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The fermion disorder operator has been shown to reveal the entanglement information in 1D Luttinger
liquids and 2D free and interacting Fermi and non-Fermi liquids emerging at quantum critical points
(QCPs) [W. Jiang et al., arXiv:2209.07103]. Here we study, by means of large-scale quantum Monte Carlo
simulation, the scaling behavior of the disorder operator in correlated Dirac systems. We first demonstrate
the logarithmic scaling behavior of the disorder operator at the Gross-Neveu (GN) chiral Ising and
Heisenberg QCPs, where consistent conformal field theory (CFT) content of the GN-QCP in its coefficient
is found. Then we study a 2D monopole-free deconfined quantum critical point (DQCP) realized between a
quantum-spin Hall insulator and a superconductor. Our data point to negative values of the logarithmic
coefficients such that the DQCP does not correspond to a unitary CFT. Density matrix renormalization
group calculations of the disorder operator on a 1D DQCP model also detect emergent continuous
symmetries.
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Introduction and motivation.—Entanglement witnesses
can reveal the fundamental organizing principle of many-
body systems. One such witness is the disorder operator
[1–4], which hinges on symmetry properties of a system,
such as spin rotational invariance or charge conservation.
It is an equal-time observable with no need for a replica
manifold and is easily accessible to auxiliary field
determinantal quantum Monte Carlo (DQMC) simulations
[5–7]. For a given system with a U(1) global symmetry,
with generator Q̂ ¼ P

i∈V n̂i, the disorder operator carries
out a rotation with angle θ in the entanglement region
M ⊂ V, i.e., XðθÞ ¼ hQi∈M exp ðiθn̂iÞi, as shown sche-
matically in Figs. 1(d) and 1(e). For states of matter
characterized by a finite length scale, such as a band insu-
lator, this rotation only effects the boundary, and generi-
cally an area law is expected. For scale invariant systems,
logarithmic corrections to the area law reveal criti-
cal behavior [8–11]. Furthermore, subleading corrections
reflect topological order [12]. In particular, at a (con-
formal) quantum critical point (QCP), when the boundary
of region M is not smooth, the scaling behavior of the
disorder operator—similar to that of the entanglement

entropy (EE)—acquires a logarithmic corner correction
term [13],

ln jXðθÞj ∼ −alþ sðθÞ ln lþ c: ð1Þ

While the area law coefficient a is sensitive to the UV
physics, the log coefficient sðθÞ is universal and reflects
the IR physics.
The above has an obvious overlap with the EE and

related entanglement spectrum (ES) [13,20–42]. Although
in some special cases both the nth order Rényi EE, i.e.,
−½1=ð1 − nÞ� ln TrðρnMÞ, where ρM ¼ TrM̄ρ is the reduced
density matrix, and the disorder operator produce identical
results, both quantities differ. Being symmetry based, the
disorder operator offers more possibilities such as the
detection of emergent symmetries. The aim of this Letter
is to investigate these possibilities for Dirac systems.
As mentioned above, the disorder operator and EEs are

different quantities, with the former formulated in terms of
a global symmetry of the model system and the latter
defined without any symmetry considerations. However,
their connections from an entanglement perspective can be
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established from two important limits of the disorder
operator. The first one is in the small angle limit θ → 0,
where the disorder operator can be mapped to bipartite
fluctuations − ln jXðθÞj ∝ θ2hðPi∈Mðn̂i − hn̂iiÞÞ2i [43]. In
the small θ limit, sðθÞ is proportional to the central charge
in the conformal field theory (CFT) critical point [8–11].
The second limit is for noninteracting systems [8,9]. For
fermions, the disorder operator at special angles maps onto
the Rényi EEs, for example S2 ¼ −2 ln jXðπ=2Þj and
S3 ¼ − ln jXð2π=3Þj. The general case can be found in
[8] and a similar relation holds for the free scalar theory [9].
Beyond the Gaussian limit, one needs to study the

disorder operator with numerical simulations. For boson-
spin and topologically ordered systems, it was shown that
the log coefficient reflects the CFT content of the QCP
[9,10] and the remaining constant reflects the topological
degeneracy [12]. Of special importance to this Letter is the
disorder operator of the 2D J-Q spin model [44] for the
deconfined QCP (DQCP) [45], where the log coefficient at
θ ¼ π is negative [11]. This finding, together with the
similar negative log coefficient in S2 [36], suggests that the
J-Q model realization of the DQCP may not be a unitary
CFT (or not a CFT at the first place) [41,46] and calls one
to reconsider DQCP related phenomena such as the emer-
gent symmetries [44,47], dangerously irrelevant operators

[48,49], weakly first-order transition [50–52], complex fixed
points, walking of scaling dimensions [53–55], multicriti-
calities [56], etc., and the physical mechanism behind them.
Hence, the question arises if the negative log coefficient

observed at the J-Q model realization of DQCP is a generic
feature or an artifact of the model. Therefore, it is of
importance to measure the disorder operator at other 2D
DQCP lattice models and also in 1D systems [18,19]. The
cleanest one present, without any difficulties or ambiguities
of the two length scale [48,49], is the model based on the
interacting Dirac fermions [14,57] with emergent SO(5)
symmetry from order parameter measurements, as shown in
Fig. 1(a) and Eq. (2). It is the focus of this Letter to compute
the disorder operator at this DQCP in large-scale DQMC
simulations.
Models and numerical settings.—We study the model

introduced in Ref. [14] with Hamiltonian

Ĥ ¼ −t
X
hiji

ðĉ†i ĉj þH:c:Þ− λ
X
⎔

� X
⟪i;j⟫∈⎔

iνijĉ
†
i σĉj þH:c:

�
2

;

ð2Þ

where h� � �i and ⟪ � � �⟫ refer to nearest and next-nearest
neighbors on the honeycomb lattice [as shown in Fig. 1(d)].
The phase diagram has been mapped out with DQMC
simulations [14,57,58], see Fig. 1(a). As a function of a
single parameter λ (with t ¼ 1 as the energy unit), the phase
diagram shows a Gross-Neveu (GN)-Heisenberg QCP at
λc1 ¼ 0.0187ð2Þ separating a Dirac semimetal (DSM) and a
quantum-spin Hall (QSH) insulator, and a DQCP at λc2 ¼
0.0332ð2Þ separating the QSH and s-wave superconductor
(SC). The key difference between Eq. (2) and the J-Q
model is the absence of monopoles. In the J-Q model, the
U(1) symmetry is emergent since the lattice breaks it
down to Z4. As a consequence, quadruple monopoles
are symmetry allowed, and a second length scale at which
the Z4 symmetry is enhanced to U(1) rotational symmetry
obscures the numerical analysis [48]. In the model (2), the
U(1) symmetry corresponds to charge conservation present
in the microscopic model [we note the same microscopic
U(1) symmetry also occurs in a closely related cubic dimer
model [59] ]. Although the computational complexity of
DQMC for Dirac fermions is much higher than that of the
stochastic series expansion QMC [44] for the J-Q model,
order parameter calculations support that SU(2) spin and
U(1) charge symmetries are enhanced to an emergent
SO(5) symmetry at this DQCP. As we shall see below,
we still find the nonunitary signature of the DQCP in this
model, similar to that of the J-Q model [11,36]. We also
find that the logarithmic corrections of disorder operators
appear to violate the emergent SO(5) symmetry.
To probe the U(1) charge and the SU(2) spin symmetries,

we consider the disorder operators

XcðθÞ ¼
�Y

i∈M
ein̂iθ

�
; XsðθÞ ¼

�Y
i∈M

eim̂
z
i θ

�
; ð3Þ

FIG. 1. (a)–(c) Schematic phase diagrams of the 2D DQCP
model in Eq. (2), the π-flux model, and the 1D DQCP model. The
2D DQCP model has three phases: DSM, QSH, and SC,
separated by two QCPs: GN-Heisenberg QCP at λc1 and DQCP
at λc2 [14]. For comparison, the π-flux model also possesses DSM
and QSH phases, separated by the GN-Ising QCP at hc [15–17].
The last one is a 1D model containing VBS and FM phases
separated by a DQCP, with ½Uð1Þ × Uð1Þ�⋊Z2 emergent sym-
metry [18,19]. (d),(e) Sketch of parallelogram entanglement
region M in the 2D DQCP model and square entanglement
region M in the π-flux model. a1 and a2 are unit vectors, and l1
and l2 are the linear lengths of M. We define the perimeter l ¼
2ðl1 þ l2Þ for both models, which is used to extract the scaling
behavior of the disorder operators.
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where n̂i ¼
P

σ ĉ
†
iσ ĉiσ and m̂z

i ¼
P

σ σĉ
†
iσ ĉiσ ¼ 2ŝzi are the

density and magnetization along the z quantization axis.
The operator products

Q
are performed in the region M

shown in Figs. 1(d) and 1(e). From the definitions in
Eq. (3), it easily follows that Xc=sðθÞ ¼ Xc=sðθ þ 2πÞ, and
XcðπÞ ¼ XsðπÞ. A more detailed derivation of the disorder
operator is presented in Sec. I of the Supplemental Material
[60]. We use the Algorithms for Lattice Fermions(ALF)
implementation [61] of the auxiliary field QMC algorithm
to study the microscopic model of Eq. (2) and consider
linear system sizes L ¼ 6, 9, 12, 15, 18 at β ¼ L.
To further study the GN-QCP and DQCP and for

comparisons, we consider two other interacting models.
For the GN-QCP, we study Dirac fermions based on the
π-flux square lattice with a fermion-spin coupling model
that triggers a GN-Ising QCP toward a QSH phase [15–17].
The phase diagram and the model are shown in Figs. 1(b)
and 1(e), respectively. The numerical results are shown in
Sec. III in the Supplemental Material [60].
In addition, we consider a 1D DQCP spin mo-

del [18,19] with the Hamiltonian written as follows:
Ĥ¼P

i ð−JxŜxi Ŝxiþ1−JzŜ
z
i Ŝ

z
iþ1ÞþðKxŜ

x
i Ŝ

x
iþ2þKzŜ

z
i Ŝ

z
iþ2Þ,

which describes a spin chain containing nearest neighbor
ferromagnetic interactions Jx, Jz and next-nearest neighbor
antiferromagnetic interactions Kx, Kz. The model pos-
sesses a discrete Zx

2 × Zz
2 symmetry. We fix Kx ¼ Kz ¼

1=2 and Jx ¼ 1, such that the zero temperature phase
diagram is described by only one parameter Jz, shown in
Fig. 1(c). The small and large Jz limits are valence-bond-
solid (VBS) and ferromagnetic (FM) phases, separated by a
DQCP located at Jc. The emergent symmetry here is
½Uð1Þ × Uð1Þ�⋊Z2. Previous infinite density matrix renor-
malization group (DMRG) simulations find Jc ¼ 1.4645
[18,19], and we compute the disorder operator with DMRG
to verify the presence of emergent continuous symmetry.
DSM.—First, we present the results in the DSM phase of

the model in Eq. (2). From the measured jXcðθÞj and
jXsðθÞj as a function of the perimeter l (see Sec. II of the
Supplemental Material [60]), one can fit the data with the
scaling form of Eq. (1) and extract the universal coefficients
sc=sðθÞ. The results are presented in Figs. 2(a) and 2(b). We
note that, when λ ¼ 0, there is an exact partial particle-hole
symmetry ĉ↑ → ĉ↑; ĉ↓ → ĉ†↓, under which n̂i → m̂z

i . It is
broken explicitly by the interaction term for λ ≠ 0.
Nevertheless, since the interaction is irrelevant in the
DSM phase, the symmetry is still present in the IR theory
(i.e., it is emergent), and therefore we expect that in the IR
ssðθÞ ¼ scðθÞ for all values of the angles throughout the
entire DSM phase. The result of the size extrapolation
ss=cðθÞ is shown in Fig. 2(g). Within our error bars we have
ssðθÞ ¼ scðθÞ and compare well with the free case (λ ¼ 0).
It is known at small angle limit θ → 0, sc=sðθÞ satisfies
the quadratic form sc=sðθÞ ¼ αc=sθ

2. The IR CFT gives
αc=s ¼ ðANσCJ;free=8π2Þ, where Nσ ¼ 2 is the spin flavor,

and A ≈ 1.30 is a constant determined by the shape
of the region [62] (see the Supplemental Material [60]
for more details on A). CJ is the current central charge of
the CFT. For the DSM phase, we have CJ;free ¼ 2 for free
Dirac fermions [63]. Extrapolation of αc=s is shown
in Fig. 3. We obtain αcð∞Þ ¼ 0.068ð24Þ in Fig. 3(a) and
αsð∞Þ ¼ 0.068ð31Þ in Fig. 3(b), fully consistent with the
theoretical expectation αc=s ≈ 0.066.
QSH and SC.—The scaling behavior of the disorder

operator in the QSH and SC phases is affected by the gap-
less Goldstone modes originating from continuous sym-
metry breaking. Our data for jXsðπ=2Þj and jXcðπ=2Þj can
be found in Sec. II of the Supplemental Material [60].
Given our system size, we find it challenging to distinguish
between additive ln l and multiplicative l ln l logarithmic
corrections. The latter is expected for Goldstone modes as
observed in the superfluid phase of the Bose-Hubbard
model [10].

(a) (b)

(c)

(e)

(g) (h)

(f)

(d)

FIG. 2. Logarithmic coefficient sc=sðθÞ in the scaling of the
disorder operator as a function of θ in DSM phase (a),(b); at the
GN-QCP at λc1 (c),(d); and at the DQCP λc2 (e),(f). Different lines
represent different system sizes L. The logarithmic coefficient
sc=sðθÞ extrapolated to the thermodynamic limit are presented at
(g) in the DSM phase and (h) at GN-Heisenberg QCP.
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DQCP.—There is a body of work suggesting emergent
SO(5) symmetry at theDQCP, λc2 ¼ 0.03315 [49,64], and it
is intriguing to study this from the point of view of the
disorder operator. To this aim, our model is unusual since
the U(1) symmetry is embedded as charge conservation and
is present at the UV scale [we note the same microscopic
U(1) symmetry also occurs in a closely related cubic dimer
model [59] ]. The conjectured emergent SO(5) symmetry at
the DQCP implies that the low energy theory is invariant
under SO(5) rotations of the superspin vector, consisting of
the two components of the superconducting order parameter
and the three components of the QSH one [65,66]. Since the
charge (spin) disorder operator of Eq. (3) rotates the
superconducting (QSH) order parameter by 2θ, one expects
ssðθÞ ¼ scðθÞ for all values of θ. In the small angle limit,
this results in αs ¼ αc, which stands at oddswith our results:
αcð∞Þ ¼ 0.11ð1Þ and αs ¼ 0.022ð63Þ, albeit with very
large error bars. Furthermore, at larger values of the angle,
ss=cðθÞ go negative and differ substantially. Negative values
of sc=sðθÞ suggest that the DQCP cannot be described by a
unitary CFT, it is a pseudo-critical point. Similar observa-
tions were made in the J-Q model, both in the spin disorder
operator [11] and entanglement entropy S2 [36].
GN transitions.—In contrast to the DQCP sc=sðθÞ at the

GN-Heisenberg transition remains positive in finite sys-
tems, as shown in Figs. 2(c) and 2(d), and after extra-
polation to the thermodynamic limit, shown in Fig. 2(h).
This confirms the well-established picture that the GN-
Heisenberg transition is described by a unitary CFT. For
the GN-Ising transition discussed in Sec. III of the
Supplemental Material [60], we find that the central charge
CJ is slightly reduced compared with that of the free DSM,
consistent with the field-theoretical prediction [67].
At the GN-Heisenberg critical point, partial particle-hole

symmetry is not present. This is illustrated by the fact that
scðθÞ ≠ ssðθÞ. Interestingly, our data seem to support the
relation scðθÞ ≃ ssðθ=2Þ.
1D DQCP.—As a final example, we study the 1D DQCP

model [18,19] of Fig. 1(c) with DMRG simulations. Our

aim is to further confirm that disorder operators follow the
predictions of the IR theory with emergent continuous
symmetries. In Ref. [18], the continuous phase transition
between ferromagnetic z-FM andVBS phases is determined
with high precision. The DQCP point has emergent ½Uð1Þ ×
Uð1Þ�⋊Z2 symmetry with the x FM and y antiferromagnetic
constituting the first U(1) and z FM and VBS constituting
the second. The Luttinger parameter is determined in
previous work at the DQCP from two-point correlation
functions to be g ¼ 1.38ð1Þ [18]. Since the lattice model
only has discrete symmetries, we compute the spin disorder
operator defined as Xs ¼ hQi∈M σzi i (corresponding to
θ ¼ π) for a region M of length l and extract the scaling
behavior from − lnðjXsðlÞjÞ ¼ ðg=8Þ ln l, as has been done
for the 1D Hubbard model [8,68]. In Fig. 4(a), the central
charge c ¼ 1 around the DQCP point Jz ≃ 1.4645 is
extracted fromVonNeumann entropy SvN ¼ ðc=3Þ ln l̃with
the conformal distance l̃ ¼ ðL=πÞ sinðπl=LÞ. In Fig. 4(b),
the Luttinger parameter g ≃ 1.37 is extracted from the
disorder operator on the finite-size systems, following the
finite-size scaling form − lnðjXsðlÞjÞ ¼ ðg=8Þ ln l̃. Away
from the critical point, and as supported by the data, the
log corrections are expected to vanish since all correlation
functions are characterized by a finite length scale.
Discussion.—The disorder operator is a simple quantity

to implement in many numerical approaches. Especially in
the realm of DQMC and in comparison to EE and ES, the
disorder operator is very easy to access and can be
computed “on the fly.” Whereas 1D and 2D boson-spin
systems, as well as nearly free fermion systems, have been
intensively investigated from the point of view of entan-
glement [13,24–28,35–40,69–79], the simplest interacting
fermion lattice models in 2D, that is, Dirac fermions and
their interaction-driven GN transitions [14–17,57,80–91]
remain challenging. This is mainly because the EE, for
example, the nth-order Rényi entropy Sn, needs to be
computed in path-integral QMC simulations with a repli-
cated manifold. Since the typical DQMC simulation for

(a) (b)

FIG. 4. Emergent symmetry at the 1D DQCP Jc ¼ 1.4645. The
(a) central charge c and (b) Luttinger parameter g are obtained
from the CFT scaling behavior of entanglement entropy SvN ¼
ðc=3Þ ln l̃ and disorder operator − ln jXsj ¼ ðg=8Þ ln l̃, with the
conformal distance l̃ ¼ ðL=πÞ sinðπl=LÞ, which indeed provide
the correct values for c and g at the DQCP.

(a) (b)

FIG. 3. System-size dependence of αc=s ¼ sc=sðθÞ=θ2, with
sc=sðθÞ obtained from the fitting in Fig. 2. In the DSM phase
(λ ¼ 0.006), extrapolation to the thermodynamic limit L→þ∞
gives αc=s ¼ 0.06ð1Þ, consistent with the expected CFT value
of α ¼ ðANσCJ;free=8π2Þ ≈ 0.066.
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interacting fermions is already very expensive [usually the
computational complexity scales as OðβN3Þ with β ¼ 1=T
andN ¼ LD], the construction of the replicatedmanifold and
the ensemble average therein [31,32,34] is challenging. As a
result, small system sizes in 2D and often noisy data are
insufficient to extract universal scaling properties in EE. We
note recent progress in this regard, with better data quality
and the approximate OðβN3Þ scaling [39,41,42].
In contrast, no replica construction is required for the

disorder operator. Logarithmic corrections to the area
law capture IR physics and provide invaluable insights
into critical points. Although it is challenging to control
logarithmic corrections to the area law, especially in
DQMC, we have presented a large body of data that
shows consistent results for Dirac systems. Particularly,
we can test for emergent symmetries at the DSM point by
comparing particle-hole related disorder operators. One can
also extract the central charge CJ. Emergent symmetries at
a 1D DQCP can equally be tested. The CFT constraint on
the sign of the coefficient of the logarithmic correction
sðθÞ > 0 allows us to test if a putative critical point actually
corresponds to a unitary CFT. Using this criterion, we are
able to show that our realization of a monopole-free DQCP
does not seem to correspond to a unitary CFT. This is
consistent with results for the J-Q model [11,36] and hints
at the power of the disorder operator. Given the simplicity
of computing this quantity, especially within the realm of
fermion QMC, many new directions are opened from here,
concerning the enigmatic fate of the 2D DQCP theories and
their lattice model realizations [41,44,47,50–56,89,90].
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