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Optical-to-mechanical quantum state transfer is an important capability for future quantum networks,
quantum communication, and distributed quantum sensing. However, existing continuous state transfer
protocols operate in the resolved sideband regime, necessitating a high-quality optical cavity and a high
mechanical resonance frequency. Here, we propose a continuous protocol that operates in the unresolved
sideband regime. The protocol is based on feedback cooling, can be implemented with current technology,
and is able to transfer non-Gaussian quantum states with high fidelity. Our protocol significantly expands
the kinds of optomechanical devices for which continuous optical-to-mechanical state transfer is possible,
paving the way toward quantum technological applications and the preparation of macroscopic super-
positions to test the fundamentals of quantum science.
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The ability to transfer quantum states between optical
communication channels and quantum computing nodes is
a necessary ingredient of the emerging quantum internet
[1]. Quantum state transfer also has important applications
in quantum-enhanced sensing [2,3], quantum-secure com-
munications [4], and fundamental tests of macroscopic
quantum mechanics [5–10]. A leading approach is to
mediate the transfer using an optomechanical resonator
[11–16]. This is attractive because mechanical resonators
interact via radiation pressure with electromagnetic fields
of all frequencies [17] and can also be functionalized to
interact with most quantum computing nodes, such as spins
[18–20], superconducting devices [21–23], and atomic
ensembles [24].
The first step in the transfer process is an optical-to-

mechanical state transfer, with a subsequent transfer to the
final computing node [25–27]. An optical cavity is
employed to enhance the radiation pressure during the
optical-to-mechanical state transfer. Leading proposals
work only in the “resolved sideband regime,” where the
decay rate of this cavity is lower than the mechanical
resonance frequency [12,28]. By contrast, most optome-
chanical systems operate in the “unresolved sideband
regime” [29]. In many cases this is due to the benefits
that low mechanical frequencies convey for applications—
for instance, in precision sensing [30–32]. In others, it is
because of the difficulty of simultaneously achieving a low
decay rate, a high resonance frequency, and sufficient
radiation pressure coupling [33].
To date, the only proposals for optical-to-mechanical

state transfer in the unresolved sideband regime have
used pulsed, rather than continuous, optomechanical

interactions [34–36]. This narrows the range of applica-
tions, introduces significant technical challenges due to the
additional timing and phase accuracy required [36–38], and
involves large radiation pressure impulse forces that can be
problematic [35,39,40].
It is well known that a mechanical resonator can be

feedback cooled close to its motional ground state in the
unresolved sideband regime [41]. Here, we propose a
continuous optical-to-mechanical state transfer protocol
based on the same concept. By modeling the open quantum
system dynamics, we show that feedback cooling can be
understood as the transfer of a vacuum state of light onto
the mechanical resonator. We find that appropriate choice
of the feedback parameters allows the transfer of arbitrary
quantum states. The requirements for successful transfer
closely match those for ground-state cooling—once the
optomechanical cooperativity exceeds the thermal occu-
pancy of the mechanical resonator, a coherent state can be
transferred with near unity fidelity and the Wigner neg-
ativity of non-Gaussian states can be preserved. Moreover,
the feedback parameters can be used to phase-sensitively
amplify (or “squeeze”) the transferred state, to engineer its
temporal profile, and—in direct analogy to state-transfer
via resolved sideband cooling [42]—to achieve the transfer
of a single optical sideband.
Our work extends continuous optomechanical state

transfer beyond the resolved sideband limit to low-quality
optical cavities and low frequency mechanical resonators.
Feedback cooling of a mechanical resonator to near its
motional ground state has recently been demonstrated, both
in cryogenic [43] and room temperature environments [44].
As such, our proposal can be directly implemented with
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existing technology, providing a new tool for quantum
networks and opening a new pathway to create and study
macroscopic quantum systems. Our work also provides
new insights into feedback cooling, showing that the
process is in fact a quantum state transfer from light to
mechanical motion. These insights may also be applicable
in the resolved sideband regime, where feedback-induced
“squashing” has been shown to improve cooling [45].
We consider an optomechanical system in the unresolved

sideband, high mechanical quality regime ðκ ≫ Ω ≫ ΓÞ
with resonant optical driving, where κ (Γ) is the optical
(mechanical) energy decay rate, and Ω the mechanical
resonance frequency. In this scenario, the amplitude quad-
rature of the input optical field Xin is directly imprinted on
the mechanical motion via radiation pressure. The phase
quadrature Y in is not, but is encoded on the phase quad-
rature of the output optical field as [17]

Yout ¼ −
ffiffiffi
η

p
Y in þ 2

ffiffiffiffiffiffiffiffiffi
ηΓC

p
Qþ

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
Yv; ð1Þ

where η is the detection efficiency, C ¼ 4g2om=Γκ is the
optomechanical cooperativity with gom being the coherent-
amplitude-boosted optomechanical coupling rate, Yv is the
vacuum noise introduced due to detection loss, Q (P) is the
dimensionless mechanical position (momentum) operator
with ½Q;P� ¼ i, and all optical quadrature operators are
normalized such that ½XðtÞ; Yðt0Þ� ¼ iδðt − t0Þ. We propose
to detect the output phase quadrature and use continuous
feedback to transfer it to the mechanical resonator, as
shown in Fig. 1. We note that feed-forward, similar to our
feedback, has been applied to improve microwave-
to-optical state transfer in the resolved sideband regime
[46]. In contrast, the feed-forward in that experiment
functioned to suppress correlated noise terms, while both
optical quadratures were transferred by radiation pressure.
A transduction scheme between two different-frequency
fields has also been proposed in the unresolved sideband
regime [47]. That work does not explore optical-to-
mechanical state transfer and, unlike our proposal, assumes
a dissipationless mechanical resonator (Γ ¼ 0).

Our scheme is analogous to feedback cooling
[41,43,44,48–52], with the detected signal applied as a
force onto the mechanical resonator. This force could be
applied, for instance, using radiation pressure [45] or
electrostatic actuation [51]. In either case, a quantum
transfer requires that the electronic noise floor of the
detector is well beneath the quantum noise of the light,
a criterion that has been achieved in many experiments
(e.g., [45]). Using quantum Langevin equations, we find
that it is described by the following equations of motion:

_Q ¼ ΩP −
Γ
2
Qþ

ffiffiffi
Γ

p
Qin; ð2Þ

and

_P ¼ −ΩQ −
Γ
2
Pþ

ffiffiffi
Γ

p
Pin − 2

ffiffiffiffiffiffiffi
ΓC

p
Xin −

ΓG
2

fðtÞ

⊛
 
−

 
Y in −

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

η

s
Yv

!
1

2
ffiffiffiffiffiffiffi
ΓC

p þQ

!
; ð3Þ

where Pin and Qin are white thermal noise operators that
satisfy ½QinðtÞ; Pinðt0Þ� ¼ iδðt − t0Þ, and we have made the
rotating wave approximation with respect to the mechanical
bath [17,53]. The last term of Eq. (3) represents the feedback
force, where the measured photocurrent is convolved with
an arbitrary causal filter function fðtÞ ∈ R and amplified by
the gain factor G. The filter function is normalized so that
jfðΩÞj ¼ 1, where fðωÞ ¼ R∞−∞ fðtÞeiωtdt is the Fourier
transform of fðtÞ.
The steady-state solutions to Eqs. (2) and (3) are found by

moving into frequency space and adiabatically eliminating
the dynamics of the optical cavity field (Supplemental
Material, Sec. I [54]). This results in the quadratures

QðωÞ ¼
ffiffiffi
Γ

p
χðωÞ

"
Qin þ ϕðωÞPin − 2

ffiffiffiffi
C

p
ϕðωÞXin

þ GfðωÞϕðωÞ
4
ffiffiffiffi
C

p
 
Y in −

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

η

s
Yv

!#
; ð4Þ

PðωÞ ¼
ffiffiffi
Γ

p
χðωÞ

�
Pin −

�
GfðωÞΓ

2Ω
þ 1

�
ϕðωÞQin

− 2
ffiffiffiffi
C

p
Xin þ

GfðωÞ
4
ffiffiffiffi
C

p
 
Y in −

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

η

s
Yv

!#
; ð5Þ

where

ϕðωÞ ¼ Ω
Γ=2 − iω

; ð6Þ

the feedback-broadened mechanical susceptibility is

χðωÞ ¼ 1

ΩϕðωÞ−1 þ ½Ωþ GΓ fðωÞ
2
�ϕðωÞ

; ð7Þ

FIG. 1. Schematic optomechanical system with feedback. Light
is coupled into an optomechanical cavity. The reflected light is
measured through homodyne detection. The detected photo-
current [YoutðtÞ] is convolved with a filter fðtÞ and directly
fed back to the momentum of the mechanical resonator.
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and the adiabatic elimination is valid in the unresolved
sideband regime (fΩ; CΓg ≪ κ) taken throughout this
Letter. From Eq. (7), we see that the mechanical susceptibil-
ity decreases as G increases. This suppresses most of the
mechanical terms in Eqs. (4) and (5). The only term that
remains is Qin in PðωÞ, but this is suppressed by the large
mechanical quality factor (Ω=Γ ≫ 1). It is this combined
suppression of all mechanical terms that enables optical state
transfer with high fidelity.
The optical input field consists of a continuum of optical

modes. To build insight into which of these modes is best
transferred to the single mechanical mode, as well as to
identify the gain and noise of the transfer process, we
rewrite Eqs. (4) and (5) as

Q ¼ gXXtrans þQnoise;optical þQnoise;mechanical; ð8Þ

P ¼ gYY trans þ Pnoise;optical þ Pnoise;mechanical: ð9Þ

Here, Xtrans and Y trans define the optical quadratures trans-
ferred to position and momentum, respectively, in each case
including contributions from both Xin and Y in [see Eqs. (10)
and (11)]. gX and gY are the transfer gains. Terms labeled
with a subscript “noise” encompass the residual thermal
variance remaining after feedback, and any optical terms
not arising from the temporal mode of interest (i.e.,
inefficient detection, mode mismatch). In what follows,
we will quantify each term in these equations.
The input optical quadratures transferred to Q and P in

Eqs. (4) and (5) are not perfectly conjugate observables.
The difference is embodied in ϕðωÞ, and is a result of the
retarded response of the mechanical position to an applied
force. The imperfection introduces an ambiguity in the
optical mode that is optimally transferred—a different
mode is best transferred to P and Q. Here, we choose to
assess the transfer of the mode that is optimally transferred
to P. Justifying the choice, we find that this mode can be
transferred with fidelity approaching unity for high
mechanical quality factors [e.g., see Fig. 3(b)].
Optimal transfer to P implies that the optical input terms

in Eq. (5) will make no contribution to the optical noise
term in Eq. (9), that is, they will be entirely contained
within the gYY trans term. By comparing Eqs. (5) and (9),
Y trans can then be immediately identified as

Y trans ¼
2
ffiffiffiffiffiffiffi
ΓC

p

gY
χðωÞ

�
−Xin þ

GfðωÞ
8C

Y in

�
: ð10Þ

Xtrans can be determined by rotating Y trans by π=2 in phase
space (Y → X and X → −Y for all X and Y quadratures).
This gives

Xtrans ¼
2
ffiffiffiffiffiffiffi
ΓC

p

gY
χðωÞ

�
GfðωÞ
8C

Xin þ Y in

�
: ð11Þ

Using the relation atrans ¼ ðXtrans þ iY transÞ=
ffiffiffi
2

p
then yields

the annihilation operator of the transferred mode

atransðωÞ ¼ uðωÞainðωÞ; ð12Þ
where

uðωÞ ¼ 2
ffiffiffiffiffiffiffi
ΓC

p

gY
χðωÞ

�
GfðωÞ
8C

− i

�
ð13Þ

is its spectral mode shape and ainðωÞ ¼ ½XinðωÞ þ
iY inðωÞ�=

ffiffiffi
2

p
.

The phase quadrature transfer gain, gY , can be deter-
mined by enforcing the boson commutation relation
½atransðtÞ; a†transðtÞ� ¼ 1 on Eq. (12). Recognizing that the
optical noisemust originate from an orthogonal optical mode
to the transferred mode, the amplitude quadrature gain, gX,
can be found by enforcing the commutation relations
½Qnoise;opticalðtÞ; XtransðtÞ� ¼ ½Qnoise;opticalðtÞ; Y transðtÞ� ¼ 0,
where Qnoise;optical is obtained by rearranging Eq. (8).
Together, these give

gY ¼
�
4ΓC
2π

Z
∞

−∞
jχðωÞj2ðjfðωÞj2 þ 1Þdω

�
1=2

; ð14Þ

gX ¼ −
1

gY

8ΓC
2π

Z
∞

−∞
jχðωÞj2ℑ½ϕðωÞ�ℑ½fðωÞ�dω: ð15Þ

The spectral mode shape and quadratures of the trans-
ferred mode depend on both the feedback-broadened
mechanical susceptibility χðωÞ and the feedback filter
function fðωÞ, so that the transferred state can be controlled
through appropriate choice of the filter properties. Thus far,
our results are valid for an arbitrary real-valued causal filter
function. In the remainder of the Letter we choose the
generalized-Lorentzian filter

fðωÞ ¼ Γ0Ω
ω2 − Ω2 þ iΓ0ω

; ð16Þ

where Γ0 is the filter bandwidth. This filter is commonly
used for feedback cooling [41,50,52,55] and is close to the
known optimal filter for both momentum estimation [56]
and feedback cooling [57]. Γ0 is chosen to be much larger
than Ω, so that the filter acts as an integrator near the
mechanical resonance frequency. The gain factor G can
then be understood as the fractional increase in the
mechanical decay rate due to the feedback.
With the filter in Eq. (16) and in the limit of large filter

bandwidth and mechanical quality factor (Ω=Γ ≫ 1), the
amplitude and phase quadrature transfer gains can be
approximated as

gY ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

�
1þ G2

64C2

2þG

�s
and gX ¼ 1

gYð1þ 2=GÞ : ð17Þ
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We define the overall gain of the transfer process asffiffiffiffiffiffiffiffiffiffi
gXgY

p
, so that it is independent of unitary squeezing

operations on the transferred state [58], and define the level
of squeezing applied during the transfer as gX=gY . The
overall gain and squeezing level are plotted as a function of
the feedback gain factor G in Fig. 2 using both numerical
calculations and the analytic approximations of Eqs. (17).
For these plots and throughout the Letter we use the
system parametersΩ=2π ¼ 1 MHz, Γ=2π ¼ 1 Hz, Γ0=2π ¼
1.59 MHz, κ=2π¼100MHz, gom=2π ¼ 395 kHz, and
T ¼ 30 mK, corresponding to a thermal phonon occupancy
nth ∼ kBT=ℏΩ ∼ 620. These parameters have been achieved
in a range of optomechanical experiments [33,43,44].
The overall transfer gain asymptotes unity in the exper-

imentally relevant limit where G ≫ 1. This means that the
state transfer is intrinsically robust to variations in G. The
transfer generally involves amplitude quadrature squeezing
(gX=gY < 1). Only at G ¼ 8C do we find that the input
state is transferred without any squeezing (gX=gY ¼ 1).
Comparison of Eq. (11) with Eq. (4) shows that, in the
high-quality limit for which fðωÞ can be substituted with
fð�ΩÞ ¼∓ i and ϕðωÞ with ϕð�ΩÞ ¼ �i, this choice of
gain also results in near agreement between Xtrans and the
optical input terms in Q. The remaining discrepancy arises
from the retardation factor ϕðωÞ, and this discrepancy
approaches zero in the high-quality factor limit. We there-
fore select G ¼ 8C for the remainder of the Letter.
It is illustrative to consider how our choice of filter

function and gain factor influences the spectral mode shape
uðωÞ. The frequency dependence of the prefactor in Eq. (13)
depends only on χðωÞ, and is sharply peaked at both �Ω.
However, since fð�ΩÞ ¼∓ i, for G ¼ 8C the term in
parentheses is precisely zero at −Ω and equals −2i at Ω.
Our particular choice, therefore, enables a single-sideband
state transfer, transferring only the lower optical sideband
and doing this with a mode shape given approximately by
χðωÞ (see also Supplemental Material, Sec. II [54]).
To quantitatively assess the quality of transfer we first

consider an input vacuum state. We calculate the contri-
butions to the position and momentum variances from
this input and from the noise sources specified in Eqs. (8)

and (9) (see Supplemental Material, Secs. II and III [54]).
We separate the optical noise into contributions arising
from inefficiencies and mode mismatch, so that the non-
ideality of the transfer that arises due to ϕðωÞ can be
assessed. The results are plotted in Fig. 3(a) as a function of
C=nth (with G ¼ 8C). The variance of the transferred
optical mode increases with C, asymptoting to the vacuum
variance of 1=2 once C ≫ 1. Conversely, the mechanical
noise contribution decreases, dropping below the vacuum
level for C ≫ nth. The variance of the optical inefficiency

FIG. 2. Transfer gain ð ffiffiffiffiffiffiffiffiffiffi
gXgY

p
; redÞ and squeezing ðgX=gY; blueÞ

as a function of the feedback strength by cooperativity (G=C). The
dashed line indicates G ¼ 1 and the full gray line indicates the
optimal gain ðG ¼ 8CÞ, where gX=gY ¼ 1. The dots are numeri-
cally obtained, and the lines are using the analytic expressions
derived in the high-quality factor limit.

(a)

(b)

(c)

FIG. 3. (a) Contributions to the variance as a function of
interaction strength of mechanical noise (blue), optical signal
(yellow), and two contributions of optical noise: mode mismatch
on Q (black), and inefficiency (red). The size of the points
correspond to the inefficiency (η ¼ 0.9, 0.75, and 0.5 for small,
medium, and large points, respectively). (b) The transfer fidelity
ðF Þ as a function of interaction strength for a coherent state
(black), cat state (green) (α ¼ 2), and single photon Fock state
(dark blue). Inset shows F as a function of η for the coherent
state, at a fixed value of C=nth ¼ 10 corresponding, for our
parameters, to an optomechanical cooperativity of C ∼ 6200.
(c) Corresponding plots of the Wigner distributions for a coherent
state (top row), cat state (middle row), and Fock state (bottom
row) at the interaction strengths indicated by the gray lines
connected to subplot (b). The black dotted circle in the top right
indicates the length scale of the contour of the ground state.
The orientation of the plots is indicated by the black arrows in the
top right plot.
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noise has a cooperativity dependence that is similar to the
optical signal, increasing with C and asymptoting to a
constant value onceC ≫ 1. As expected, this noise increases
as the detection efficiency degrades. However, even for η as
low as 0.5 the transferred signal variance still dominates
inefficiency noise for the whole range of C=nth. The mode-
mismatch noise on Q is very low for small C, increases
approximately linearly with C, and eventually exceeds the
signal variance. Thus, the mode mismatch ultimately con-
strains the performance of the state transfer. In future work it
would be interesting to consider different choices of trans-
ferred mode to potentially relax this constraint.
Using the analytic expressions for the gains in Eqs. (17),

we derive analytic expressions for the different variance
contributions that are valid in the same high-quality, high-
bandwidth limit (see Supplemental Material [54], Sec. III).
With the exceptionof themismatchnoise,which is zero in the
limit of high quality, these expressions agree well with the
numerical results in Fig. 3(a). From them, we find that when
C ≫ 1 the noise variance introduced by optical inefficiency
isVη ¼ ð1 − ηÞ=4η, and that themechanical noisevariance is
suppressed below the vacuum noise level once C > nth=2.
Since the feedback process is linear and all noise sources

are Gaussian, it is straightforward to extend our analysis
beyond the transfer of vacuum states to more elaborate
states such as Schrödinger cat states. This can be achieved
using Wigner functions (Supplemental Material, Sec. IV
[54]). Imperfections introduced by the thermal noise, mode
mismatch, and inefficiency tend to “smear out” quantum
features of the transferred optical mode’s Wigner function.
Mathematically, this is represented by convolving the
signal’s Wigner function with a Gaussian noise kernel
GðrÞ [with r ¼ ðQPÞT] [59]:

WtransferredðrÞ ¼ ðW⊛GÞðrÞ: ð18Þ

In the regime relevant to this Letter, G is typically close to
symmetric, with a slight wider spread in the Q direction
due to mode mismatch. The transfer fidelity can then be
determined for any pure input state as

F ¼ 2π

Z
∞

−∞

Z
∞

−∞
WðrÞWtransferredðrÞd2r: ð19Þ

We plot the fidelity for input coherent, Fock, and cat
states in Fig. 3(b) as a function of C=nth and assuming that
η ¼ 1. The coherent state fidelity exceeds the classical limit
of 1=2 at C=nth ¼ 0.25 and the no-cloning bound of 2=3 at
C=nth ¼ 0.50. The fidelity for the non-Gaussian states also
reach fidelities greater than 0.5 at similar, experimentally
accessible [33,43,60] cooperativities. For the chosen exper-
imental parameters, the maximum achievable fidelities are
0.98, 0.93, and 0.82 for coherent, Fock, and cat states,
respectively, and are limited by the mode-mismatch noise.
The fidelity is robust against measurement inefficiencies
as visible in the inset of Fig. 3(b), which shows that the

coherent state fidelity can exceed 1=2 even with a detection
efficiency as low as η ¼ 0.2. It is also robust against
variations in feedback gain (see Supplemental Material,
Sec. V [54]). Figure 3(c) plots the Wigner distributions of
transferred coherent, Fock, and cat states at three different
values ofC=nth, showing that the negativity of the Fock and
cat states can be transferred, and therefore nonclassical
properties of the input state preserved. The ability to
achieve fidelities approaching unity and preserve non-
classical properties indicates that our scheme could be
used effectively in a diverse range of quantum protocols,
from optical-to-microwave state transfer to quantum
memories.
In conclusion, we have identified that feedback can be

used to achieve continuous optical-to-mechanical state
transfer in the unresolved sideband regime. We predict
that state transfer can be achieved with high fidelity and
while preserving nonclassical features such as Wigner
negativity. The ability to implement continuous state trans-
fer in the unresolved sideband regime significantly widens
the class of optomechanical systems that can be used as
interfaces in quantum networks.
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