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Two-dimensional van der Waals heterostructures can be engineered into artificial superlattices that host
flat bands with significant Berry curvature and provide a favorable environment for the emergence of novel
electron dynamics. In particular, the Berry curvature can induce an oscillating trajectory of an electron
wave packet transverse to an applied static electric field. Though analogous to Bloch oscillations, this novel
oscillatory behavior is driven entirely by quantum geometry in momentum space instead of band
dispersion. While the current from Bloch oscillations can be localized by increasing field strength, the
current from the geometric orbits saturates to a nonzero plateau in the strong-field limit. In nonmagnetic
materials, the geometric oscillations are even under inversion of the applied field, whereas the Bloch
oscillations are odd, a property that can be used to distinguish these two coexisting effects.

DOI: 10.1103/PhysRevLett.130.266601

Stacking or patterning atomically thin two-dimensional
materials can produce translationally ordered artificial
crystals with superlattice periods that greatly exceed the
atomic scale [1–3]. This introduces two new generic
features into their electronic behavior. First, the electronic
energy bands fracture into spectrally isolated miniband
manifolds that disperse weakly across a compressed
Brillouin zone [4–8]. It was recognized decades ago that
this feature provides a favorable environment for Bloch
oscillations in quasi-one-dimensional semiconductor
superlattices [9–13]. These Bloch oscillations originate
from band dispersion and are a prototypical signature of
quantum electron dynamics whereby a static applied
electric field induces an oscillating current [14,15].
Inspired by recent progress in twistronic research, it has
been suggested that analogous two-dimensional Bloch
oscillations might be observable in moiré materials as well
[16,17]. Second, moiré minibands can be manipulated to
produce momentum-space band inversions where the
orbital character of neighboring multiplets exchanges
[18–22]. This introduces a fundamentally different type
of oscillation driven by quantum geometry encoded in the
momentum-space Berry curvature with important conse-
quences for transport. Unlike Bloch oscillations, these
geometric oscillations do not exist in one dimension,
and are especially relevant to modern topological moiré
materials.
In this Letter, we elucidate the characteristics of these

geometric oscillations in nonmagnetic crystals both in the
semiclassical description and in the Wannier-Stark frame-
work. We find that the frequencies for both Bloch and
geometric oscillations share the same dependence on the
applied field. However, the sizes and shapes of the orbits
are drastically different in the two cases. For the conven-
tional Bloch oscillations, the direction depends sensitively
on the orientation of the applied field relative to the

symmetry axes of the crystal, and the amplitude decays
inversely proportionally to the field magnitude. On the
other hand, the geometric oscillations always propagate
transverse to the applied field, and their amplitudes are
characteristically independent of the electric field magni-
tude. In ultracold optical lattices, the geometric influence
on wave packet dynamics has already been used to map the
Berry curvature [23,24]. However, in solid-state media,
directly measuring wave packet dynamics is difficult; thus,
we focus on transport signatures instead. In transport, the
incompressibility of geometric orbits translates to a generic
finite residual drift Hall current at strong fields, in stark
contrast to the vanishing drift current originating from
Bloch oscillations due to Wannier-Stark localization
[25–29]. Thus, the diagnostic of Bloch oscillations via
measuring negative differential conductance breaks down
for the geometric oscillations [30]. Instead, the signature of
geometric oscillations is a saturation of the drift Hall
currents as field strength increases. Furthermore, the drift
currents from Bloch oscillations change sign when the
applied field is inverted, while the drift currents from
geometric oscillations are invariant under field inversion, a
property that allows these two currents to be distinguished
when they coexist. This property was also noted in
Ref. [23]. In addition to being a fascinating demonstration
of the quantum geometric nature of electrons in crystalline
solids, observing these geometric oscillations would be an
important step toward the ambitious goal of eventually
deploying these oscillatory currents as radiation sources.
We start with the dynamics of a wave packet in an

isolated nth band governed by the semiclassical equations
[31–33]

ℏ _k ¼ −eE; ℏ_rn ¼ ∇kεn;k þ ℏ _k ×Ωn;k; ð1Þ
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where εn;k and Ωn;k ¼ Ωn;kêz are the band dispersion and
Berry curvature. Both of these functions are real and
k-periodic, and thus can be expanded in Fourier series
εn;k ¼ P

ai e
iai·kε̃n;ai and Ωn;k ¼ P

ai e
iai·kΩ̃n;ai , and ai is

a lattice translation vector. Integrating _rn with respect to t,
we obtain three distinct contributions:

rdriftðtÞ ¼
t
ℏ

X
ai·E¼0

eiai·k0 ½iaiε̃n;ai − eE × Ω̃n;ai �;

rBlochðtÞ ¼
X
ai·E≠0

eiai·k0 ½1 − e−ieai·Et=ℏ� aiε̃n;ai
eai ·E

;

rgeomðtÞ ¼ i
X
ai·E≠0

eiai·k0 ½1 − e−ieai·Et=ℏ�E × Ω̃n;ai

ai ·E
: ð2Þ

The drift term includes a topological contribution that
is directly proportional to the Chern number C ¼R ðd2k=2πÞΩnðkÞ ∝ Ω̃n;0. Thus, it makes sense that this
term is a constant drift instead of an oscillation, because it
transports electrons from one edge to another. All the other
terms in rdriftðtÞ occur along lines where the electric field is
perpendicular to a lattice vector ai. This is because these
components experience no acceleration due to the electric
field, and thus their contributions to the velocity are
constant. The Bloch oscillating term rBlochðtÞ is caused
by the usual band dispersion. In general, it has a compli-
cated directional dependence. The crystal momentum
monotonically traces out a straight path in k along the
direction of E. At each k point, the velocity points along
the direction of the gradient of the dispersion. The
amplitude of these orbits diverges as E−1. That is, at weak
field strengths, the amplitude is macroscopic, much larger
than the mean free path. So a scattering event likely occurs
before an electron has time to execute a complete orbit,
making Bloch oscillations notoriously difficult to observe.
In contrast, the geometric term rgeomðtÞ has a simple
directional dependence, pointing always orthogonally to
E. The amplitude of this term is characteristically inde-
pendent of the magnitude of E. Meanwhile, the oscillation
frequency increases with E. In what follows, we will ignore
the drift contributions and focus entirely on the oscillatory
behavior.
The consequences of geometric oscillations can be

interrogated from a complementary perspective using the
Wannier-Stark formalism [14,34–37], which offers real-
space insights absent in the semiclassical description. We
begin with a tight-binding lattice that contains σ atomic
orbitals located at τσ within a unit cell, denoted by jAai;σi,
and an electric field E. These orbitals are assumed to
be site-localized such that the position operator r̂ is
diagonal in this basis. In momentum space with jφk;σi ¼
N −1

2

P
ai jAai;σieik·ðaiþτσÞ, where N is the number of unit

cells, the Hamiltonian is [38,39]

Ĥ ¼
X
k;σ0;σ

jφk;σ0 i½Hσ0;σ
0 ðkÞ þ iδσ0;σeE ·∇k�hφk;σj; ð3Þ

where Hσ0;σ
0 ðkÞ ¼ P

ai e
ik·ðaiþτσ−τσ0 ÞhA0;σ0 jĤ0jAai;σi, and

Ĥ0 is the Hamiltonian without electric field. The gradient
acts to the right. We now project this Hamiltonian to an
isolated energy band of interest with eigenstates jψki and
energies εk satisfying H0ðkÞχk ¼ εkχk and jψki ¼P

σ χk;σjφk;σi. The band index is implicit. This band
projection is permissible when there at least exist sizable
gaps between the band of interest and other energy bands so
that Zener tunneling can be neglected [40]. We find [41–43]

Ĥeff ¼
X
k

jψki½εk þ eE ·Ak þ ieE ·∇k�hψkj; ð4Þ

where Ak ¼ iχ†k∇kχk is the Berry connection. For the
Berry connection to be well defined, χk must be differ-
entiable, which can always be chosen for Chern-trivial
bands; we assume this throughout, since the absence of a
Chern number actually makes the oscillatory behavior
clearer. Also, although the Berry connection is not gauge
invariant, we will demonstrate that the results are indeed
gauge invariant.
The single-band effective Hamiltonian in Eq. (4) can be

diagonalized exactly by solving the partial differential
equation EΨk ¼ ½εk þ eE ·Ak þ ieE ·∇k�Ψk. Requiring
Ψk ¼ ΨkþG, we can write Ψk ¼ P

ai e
ik·aiΨ̃ai and find that

the eigenvalue problem can be cast in the form of a matrix
equation:

X
a0i

½ε̃ai−a0i þ eE · Ãai−a0i �Ψ̃a0i
− eE · aiΨ̃ai ¼ EΨ̃ai : ð5Þ

This is anN ×N matrix equationwithN eigenvalues. IfΨk

is an eigenstate with eigenvalue E, then Ψke−ik·ai is also
an eigenstate, not necessarily independent, with eigenvalue
E þ eE · ai. When E · ai ≠ 0 for any nonzero ai, then
a complete orthonormal set of solutions can be written
exactly as hψkjΨaii ¼ Ψk;ai ¼ N −1

2 exp ðiθk − ik · aiÞwith
energies Eai ¼ eE · ai þ ε̃0 þ eE · Ã0, where θk ¼P

ai≠0 ½ε̃ai þ eE · Ãai �½ieE · ai�−1eik·ai . It is clear that θk
is a real function. We observe that the energy levels form a
discrete ladder with spacing given by eai ·E; this is the two-
dimensional counterpart to the usual Wannier-Stark ladder
[14].TheBerryconnectionplaysno role in the relativespacing
between ladder rungs; it only affects the zero of energy,which
we can shift so that ai ¼ 0, E0 ¼ 0.
The wave function jΨaii is centered inside unit cell ai

with spatial spread hδr̂2i ¼ hr̂2i − hr̂i2 given by

hδr̂2i ¼ 1

N

X
k

ji∇kχk − χk∇kθkj2 −
1

N 2

����
X

k
Ak

����
2

: ð6Þ
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It is straightforward to check that this quantity is gauge
invariant under χk ↦ eiϑkχk, which must be the case, since
energy eigenstates should have a well-defined probability
density. For a one-band model, χk ¼ 1; so the width of
jΨaii is controlled by j

P
k ∇kθkj2, which vanishes as E−2,

since θk only depends on the energy dispersion in this case.
Therefore, in a one-band model, the wave function
becomes completely spatially localized in the strong-field
limit, leading to Stark-Wannier localization. In a many-
band model, the Berry connection obstructs this localiza-
tion. In the large-E limit, the energy eigenstates can retain a
finite E-independent width. As argued in Ref. [44], this
means that with the Berry connection, the matrix elements
of the current operator between adjacent eigenstates need
not vanish in the large-field limit, leading to a residual
current in that regime.
A connection to the semiclassical description can be

found by studying the dynamics of a wave packet initially
localized at aj and centered around crystal momentum k0:

jϕaj;k0
i ¼ 1

A

X
ai

exp

�
ik0 · ai −

jai − ajj2
2a2

�
jWaii; ð7Þ

where a is the spatial width of the wave packet, assumed
to be larger than the lattice spacing to make the
theory analytically controlled, A ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
πa2=V

p
, and jWaii ¼

ð1=
ffiffiffiffiffi
N

p
ÞPk e

−ik·ai jψki are band-projected exponentially
localized Wannier functions. To calculate time evolution,
we need ÛðtÞ ¼ P

ai jΨaiihΨai je−ieE·ait=ℏ, which has the
matrix elements

hWa0i
jÛðtÞjWaii ¼

1

N

X
k

eiθkðtÞ−iθkþikðtÞ·a0i−ik·ai ; ð8Þ

where kðtÞ ¼ k − eEt=ℏ, which reproduces the acceler-
ation theorem requiring k ↦ k − eEt=ℏ. We calculate the
time evolution of the position operator hr̂ðtÞi expanded in
the Wannier basis [45]:

hr̂ðtÞi ¼
X
a0i;a

00
i

hϕaj;k0
jÛ†ðtÞjWa0i

i

× hWa0i jr̂jWa00i ihWa00i jÛðtÞjϕaj;k0
i;

hWa0i
jr̂jWa00i

i ¼ 1

N

X
k

Akeik·ða
0
i−a

00
i Þ þ a00i δa0i;a00i : ð9Þ

Then, differentiating ∂thr̂ðtÞi, we find

ℏ
dhr̂ðtÞi
dt

¼ ∇kεkðtÞ − eE ×ΩkðtÞ; ð10Þ

which recovers exactly Eq. (1).
We now assess the consequences of Bloch and geometric

oscillations on transport properties. To do this, we use the
steady-state Boltzmann equation to find the occupation

function fk ¼ P
ai ð1 − ieE · aiτ=ℏÞ−1f̃0aieik·ai from the

equilibrium occupation f0k ¼ P
ai f̃

0
ai e

ik·ai , where τ is
the relaxation time, which we assume is a constant
[16,46,47]. We find two distinct regimes:

fk ≈ f0k þ eτ
ℏ
E ·∇kf0k ð11Þ

for small E, and

fk ≈
X

E·ai¼0

f̃0aie
ik·ai þ iℏ

eτ

X
E·ai≠0

ðE · aiÞ−1f̃0aieik·ai ð12Þ

for large E. The steady-state drift currents are given
by JBloch ¼ −ðe=ℏÞ R ½d2k=ð2πÞ2�fk∇kεk and Jgeom ¼
ðe2=ℏÞ R ½d2k=ð2πÞ2�E × ðfkΩkÞ. Assuming time-reversal
symmetry in the absence of an external field throughout
this work, we have f0k ¼ f0−k and f̃0ai ¼ f̃0−ai . Using this,
we see that the first terms in Eqs. (11) and (12) are even
under time reversal, while the second terms are odd. Since
both∇kεk andΩk are odd under time reversal, only the odd
components of the occupation function contribute to the
current density. We observe further that the T -odd com-
ponents of fk are also odd underE ↦ −E in both the small
and large field limits. This means that JBloch is generically
odd under E-inversion, while Jgeom is even under
E-inversion in these two regimes. This symmetry property
was also found by the authors of Ref. [23]. In steady state,
the currents are time independent, so Bloch and geometric
oscillations do not manifest explicitly; instead, their effects
show up in the scaling behaviors of these currents [48].
In the small-field limit, at lowest order, jJBlochj scales as

E ¼ jEj; this is the usual Drude regime where current
varies linearly with applied voltage. On the other hand,
jJgeomj scales as E2 at small fields because the occupation
function contributes one factor of E, and the curvature-
induced velocity contributes another. This is the conven-
tional second-order nonlinear Hall effect [49,50]. If
symmetry forbids the second-order signal, then the non-
linear Hall effect is generically activated at higher orders in
E. Regardless, this small-E regime contains no information
about the oscillatory behavior predicted by the semiclass-
ical equations. To observe such an oscillation, we must go
to the large-field regime, where the scaling behavior is
completely different. Here, we have

JBloch ≈ −
i
τ

X
E·ai≠0

f̃0ai

Z
d2k
ð2πÞ2

∇kεk
E · ai

eik·ai ;

Jgeom ≈
ie
τ

X
E·ai≠0

f̃0ai

Z
d2k
ð2πÞ2

êE ×Ωk

êE · ai
eik·ai ; ð13Þ

where êE ¼ E=E. JBloch decays as E−1. On the other hand,
Jgeom generically reaches a constant residual current density
that is independent of E. If this residual current is nonzero,
it means that complete Wannier-Stark localization is
impossible, since the current does not vanish in large E.
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Therefore, a signature of geometric quantum oscillations is
vanishing differential Hall conductance in the infinite-E
limit. This is the geometric analog to negative longitudinal
differential conductance that is believed to give an unam-
biguous signature of the usual Bloch oscillations
[30,44,51]. When E crosses over from the regime of
quadratically amplified Jgeom to the regime of constant
Jgeom, this can be accompanied by a region in E space
where negative differential Hall conductance is observed,
although this is not guaranteed in general.
The physics discussed above can be illustrated using

a simple model with energy dispersion εðkÞ ¼
ε0
P

3
i¼1 cos ðk · aiÞ and Berry curvature ΩðkÞ ¼

Ω0êz
P

3
i¼1 sin ðk · aiÞ, where a1 ¼ L½− 1

2
; ð ffiffiffi

3
p

=2Þ�,
a2 ¼ Lð1; 0Þ, and a3 ¼ −a1 − a2. As shown in Figs. 1(a)
and 1(b), thismodel respects time-reversal symmetry aswell
as threefold rotation symmetry; the Berry curvature is even
(odd) under mirror exchange about the x axis (y axis). It
importantly breaks inversion symmetry, because otherwise,
in combination with time-reversal symmetry, the Berry
curvature would be required to vanish. From a symmetry
point of view, this model is equivalent to monolayer
graphenewith a sublattice staggeredpotential. If oneprojects
to the valence or conduction band in that system and keeps
only the first star of Fourier harmonics in the energy
dispersion andBerry curvature, onewould obtain the present
toy model.
Applying an electric field along the x direction, we find

that JBloch points entirely along E, with a magnitude that

first increases linearly with E, peaks around eELτ=ℏ ≈ 1,
and then monotonically decreases with further increases in
E, as shown in Fig. 1(c). On the other hand, Jgeom is aligned
orthogonally to E with a magnitude that increases rapidly
as a nonlinear power law at smallE, then changes concavity
and approaches asymptotically a constant limit at large E,
as shown in Fig. 1(d). Next, we assess the dependence of
the currents on the direction of E, which we write as
E ¼ E cos θêx þ E sin θêy . We decompose JBloch ¼
JkBlochêE þ J⊥Blochêz × êE and Jgeom ¼ Jgeomêz × êE. For

a general θ, both JkBloch and J⊥Bloch are nonzero at small
E and decay to zero at large E, as shown in Figs. 2(a)–2(d).
However, the crossover from the small-E to the large-E
regimes is only weakly dependent on θ for JkBloch, while
J⊥Bloch features strong anisotropy in this crossover behavior.
Jgeom also features strong anisotropy; the residual current at

FIG. 1. Bloch and geometric oscillations in model system. (a),
(b) Band structure and Berry curvature of model system defined
in the text. This system respects T symmetry and C3z rotation
symmetry. The Berry curvature is even (odd) under My (Mx)
mirror exchange. (c) JBloch ¼ Jêx as a function of applied electric
field E ¼ Eêx for various values of the chemical potential. The
onset of negative differential conductance occurs around E ≈ 1.
(d) Jgeom ¼ Jêy as a function of the applied electric field E ¼
Eêx for various values of the chemical potential. In this case,
there is no negative differential conductance; instead, the current
plateaus at some finite value for large E.

FIG. 2. Angular anisotropy of currents. Polar plots of the
magnitudes (a) jJkBlochj, (c) jJ⊥Blochj, and (e) jJgeomj with the angle
coordinate corresponding to the angle of E, the radius coordinate
corresponding to the current magnitude, and color corresponding

to the magnitude of E. Line plots showing (b) JkBloch, (d) J
⊥
Bloch,

and (f) Jgeom as functions of E for different values of

0° ≤ θ ≤ 60°. While JkBloch is only weakly dependent on θ, the
transverse currents J⊥Bloch and Jgeom feature strong angular
anisotropy. However, J⊥Bloch is even under E-inversion, while
Jgeom is odd under E-inversion.
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large E diverges near 30°, 90°, 150°, 210°, 270°, and 330°.
The two transverse currents are distinguishable by their
behavior underE-inversion; J⊥Bloch is even underE-inversion,
while Jgeom is odd under E-inversion [52].
To observe geometric oscillations, at least three require-

ments must be met: (i) the lattice constant must be large
enough that the onset of geometric oscillations eELτ=ℏ > 1
can be achieved with reasonable field strengths; (ii) the
bandwidth must be small enough compared to the band gaps
that Zener tunneling can be neglected, eEL ≪ E2

gap=Ewidth

[47]; and (iii) the bands of interest must carry significant
Berry curvature. All of these requirements can be met with
superlattice materials that host flat bands. For example,
twisted bilayer graphene aligned on hexagonal boron nitride,
which induces a σz mass on the bottom graphene layer of
about 30 meV [53–55], is a promising candidate. At θ ¼
1.0° with L ≈ 140 Å, each valley carries a Chern band with
C ¼ �1 and E2

gap=Ewidth ≈ 5.5 meV. For a typical relaxation
time of 1 ps [56], the onset of geometric oscillations requires
E ≈ 0.5 kV=cm, which is both experimentally feasible and
well below the Zener limit. Beyond twisted bilayer graphene,
the many recently discovered twistronic materials are
promising candidates. For example, it is possible to increase
the valley Chern number in graphene-based flat bands by
stacking more layers, which would enhance the nonlinear
Hall current [57–61]. At small fields, the second-order
nonlinear Hall effect has already been observed in twisted
bilayer and double bilayer graphene [62–64]. It is reasonable
to speculate that at larger fields, the onset of geometric
oscillations might be observable in these platforms.
In closing, we comment on several possible extensions.

Of immediate relevance is augmenting the present dis-
cussion to include Zener tunneling, in which Berry phase
effects are known to appear [65,66]. It would also be
interesting to consider the signatures of geometric oscil-
lations in experimental probes beyond transport measure-
ments, such as in optical setups [10,67]. Finally, Bloch
oscillations have been extensively studied both experimen-
tally and theoretically in non-solid-state media, including
in cold-atoms systems [68] and in photonic waveguides
[69–72]. Perhaps these platforms can also host geometric
oscillations once the right ingredients have been added to
proliferate the Berry curvature.
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