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We determine the two-body contact in a planar Bose gas confined by a transverse harmonic potential,
using the nonperturbative functional renormalization group. We use the three-dimensional thermodynamic
definition of the contact where the latter is related to the derivation of the pressure of the quasi-two-
dimensional system with respect to the three-dimensional scattering length of the bosons. Without any free
parameter, we find a remarkable agreement with the experimental data of Zou et al. [Tan’s two-body
contact across the superfluid transition of a planar Bose gas, Nat. Commun. 12, 760 (2021).] from low to
high temperatures, including the vicinity of the Berezinskii-Kosterlitz-Thouless transition. We also show
that the short-distance behavior of the pair distribution function and the high-momentum behavior of the
momentum distribution are determined by two contacts: the three-dimensional contact for length scales
smaller than the characteristic length lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
of the harmonic potential and, for length scales larger

than lz, an effective two-dimensional contact, related to the three-dimensional one by a geometric factor
depending on lz.

DOI: 10.1103/PhysRevLett.130.263401

Introduction.—Relating the macroscopic properties of a
physical system to microscopic interactions and degrees of
freedom is one of the main goals of many-body quantum
physics. In ultracold atomic gases not all details of the
interaction potential between particles are required since
low-energy collisions are generally fully described by the
s-wave scattering length. As a result, the equation of state
of a dilute gas takes a simple, universal, expression where
the microscopic physics enters only through two param-
eters, the mass of the particles and the scattering length.
Considering the latter as an additional thermodynamic
variable, besides the usual variables (e.g., the chemical
potential μ and the temperature T in the grand canonical
ensemble), one can define its thermodynamic conjugate,
the so-called Tan two-body contact C [1–3]. In a dilute gas,
the contact relates the (universal) low-temperature thermo-
dynamics to the (universal) short-distance behavior which
shows up in the two-body correlations or the momentum
distribution function [1–9]. This simple description fails in
a strongly interacting Bose gas where other parameters
(e.g., associated with three-body effective interactions) are
required for a complete description of the universal
thermodynamics and short-distance physics [10].
There have been few measurements of the two-body

contact in Bose gases. Apart from experiments in the
thermal regime [11,12] or the quasi-pure BEC one
[11,13], the two-body contact has been determined in a
planar Bose gas in a broad temperature range including the
normal and superfluid phases as well as the vicinity of
the Berezinskii-Kosterlitz-Thouless (BKT) transition [14].

The experimental data are in good agreement with theo-
retical predictions in the high-temperature limit (normal
gas) and in the low-temperature limit (strongly degenerate
superfluid). On the other hand, there is no theoretical
explanation for the value of the contact obtained near the
BKT transition. In particular, the experimental data seem at
odds with the predictions of a classical field theory [15]
used earlier successfully for the equation of state of a two-
dimensional Bose gas [16,17].
In this Letter we compute the two-body contact in a

planar Bose gas confined by a harmonic potential using the
nonperturbative functional renormalization group (FRG), a
modern implementation of Wilson’s RG [18–20]. This
approach has proven to be very accurate for determining the
equation of state of such a system [21]. We consider the
weak-coupling limit where the three-dimensional scattering
length a3 of the bosons is much smaller than the character-
istic length lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
of the harmonic potential. We

use the three-dimensional thermodynamic definition of the
contact where the latter is expressed as a derivative of the
pressure with respect to the three-dimensional scattering
length a3 and pay special attention to the quasi-two-
dimensional structure of the system. We show that the
short-distance behavior of the pair distribution function and
the high-momentum behavior of the momentum distribu-
tion are determined by two contacts: the three-dimensional
contact for length scales smaller than lz and, for larger
length scales, an effective two-dimensional contact
(obtained from the derivative of the pressure with respect
to the effective two-dimensional scattering length of the
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confined bosons), related to the three-dimensional one by a
geometric factor depending on lz. We then compare our
results with the experimental data of Ref. [14]. Without any
free parameters, we find a remarkable agreement between
theory and experiment from low to high temperatures,
including the vicinity of the BKT phase transition. We also
show how to reconcile these experimental data with the
classical field simulations of Ref. [15].
Contact of a planar Bose gas.—We consider a quasi-

two-dimensional system of surface L2 obtained by sub-
jecting a three-dimensional Bose gas to a confining
harmonic potential of frequency ωz ¼ ℏ=ml2

z along the
z direction. In the low-temperature regime kBT ≪ ℏωz, the
physical properties of the planar gas can be obtained from
the effective two-dimensional Hamiltonian (from now on
we set ℏ ¼ kB ¼ 1)

Ĥ ¼
Z

d2r

�
∇ψ̂† · ∇ψ̂

2m
þ g
2
ψ̂†ψ̂†ψ̂ ψ̂

�
; ð1Þ

with an ultraviolet momentum cutoff Λ ≃ 0.54l−1
z [22,23].

The effective interaction constant g is related to the three-
dimensional scattering length a3 by

mg ¼
ffiffiffiffiffiffi
8π

p a3
lz

: ð2Þ

Computing the low-energy scattering amplitude from (1),
one obtains the effective two-dimensional scattering length
a2 as a function of the microscopic parameters of the gas
[22–24],

a2
lz

≃ 3.71e−
ffiffi
π
2

p lz
a3
−γ; ð3Þ

where γ ≃ 0.577 is the Euler constant.
In the low-temperature regime T ≪ ωz, the pressure can

be written in the scaling form characteristic of a two-
dimensional system [21],

Pðμ; TÞ ¼ −
Ωðμ; TÞ

L2
¼ T

λ2
F
�
μ

T
; g̃ðTÞ

�
; ð4Þ

where Ωðμ; TÞ is the grand potential, F a universal scaling
function, λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π=mT
p

the thermal de Broglie wave-
length, and

g̃ðTÞ ¼ −
4π

ln ð1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ma22T

p
Þ þ γ

ð5Þ

a temperature-dependent dimensionless interaction con-
stant. Equation (4) is valid for jμj, T ≪ Λ2=2m ∼ ωz.
The corrections to the scaling form (4) are negligible when
ma22T,ma22jμj ≪ 1. The dependence of the scaling function
F on μ=T and ma22T can be simply obtained by

dimensional analysis using the fact that the scattering
length is the only characteristic length scale at low energies.
Renormalization-group arguments show that the depend-
ence on ma22T arises only through g̃ðTÞ [21].
The pressure depending only on a3 [through

a2 ≡ a2ða3;lzÞ] and not on the details of the interaction
potential between particles, it is natural to consider a3 as an
additional thermodynamic variable besides μ and T [1].
The quasi-two-dimensional two-body contact C is then
essentially defined as the conjugate variable to a3,

C
L2

¼ 8πm
∂P

∂ð1=a3Þ
����
μ;T

: ð6Þ

C is an extensive quantity with dimension 1/length. It can
equivalently be defined in the canonical ensemble by
replacing the pressure by the energy density in (6) and
taking the derivative at fixed particle number and entropy.
The motivation for defining the contact from a derivative
with respect to 1=a3 as in a three-dimensional system,
rather than with respect to ln a2 as in a two-dimensional
system, is that in the limit a3 ≪ lz the collisions keep their
three-dimensional character at length scales smaller
than lz.
Using the equation of state (4), we can write the

contact as

C
L2

¼ −4ð2πÞ5=2 Tlz

λ4
F ð0;1Þ

�
μ

T
; g̃ðTÞ

�
g̃0ðTÞ; ð7Þ

where we use the notation F ði;jÞðx; yÞ ¼ ∂
i
x∂

j
yF ðx; yÞ. On

the other hand, the scaling function F determines the two-
dimensional particle and entropy densities, n̄ ¼ ∂P=∂μ and
s ¼ ∂P=∂T. This allows us to express F ð0;1Þ in terms of P,
n̄, s, which leads to a relation between the contact and
the thermodynamic potentials P and E (as in isotropic
systems [2])

C
L2

¼ 4ð2πÞ5=2 lz

λ2T

�
P −

E
L2

�
; ð8Þ

where E=L2 ¼ −Pþ Tsþ μn̄ is the two-dimensional
energy density.
In the weak-coupling limit, the scattering length a2 is

exponentially small with respect to lz and g̃ðTÞ ≃ g̃ ¼ 2mg
is nearly temperature independent except for exponentially

small temperatures T ∼ ωze
−

ffiffiffiffiffiffi
π=2

p
ðlz=a3Þ. For this reason it

is often concluded that the two-dimensional Bose gas
exhibits an approximate scale invariance [15–17] (with
no characteristic energy scales other than μ and T):
F ½μ=T; g̃ðTÞ� ≃ F ðμ=T; g̃Þ [21], and the normalized con-
tact Cλ4=L2lz is a function of μ=T and g̃. However the
assumption of approximate scale invariance cannot be used
in the calculation leading to (8) since this would imply
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g̃0ðTÞ ¼ 0 and in turn E ¼ L2P and C ¼ 0. The contact
defined in (8) can thus be seen as a measure of the break-
down of scale invariance in the planar Bose gas [25]. The
situation is different in an isotropic three-dimensional
system; in the unitary limit a3 → ∞ where scale invariance
is satisfied, E3D ¼ ð3=2ÞL3P3D, but the contact remains
finite since ð3=2ÞP3D−E3D=L3¼Oð1=a3Þ, whereas C3D ∝
a3½ð3=2ÞP3D − E3D=L3�.
A remarkable feature of the contact defined from the

pressure is that it also determines the short-distance
behavior of the pair distribution function as well as the
high-momentum limit of the momentum distribution func-
tion [1–9]. This property still holds in the planar gas. For
the pair distribution function, averaged over the position
R ¼ ðr1 þ r2Þ=2 of the pair center of mass, one has [26]

gðrÞ ¼
Z

d3Rhψ̂†ðr1Þψ̂†ðr2Þψ̂ðr2Þψ̂ðr1Þi;

¼

8><
>:

C
ð4πÞ2

�
1
jrj −

1
a3

	
2

if jrj ≪ lz; λ; d;

Cffiffiffiffi
2π

p
lz
jϕ−

0 ðzÞj2
�
ln jρ=a2j

2π

	
2

if lz ≪ jρj ≪ λ; d;

ð9Þ
where r ¼ r1 − r2 ¼ ðρ; zÞ is the coordinate of the relative
motion of the pair (with ρ a two-dimensional coordinate)
and d the mean interparticle distance. ϕ−

0 denotes the
ground state of a particle of reduced mass m=2 in an
harmonic potential of characteristic frequency ωz. The fact
that the contact (6) determines the pair distribution function
at short length scales, jrj ≪ λ, lz, d, is not surprising since
C ∝ ∂P=∂ð1=a3Þ is defined as in the three-dimensional
case. On the other hand, the effective contact that appears in
the regime lz ≪ jρj ≪ λ, d can be written as

Cffiffiffiffiffiffi
2π

p
lzL2

¼ −4πm
∂P

∂ ln a2
; ð10Þ

and thus coincides with the usual thermodynamic definition
of a two-dimensional contact. Similarly, for the momentum
distribution function n̄k;kz , one finds

n̄k;kz ¼
C

ðk2 þ k2zÞ2
if

1

a3
;
1

d
;
1

λ
≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2z

q
; ð11Þ

and

n̄ð2DÞk ¼
Z

dkz
2π

n̄k;kz ;

¼ 1ffiffiffiffiffiffi
2π

p
lz

C
jkj4 if

1

d
;
1

λ
≪ jkj ≪ 1

lz
; ð12Þ

where we assume the normalization 1
L2

P
k

R ðdkz=2πÞn̄k;kz¼
N (withN ≡ hN̂i the total number of particles). Equation (11)
holds at any temperature while Eq. (12) is valid only in the
low-temperature regime T ≪ ωz. Note that a result similar

to (11), (12) has been obtained for fermions in quasi-one- and
quasi-two-dimensional traps [37] (see also [38,39] for bosons
in a quasi-one-dimensional trap).
FRG calculation of the contact.—Following Ref. [21] we

compute the pressure of the planar Bose gas at low tempe-
ratures T ≪ ωz using the two-dimensional Hamiltonian
(1). The main quantity of interest in the FRG approach is
the effective action (or Gibbs free energy) Γ, defined as the
Legendre transform of the Helmholtz free energy, and
which is directly related to the pressure: P ¼ −ðT=L2ÞΓ.
We refer to Refs. [20,21] for a detailed description of the
method. Once the pressure is known, the contact is obtained
from (6).
The FRG approach to interacting boson systems has

proven to be very accurate. In particular, the universal
scaling function F entering the equation of state (4) of the
two-dimensional Bose gas has been computed using the
FRG approach [21], and very good agreement with
experimental data in planar gases [16,40,41], with or
without an optical lattice, has been obtained [42].
In Fig. 1, we show the contact C normalized by L2lz=λ4

obtained for 2mg ¼ 2
ffiffiffiffiffiffi
8π

p
a3=lz ¼ 0.32 and T=ωz ≃

0.00145 by computing the pressure P for two nearby
values of a3 and taking a numerical derivative. We find a
very good agreement with two limiting cases [26], the zero-
temperature limit in the superfluid phase where

CBog

L2
¼

ffiffiffiffiffiffi
2π

p
ðmμÞ2lz ð13Þ

FIG. 1. Two-body contact Cλ4=L2lz vs μ=T for 2mg ¼ 0.32
and T=ωz ≃ 0.00145 as obtained from the FRG [solid (blue)
line]. The dashed (red) line shows the result obtained from (8)
while the symbols correspond to the Bogoliubov result (13) and
the virial expansion (14). The BKT transition occurs at
μ=T ≃ 0.21, shown as a vertical dashed line, as estimated from
FRG. The inset shows a comparison between FRG and classical
field simulations using the thermodynamic definition (6) [CFS1,
(orange) circles] and the relation between C and hðψ̂†Þ2ðψ̂Þ2i
[CFS2, (purple) crosses]; see text.
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can be obtained from the Bogoliubov theory (including the
Lee-Huang-Yang correction [46]), and the dilute normal
gas where

Cvirial

L2
¼ z2lz

λ4
2ð2πÞ5=2

j ln ða2λ
ffiffi
π
2

p
eγÞj2 ð14Þ

(with z ¼ eβμ the fugacity) can be obtained from the
virial expansion. The contact deduced from (8), the two-
dimensional energy density E=L2 ¼ −Pþ T∂P=∂T þ
μ∂P=∂μ being obtained from numerical derivatives, is
also shown in the figure. The apparent disagreement for
μ=T ≲ 0.5 is due to a lack of precision in the numerical
calculation, the values of P and E=L2 being extremely close
and the normalized contact very small.
The inset of Fig. 1 shows the contact obtained from the

classical field simulations of Ref. [15] using two different
methods. The first one (CFS1) is based on the thermody-
namic definition (6) of the contact and the calculation of
the pressure P, the second one (CFS2) uses the defini-
tion C=L2 ¼ 4ð2πÞ3=2ða23=lzÞhðψ̂†Þ2ðψ̂Þ2i [which follows
from Eq. (6) ]. Both P and hðψ̂†Þ2ðψ̂Þ2i are obtained from
the results of Ref. [15] (see [26]). The first method has one
fitting parameter, the value of the contact at the BKT
transition, which we determine by minimizing the relative
difference between the FRG and the classical field results.
The first method CFS1 and the FRG are in agreement with
an accuracy better than 1% when μ=T ≳ 0.25. In the range
0≲ μ=T ≲ 0.25, which includes the fluctuation region
about the BKT transition, the agreement remains within
5% but deteriorates when μ=T < 0. The second method,
CFS2, is clearly much less accurate when μ=T < 0 and
breaks down in the low-density limit since C becomes
negative when μ=T ≲ −0.3.
Comparison with the experiment.—The thermodynamic

definition (6) of the contact was realized experimentally by
means of a Ramsey interferometric method [14]. The mea-
surements were performed on a Bose gas of 87Rb atoms con-
fined by a harmonic potential with 2mg ¼ 2

ffiffiffiffiffiffi
8π

p
a3=lz ¼

0.32 in a broad temperature range around the BKT tran-
sition. In Fig. 2 we compare the experimental data with the
FRG and classical field results obtained for 2mg ¼ 0.32.
Following Ref. [14] we show the contact normalized by the
mean-field contact C0 ¼ 4ð2πÞ3=2L2n̄2a23=lz as a function
of the phase-space densityD ¼ n̄λ2. The FRG calculation is
done atT=ωz ¼ 0.03, low enough to be in the quasi-2D regi-
me (T ≪ Λ2=2m) but high enough to minimize the loga-
rithmic corrections (in the experiment, T=ωz∈ ½0.05;0.75�).
The normalized contact varies between [47]

CBog

C0

¼ π

2

l2
z=a23

j ln ða2
ffiffiffiffiffiffi
πn̄

p
eγþ1=2Þj2 ≃ 1 ð15Þ

for D ≫ 1 and

Cvirial

C0

¼ l2
z

a23

π

j ln ða2λ
ffiffi
π
2

p
eγÞj2 ≃ 2 ð16Þ

for D ≪ 1.
The agreement between FRG and the experimental data

is very good in spite of the absence of any fit parameter. On
the other hand, there is a downward shift of the classical
field result with respect to the experimental data (only CFS2
was compared to the experimental data in Ref. [14]). This
does not come from the value of the contact, which is
highly accurate for μ > 0 as previously discussed (Fig. 1),
but apparently from a lower accuracy of the density
estimate and therefore the normalized contact C=C0. The
relative difference between the FRG and CFS results for the
density (for a given value of the chemical potential) is only
about 5%, but this is enough to have a visible effect in the
plot of C=C0. Normalizing the contact with CBog gives the
same qualitative results [26]. The classical field result
CFS1, apart from this downward shift, provides us with
a good fit of the experimental data except in the low-density
limit D≲ 1.5 where it becomes much too large (and
therefore does not appear in Fig. 2). Note that there is
no sign of the BKT transition, predicted to occur around
D ≃ 7.7 (classical field simulations [15]) and D ≃ 6.7
(FRG), marked as vertical dashed lines in Fig. 2. The
bump predicted by the FRG near D ¼ 3 is due to the rapid
change of n̄, and therefore C0, for small and positive values

FIG. 2. Normalized two-body contact C=C0 as a function of the
phase-space densityD ¼ n̄λ2 for 2mg ¼ 0.32. The square (green)
symbols show the experimental data from Ref. [14] and the solid
(blue) line the FRG result at T=ωz ¼ 0.03. The (orange) circles
and (purple) crosses are the estimate from classical field simu-
lations, CFS1 and CFS2, respectively (see text). The vertical
dashed lines correspond to the position of the BKT transition as
estimated from FRG at D ≃ 6.7 (blue line on the left) and
classical field simulations at D ≃ 7.7 (orange line on the right).
The inset is an enlargement on the fluctuation region about the
BKT transition.
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of μ=T [16,17]. Although this bump also appears in the
experimental data, the 3%–10% experimental uncertainty
[48] does not allow us to assert that it is a real feature.
Conclusion.—The theoretical calculation of the two-

body contact of a planar Bose gas in the framework of
the nonperturbative FRG is in remarkable agreement with
the experimental data of Ref. [14]. The FRG provides us
with an accurate value of the contact over a broad temper-
ature range including the vicinity of the BKT transition. We
have also shown how the apparent contradiction between
the experimental data of Ref. [14] and the classical field
simulations [15] can be overcome. The FRG predicts
a bump in the contact for a phase-space density D ≃ 3,
which requires improved-precision measurements to be
confirmed.
An interesting aspect of the contact theory in a quasi-

two-dimensional gas is that the high-momentum tail,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2z

p
≫ 1=a3, 1=λ, 1=d, of the three-dimensional

momentum distribution is controlled by the three-
dimensional contact [as defined in (6) ] while the inter-
mediate momentum range, 1=d, 1=λ ≪ jkj ≪ 1=lz, is
controlled by the effective two-dimensional contact
C=

ffiffiffiffiffiffi
2π

p
lz [Eqs. (11), (12), and Refs. [37,39] ]. A measure

of the momentum distribution, for instance, by ballistic
expansion of the atomic cloud or rf spectroscopy [49],
would allow us to confirm this essential property of the
contact theory.
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