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Interferometry is a prime technique for modern precision measurements. Atoms, unlike light, have
significant interactions with electric, magnetic, and gravitational fields, making their use in interferometric
applications particularly versatile. Here, we demonstrate atom interferometry to image optical and
magnetic potential landscapes over an area exceeding 240 μm × 600 μm. The differential potentials
employed in our experiments generate phase imprints in an atom laser that are made visible through a
Ramsey pulse sequence. We further demonstrate how advanced pulse sequences can enhance desired
imaging features, e.g., to image steep potential gradients. A theoretical discussion is presented that provides
a semiclassical analysis and matching numerics.
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Introduction.—From optical precision measurements [1]
to detecting minute ripples in space-time [2], interferometry
is a keystone of modern science. Compared to their light-
based counterparts, matter-wave interferometers have some
decisive advantages [3], including significant sensitivity to
electric, magnetic, and gravitational fields [4–6]. Access to
both motional and internal degrees of freedom makes atom
interferometers suitable for many applications, including
timekeeping with ultracold atoms [7], inertial measure-
ments [8,9], and fundamental studies of quantum dynamics
[10–13].
Here, we demonstrate the two-dimensional imaging of

differential potentials based on atom interferometry with an
atom laser—a coherent stream of atoms. Atom lasers [14–
29] can be generated by coherently outcoupling atoms from
a trapped dilute-gas Bose-Einstein condensate (BEC) into
an untrapped quantum state, creating a two-dimensional
sheet of atoms in an accelerated reference frame. Our
interferometric imaging technique employs a Ramsey pulse
sequence [30,31]: two sequential π=2 pulses, via coherent
microwaves, separated by a wait time. The resulting images
reveal contourlike lines of an applied differential potential.
The potential causes a phase imprint that can be measured
across the entire atom laser in a single run of the experi-
ment, extending over an area exceeding 240 μm× 600 μm.
Unlike previous atom interferometric work with a pulsed-
output atom laser [32] or with thermal atoms [33], our work
utilizes a quasicontinuous atom laser to map out two-
dimensional potential landscapes. We demonstrate this
technique with two types of differential potentials: a
magnetic field that acts differently on two hyperfine states
due to the Zeeman effect, and an optical dipole potential
that is tuned to be attractive for one hyperfine state and
repulsive for another.

As a practical application, we image a magnetic quadru-
pole field present in our experimental chamber, and show
how a variation of the imaging pulse sequence can enhance
desired features. Experimental results are well described by
a semiclassical theory. Future applications include material
science studies in hybrid quantum systems [34], studies of
interaction effects in quantum caustics [35–37], and
branched flow [38].
Experimental procedure and results.—Our experiments

begin with a dilute-gas BEC of ∼4 × 106 atoms of 87Rb in
the jF;mFi ¼ j1;−1i hyperfine state. The BEC is held in a
hybrid trap formed by a focused infrared laser that provides
mostly radial confinement, and a quadrupole magnetic field
that provides additional support against gravity and axial
confinement [Fig. 1(a)]. The resulting harmonic trap
frequencies are fωx;ωy;ωzg ¼ 2π × f3.7; 39.7; 30.1g Hz,
with the weakly confined x axis directed horizontally in the
images. From this trapped BEC, a coherent stream of atoms
is outcoupled to form an atom laser by using microwave
radiation that gradually transfers atoms to the j2; 0i state,
which is only weakly supported by the magnetic gradient.
These transferred atoms fall out of the trap, accelerating
downward from the injection site. After 10 ms of continu-
ous outcoupling from the BEC, a brief 68 μs-long micro-
wave pulse puts the entire atom laser into a coherent
superposition of the j2; 0i and j1; 0i state.
The falling atoms can be further manipulated with a

dipole potential created by impinging focused laser light
that is detuned from a resonant transition. Under appro-
priate conditions, this can lead to strong mechanical effects
such as intricate patterns of caustics [29]. The sign and
strength of the dipole potential depend on the intensity and
wavelength of the laser in relation to the resonance lines of
the atom. Here, we exploit this versatility by choosing a

PHYSICAL REVIEW LETTERS 130, 263402 (2023)

0031-9007=23=130(26)=263402(7) 263402-1 © 2023 American Physical Society

https://orcid.org/0000-0003-3954-7831
https://orcid.org/0009-0008-4725-3271
https://orcid.org/0000-0002-8136-0336
https://orcid.org/0000-0002-1093-9471
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.130.263402&domain=pdf&date_stamp=2023-06-28
https://doi.org/10.1103/PhysRevLett.130.263402
https://doi.org/10.1103/PhysRevLett.130.263402
https://doi.org/10.1103/PhysRevLett.130.263402
https://doi.org/10.1103/PhysRevLett.130.263402


laser wavelength such that the resulting potential is
attractive for atoms in the j1; 0i state and repulsive for
atoms in the j2; 0i state. See [39] for more details. The
dipole potential focuses or defocuses the j1; 0i or j2; 0i
atom lasers, respectively, and can in both cases form
caustics for sufficiently high powers [29]. Here, we use
weak dipole strengths that have only small mechanical
effects on the atom laser, probing mostly the so-called
“Aharonov-Bohm” phase [6]. The dipole is centered zd ¼
89.9ð4Þ μm below the injection site, and the Gaussian waist
radius of the dipole laser w ¼ 38.9ð6Þ μm is smaller than
the transverse extent of the atom laser (≈240 μm).
In addition to the dipole potential, a differential potential

for atoms in the j1; 0i and j2; 0i states can be generated by a

magnetic field, shifting their energies by the quadratic
Zeeman effect. Here, with a background field of about 10 G
and a vertical gradient of dB=dz ¼ −25.10ð1Þ G=cm, the
energy of the j2; 0i (j1; 0i) state increases (decreases) with
h × 12.43ð6Þ kHz=mm in the −z direction, determined
using a linear approximation across the region of magnetic
fields covered by the atom laser (see [39] for details). This
magnetic field is present in the full region of the atom laser,
whereas the dipole laser is focused to a region just below
the trapped position of the BEC.
Atom interferometric imaging is performed by a Ramsey

pulse sequence [Fig. 1(b)] followed directly by absorption
imaging along the −y direction with a 10 μs-long imaging
pulse. The first 68 μs-long microwave π=2 pulse mentioned
above creates a coherent superposition of the outcoupled
j1; 0i and j2; 0i states. After an evolution time twait, a
second 68 μs-long Ramsey pulse is applied to close the
interferometer and apply an arbitrary phase shift. Because
of the large hyperfine splitting of the 87Rb ground state,
atoms are imaged spin selectively.
In the presence of a differential potential, the phase

evolution between the two Ramsey pulses leads to inter-
ference patterns observed in the spin-selective images. In
Figs. 1(c), 1(d) and 2, this potential consists of the magnetic
gradient along the vertical direction and [except in
Fig. 2(a)] the dipole potential intersecting the atom laser.
The differential potential was constant throughout the
experiment, but switched off just before imaging. The
magnetic potential leads to the observation of horizontal
interference stripes [Fig. 2(a)], while the dipole potential
causes the bull’s-eye pattern seen in the upper part of the
atom laser. For short pulse sequences, these approximate
contour lines of the differential potential [see Eq. (7)].
Phase retrieval [47–49] or direct fitting techniques can be
used to extract the potential shape, as demonstrated in
Fig. 1(e).
In Fig. 2, the depth of the dipole potential is increased

from panel to panel, increasing the number of interference
rings in the bull’s-eye pattern commensurate with the
increased phase accumulation between the two Ramsey
pulses. Matching numerics, shown in the left side of each
panel in the figure, are in excellent agreement with the
experimental images. Because of the low dipole laser
intensities used in Fig. 2, the mechanical effects on the
atom laser are small in the sense that no pronounced
caustics are formed. For the j2; 0i state imaged in Fig. 2, the
dipole potential is weakly repulsive, leading to a small but
increasing suppression of the density in the region below
the dipole laser as the power is increased.
Semiclassical analysis and quantitative comparison with

experiment.—To theoretically treat our system, we approxi-
mate the physics using a semiclassical analysis [28,50,51].
To start, consider a system uniform along x, which is a good
approximation near the center of our laser. Atoms are
injected into the system at rest from the trapped cloud at
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FIG. 1. (a) Experimental setup: a BEC (blue) of 87Rb atoms in
the jF;mFi ¼ j1;−1i state is held in a dipole trap (gray). Atoms
transferred to the j2; 0i state are accelerated out of the trap in the
presence of gravity and a magnetic gradient, generating an atom
laser that travels downward. An additional optical laser (violet)
crosses the atom laser to generate weak differential potentials.
(b) Interferometric imaging procedure. A first Ramsey pulse
places the whole extent of the atom laser into a superposition
state. Optionally, a π pulse can be inserted for realizing a spin
echo. After a wait time, a second Ramsey pulse closes the
interferometer with an arbitrary controllable phase, e.g., (c) θ ¼ 0
and (d) θ ¼ π. The images in (c) and (d) are taken with a Ramsey
pulse spacing of 0.70 ms and have each been averaged over ten
independent runs of the experiment. (e) By directly fitting the
interference patterns (left), or with phase retrieval techniques
(right), we can accurately reconstruct the differential potential
δVðx; zÞ. See [39] for details.
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height z ¼ z0 and are immediately subject to a time-
dependent potential Vðz; tÞ that includes both gravity
and any external potentials, causing the atoms to fall.
Atoms are continuously injected into the system, so atoms
imaged at time ti and height zi will have been injected at
some earlier time t0ðti; ziÞ ≤ ti, which must be determined
by solving the classical boundary-value problem:

m̈zðtÞ ¼ −
∂

∂z
VðzðtÞ; tÞ; ð1aÞ

zðt0Þ ¼ z0; _zðt0Þ ¼ 0; zðtiÞ ¼ zi: ð1bÞ
We capture the effects of the various state transitions in the
form of the potential Vðz; tÞ: if a particle initially in the
j2; 0i state is subject to Ramsey pulse transition j2; 0i →
ðj2; 0i þ j1; 0iÞ= ffiffiffi

2
p

at time t1, then we must track two
different classical trajectories, having the same potential
Vðz; tÞ for t < t1, but different species-dependent potentials
Viðz; tÞ for later times.
In our analysis, we further assume Vðz0; tÞ ¼ 0 for all

times, such that the classical Hamiltonian at the injection

siteH0 ¼ 0, capturing the essence of coherence in the atom
laser: injection occurs resonantly at a fixed energy, keeping
the phase of the injected particles constant over time
ψ0ðz0; tÞ ¼ ψ0ðz0Þ.
The wave function follows from the path integral:

ψðz; tÞ ¼
Z

dz0

Z

D½q� exp
�

i
ℏ
S½q�

�

ψðz0; t0Þ; ð2aÞ

S½q� ¼
Z

t

t0

dt
�

m _q2

2
− VðqðtÞ; tÞ

�

; ð2bÞ

where the integral is taken over all paths qðtÞ subject to the
boundary conditions qðtÞ ¼ z and qðt0Þ ¼ z0, and S½q� is
the classical action. We assume highly localized injection
ψðz0; t0Þ ∝ δðz0Þ, which we take to be about z0 ¼ 0.
(See [39] for details.)
The Wentzel-Kramers-Brillouin (WKB) approximation

amounts to expanding the action

S½qþ ξ� ¼ S½q� þ S0½q� · ξþ 1

2!
S00½q� · ξξþ � � � ð3Þ

about the classical trajectories qcl where S0½qcl� ¼ 0.
Keeping only the quadratic fluctuations [50] with
S½qcl�≡ Sðz; t; z0; t0Þ,

ψWKBðz; tÞ ¼
Z

dz0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−∂2S=ð2πiℏÞ
∂z∂z0

s

eiS=ℏψðz0; t0Þ: ð4Þ

If there are multiple trajectories that arrive at the same final
position zðtiÞ at the time of imaging, one must add these
amplitudes to obtain the appropriate interference pattern.
For this position-to-position transition,

∂S
∂z

¼ pðtÞ; ∂S
∂z0

¼ −pðt0Þ; and
∂
2S

∂z∂z0
¼ ∂p

∂z0
: ð5Þ

If the force is conservative, E¼p2=2mþVðzÞ¼p2
0=2mþ

Vðz0Þ and one recovers the familiar factor of
ffiffiffiffi

p
p

in the
denominator of ψWKBðz; tÞ:

pðz0; t0Þ ¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0þ 2mðVðz0Þ−VðzÞÞ

q

;
∂p
∂z0

∝
1

p
: ð6Þ

The semiclassical problem is thus reduced to solving for the
classical trajectories of particles injected at qðt0Þ ¼ ðx0; z0Þ
that end up at qðtiÞ ¼ ðx; zÞ≡ x⃗ in the image.
When preparing numerical simulations for the experi-

ment, we interfere two different trajectories: those of the
particles which remain in state j2; 0i (ψ1) and those which
start in the state j2; 0i but are converted to state j1; 0i for
times between the two Ramsey pulses (ψ2). This procedure
has a few deficiencies. First, the semiclassical amplitudes
diverge at the turning point z ¼ z0. This can be remedied by
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FIG. 2. Atom interferometric imaging of a combined magnetic
and optical differential potential for several powers of the dipole
potential. Each frame is split vertically and shows the theory
result (left) compared to the experimental image (right). The
experimental images were taken with a Ramsey pulse spacing of
0.5 ms and are averages of 30 experimental runs. The images
show the atoms in the j2; 0i state. The energy differences gene-
rated by the dipole beam between the j2; 0i and j1; 0i are
(a) 0 μK, (b) 0.16ð7Þ μK, (c) 0.32ð6Þ μK, (d) 0.47ð4Þ μK,
(e) 0.6ð2Þ μK, and (f) 0.81ð7Þ μK, and are obtained with
uncertainties by least-squares fitting of the experimental data
with our model as described in [39]. Each title shows the expected
number of fringes created by the dipole potential [Eq. (7)]
estimated using the impulse approximation.
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using Airy functions, but to demonstrate the accuracy of
the pure semiclassical calculation, we simply exclude the
region close to the injection site in our comparisons.
Second, the model assumes instantaneous state transitions.
We mitigate this by allowing the transition to occur at a
time slightly shifted from the middle of the transition
window that accounts for the acceleration of the particles.
A proper semiclassical accounting for this effect requires a
multicomponent WKB approximation [52–55], which is
much more complicated and not needed here.
The interference pattern In ∝ jψ1 þ ψ2j2 can be modeled

as Inðx⃗Þ ≈ aðx⃗Þ þ bðx⃗Þ cosðϕðx⃗Þ þ θnÞ where θn is an
experimentally controllable phase. Phase retrieval tech-
niques [47–49] can efficiently extract the difference in
actions between the paths ℏϕðx⃗Þ ¼ S1ðx⃗Þ − S2ðx⃗Þ þ const,
from which the differential potential can be extracted. This
requires imaging at least three different values of θn
(see [39]).
Alternatively, if the form of the potential is known up to a

few parameters, then the interference pattern can be directly
modeled from a single value of θn, allowing high-precision
fitting of these parameters. This analysis is the basis for our
numerical simulations and leads to a quantitative explan-
ation of the experimental data, as demonstrated in Fig. 2.
With a few simplifying approximations that we call the
“impulse approximation”—assuming weak potentials do
not appreciably deflect the particles, and the transitions and
twait are sufficiently fast such that the particles do not fall
significantly during the Ramsey pulse sequence—one
obtains the following density pattern, and corresponding
expected number of maxima (fringes) in the interference
pattern:

nRamsey
2;0 ∝ 1− cos

�

twait
ℏ

δV

�

; Nfringes≈
twaitδVmax

2πℏ
; ð7Þ

where δVmax is the maximum of the differential potential
δVðx⃗Þ (see also [39]). This agrees well with the full
calculations and experiments, as shown in Fig. 2.
Magnetic field mapping.—So far, we have demonstrated

the effect of combined magnetic and optical differential
potentials using Ramsey pulse sequences between the j2; 0i
and j1; 0i states. This transition is only weakly sensitive to
magnetic fields due to second order Zeeman effects. In
applications where a greater sensitivity to magnetic fields is
desired, a strongly magnetic field dependent transition such
as the one between the stretched states j1;−1i and j2;−2i
can be employed. In 87Rb, this transition shifts by
−2.1 MHz=G in low fields, compared to 11 kHz=G for
the j1; 0i to j2; 0i transition in a bias field of 10 G. When
using magnetically sensitive transitions, care must be taken
that the Ramsey pulses affect the entire atom laser,
otherwise a state transfer will occur in only a small region,
which can be used for fluid flow tracing [29].
We demonstrate the capability of using the j1;−1i to

j2;−2i transition to detect small magnetic gradient fields in

Fig. 3. Here, an atom laser is generated from a BEC
confined in a purely optical trap: a large-diameter dipole
beam is employed to provide mostly radial confinement,
and two repulsive, thin dipole sheets are added as “end
caps” on the left and right side of the BEC to provide axial
confinement. The atom laser is then realized by ramping
down the intensity of the large-diameter dipole beam to
create a wide atom laser without relying on any preexisting
magnetic gradient for the output coupling. To generate a
test pattern, a magnetic quadrupole field with an axial
gradient of 140ð10Þ mG=cm was added, approximately 2
orders of magnitude smaller than the gradient used for the
previous images. The position of the quadrupole field zero
was adjusted relative to the imaging window using small
magnetic bias fields, as shown schematically in Fig. 3(d).
The results clearly show the tilt of the equipotential lines in
the magnetic quadrupole field, demonstrating the capability
of imaging magnetic field gradients in a single experimen-
tal run.
Spin-echo imaging.—Atom interferometric techniques

provide great flexibility for the design of experimental
sequences. While the experiments described above have all
used a Ramsey pulse sequence, extended sequences can be
employed to enhance specific features. One example is
demonstrated in Fig. 4 where the Ramsey sequence has
been augmented by inserting an additional π pulse, real-
izing a spin-echo sequence. Such a sequence can be used to
cancel the effects of constant differential potentials and to
produce contour lines of the gradient along the direction of
motion. For Fig. 4(a), a pulse spacing twait of 1504 μs
between the two pulses of a Ramsey sequence was used,

FIG. 3. Atom interferometric fringe pattern using the magneti-
cally sensitive transition between j1;−1i and j2;−2i. A magnetic
quadrupole field with gradient dB=dz ¼ 140ð10Þ mG=cm was
placed with its center to the right and (a) slightly below, (b) right
next to, and (c) slightly above the atom laser. The Ramsey pulses
are spaced by 2 ms. The images show the atoms detected in the
j2;−2i state after the Ramsey sequence. Each image is from a
single repetition of the experiment. (d) Schematic representation
of quadrupole field (not to scale). Letters correspond to panels
(a) to (c) and indicate the position of quadrupole field. The
magnetic gradient has been calculated from the interference
pattern in panel (b).
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with each π=2 pulse lasting 53 μs and connecting the j2; 0i
and j1; 0i states. The corresponding spin-echo sequence
shown in Fig. 4(b) was chosen to have the same total length
of the sequence between the Ramsey pulses. The two
panels in Fig. 4 show that, over a significant region in the
upper part of the atom laser, the spin-echo sequence
suppresses the horizontal stripes caused by the weak
magnetic gradient, while imaging the gradient of the dipole
potential along the vertical direction. The oval-shaped
features in the center of Fig. 4(b) are a consequence of
an inefficiency of the π pulse in the center of the potential
where light shifts are significant. Similarly, the cancellation
of the horizontal stripe pattern near the bottom of the image
is incomplete as the π pulse is slightly shifted out of
resonance here. In principle, these issues could be mitigated
if sufficient microwave power is available by applying
shorter pulses with larger linewidths. This demonstrates the
capabilities of suitably chosen pulse sequences to enhance
or modify the imaging contrast of desired features.
Conclusion.—As demonstrated in this work, atom inter-

ferometric imaging with an atom laser is a powerful tool for
detecting and evaluating differential potentials over a large
two-dimensional area. With the availability of highly
tunable pulse sequences and several accessible spin states
for measuring a variety of differential potentials, this
technique is highly versatile and can be adapted for a wide
set of applications. As an applied example, relating to work
presented in Ref. [34], one can consider applications to
material science where a material under study is placed
parallel to the sheet of an atom laser, detecting the magnetic
fields emanating from the material by imaging them in the
plane of the atom laser using the interferometric technique.
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