk, plotted in Fig. 1(d), exhibits a

clear gap at k ¼ 0. The PG mode, gapless in LSWT, has
now become gapped due to magnon-magnon interactions.
Excellent agreement between the spectra from SCMFT
and spin-dynamics simulations is observed across the full
Brillouin zone [see Fig. 1(d)]. The temperature depend-
ences of Δ from these two approaches in Fig. 2 agree
quantitatively, with the same

ffiffiffiffi
T

p
scaling as T → 0. This is

a key result of this Letter, establishing a clear spectral
signature of ObTD.
While the SCMFT is successful in describing the

excitation energies, it does not address thermal broadening,
since δAk and δBk are real, giving an infinite magnon
lifetime. To obtain a finite linewidth, perturbation theory
must be carried out to higher order. We expect that δA0 ≡
δAk¼0 and δB0 ≡ δBk¼0, interpreted as contributions

to the magnon self-energy [59], can be expanded in T as
δA0 ¼ a1T þ a2T2 þ � � � and δB0 ¼ b1T þ b2T2 þ � � �.
Since jA0j ¼ jB0j, reflecting the gapless LSWT spectrum,
and a1, b1 [the OðTÞ corrections in Eq. (4)] are real;
any imaginary part, and thus finite lifetime, must arise
from a2 or b2. Expanding Ω0 ≡Ωk¼0 in T yields ImΩ0 ≈
ðIm a2ÞT2 þ � � � (see SM [59]). The real part, ReΩ0,
maintains its leading

ffiffiffiffi
T

p
dependence (providing the PG

gap) while ImΩ0, giving the linewidth, displays a leading
T2 dependence, consistent with the simulation results (see
inset of Fig. 2).
Effective description.—We now present an effective

description capturing the key aspects of the PG mode in
a significantly simpler language and with broader appli-
cability, adapting an approach previously formulated for
order by quantum disorder (ObQD) [65]. We consider
small uniform deviations (i.e., at k ¼ 0) from a classical
ground state (say ϕ ¼ 0) with Sr ≈ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ2 − θ2

p
;ϕ; θÞ,

accurate to quadratic order in ϕ and θ, where ϕ is the soft
mode and θ its conjugate momentum. For small ϕ and θ,
ϕ ≈ ð1=NÞPr S

y
r and θ ≈ ð1=NÞPr S

z
r , with Poisson

bracket fϕ; θg ¼ 1=N, obtained from the canonical relation
fSyr ; Szr0 g ¼ δr;r0S

x
r ≈ δr;r0 (taking Sxr ≈ 1 as x̂ is the ordered

moment direction). For this configuration, we define an
effective free energy Feffðθ;ϕÞ ¼ EclðθÞ − TSðϕÞ, where
EclðθÞ is the classical energy cost of nonzero θ and SðϕÞ ¼
−
P

k lnωkðϕÞ is the entropy. For small θ and ϕ, Feff can be

expanded as Feff ≈ 1
2
NðCθθ

2 þ Cϕϕ
2Þ, where Cθ ¼

ð∂2Feff=∂θ
2Þ=N ¼ 2K and Cϕ ¼ ð∂2Feff=∂ϕ

2Þ=N. Taking
Feff as an effective Hamiltonian, the equations of motion
[82] for θ and ϕ are

∂ϕ

∂t
¼þ 1

N
∂Feff

∂θ
¼þCθθ;

∂θ

∂t
¼−

1

N
∂Feff

∂ϕ
¼−Cϕϕ; ð6Þ

describing a harmonic oscillator. We identify the PG gap as
its frequency, Δ ¼ ffiffiffiffiffiffiffiffiffiffiffi

CθCϕ

p
. Remarkably, the

ffiffiffiffi
T

p
depend-

ence of the PG gap is recovered, since Cϕ isOðTÞ and Cθ is
Oð1Þ. The curvature Cϕ can be calculated from −TSðϕÞ
within LSWT, yielding a frequency 2.461 47

ffiffiffiffi
T

p
for

K ¼ 5—exactly the PG gap found in SCMFT as T → 0
and in agreement with the spin-dynamics simulations
(see Fig. 2).
While formulated for the Heisenberg-compass model,

this line of argument can be deployed to obtain the PG gap
for any spin model exhibiting ObTD. A proof of this
statement, following the strategy of Ref. [65], will be
reported elsewhere [83]. For type-I PG modes (ω ∝ jkj, as
in the Heisenberg-compass model we consider here), Cθ is
T independent and Cϕ ∼OðTÞ, givingΔ ∝

ffiffiffiffi
T

p
. For type-II

PG modes (ω ∝ jkj2, e.g., in the ferromagnetic Heisenberg-
compass model on the cubic lattice [65]), both θ and ϕ are
soft modes with both thus giving entropic contributions to

FIG. 2. Pseudo-Goldstone gap, Δ, as a function of temperature
from spin-dynamics simulations with K ¼ 5. The data are
well described by the fit Δ ¼ 2.462 42

ffiffiffiffi
T

p
− 3.219 07 T3=2. The

SCMFT gap agrees with it quantitatively and provides the asymp-
totic T → 0 scaling, 2.461 47

ffiffiffiffi
T

p
. The asymptotic limit of the

SCMFT gap is obtained from a calculation at a fixed low temper-
atureT ¼ 0.001. Inset: linewidth of thePGmode,Γ, as a functionof
temperature fromspin-dynamics simulations. It iswell describedby
the fit, Γ ¼ 0.709 286 T2 − 0.329 751 T3. All data have been
extrapolated in the system size to the thermodynamic limit [59].
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the free energy, leading to Cθ ∼OðTÞ, Cϕ ∼OðTÞ and
thus Δ ∝ T.
Consequences of quasi-infrared-divergent fluctuations.—

The ability to obtain the PG gap from LSWT presents a
puzzle: the perturbative corrections δA0 and δB0 diverge
logarithmically with system size [56], just as in the Mermin-
Wagner-Hohenberg theorem [57,58]. How then do the
curvatures of Feff avoid these singularities and give the
correct scaling? An analysis of the infrared divergences
[59] shows that while δA0 and δB0 are each singular,
δA0 þ δB0, which determines the leading contribution to
the PG gap, is finite and reproduces the result from Eq. (6).
However, divergences in higher order terms do not cancel,
and must be cured self-consistently [59].
While the divergences are mostly benign within pertur-

bation theory for the PG gap calculations, they appear more
dramatically in other quantities [84], like the magnetiza-
tion, M ¼ 1 − ð1=NÞP

k
ha†kaki. Here, the thermal popu-

lation, ha†kaki diverges in LSWT, rendering SCMFT
necessary to obtain meaningful results. In SCMFT, the
PG gap provides an infrared cutoff l ∼ 1=Δ ∝ 1=

ffiffiffiffi
T

p
,

giving a logarithmic contribution to M scaling as
∝ T lnT as T → 0 [59]. The presence of this term can
be diagnosed from ∂M=∂T, which exhibits a logarithmic
singularity as T → 0 for both the MC simulations and
SCMFT (see Fig. 3).
Outlook.—Our analysis of the PG gap will provide

a deeper understanding of real materials exhibiting ObD.
The existence of PG modes has been used to diagnose
ObD, for example in the compounds Fe2Ca3ðGeO4Þ3 [34],
Sr2Cu3O4Cl2 [35], and Er2Ti2O7 [36,41,85]. In such
materials, the ObQD gap likely dominates the ObTD-
induced gap discussed in this Letter. However, in systems

where the effect of ObQD is weak or the degrees of
freedom are sufficiently classical, ObTD can resurface as
the leading selection effect. For example, our results
may shed light on the rapidly growing family of two-
dimensional van der Waals (vdW) ferromagnets [86–88]
where the ObQD gap is expected to be small and thus the
contribution to the gap caused by thermal fluctuations may
be more significant. Additionally, while reaching the
classical (ObTD) selection regime is challenging in mag-
netic materials (due to small spin length S), it may be more
accessible in other platforms such as those involving lattice
vibrations [89,90], dipole-coupled nanoconfined molecular
rotors [91–94] or artificial mesoscale magnetic crystals
[95–98]. Whether ObTD can be realized in such topical
systems, and how to detect the temperature dependent PG
gap, are open questions. Our approach provides a theo-
retical framework and guidance for future experimental
studies in this promising area of research.
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